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Introduction

Apple designed the iOS platform with security at its core. When we set out to create the 
best possible mobile platform, we drew from decades of experience to build an entirely 
new architecture. We thought about the security hazards of the desktop environment, 
and established a new approach to security in the design of iOS. We developed and 
incorporated innovative features that tighten mobile security and protect the entire 
system by default. As a result, iOS is a major leap forward in security for mobile devices.

Every iOS device combines software, hardware, and services designed to work together 
for maximum security and a transparent user experience. iOS protects not only the 
device and its data at rest, but the entire ecosystem, including everything users do 
locally, on networks, and with key Internet services.

iOS and iOS devices provide advanced security features, and yet they’re also easy to 
use. Many of these features are enabled by default, so IT departments don’t need to 
perform extensive configurations. And key security features like device encryption 
are not configurable, so users can’t disable them by mistake. Other features, such as 
Touch ID, enhance the user experience by making it simpler and more intuitive to 
secure the device.

This document provides details about how security technology and features are 
implemented within the iOS platform. It will also help organizations combine iOS 
platform security technology and features with their own policies and procedures 
to meet their specific security needs.

This document is organized into the following topic areas:

• System security: The integrated and secure software and hardware that are the 
platform for iPhone, iPad, and iPod touch.

• Encryption and data protection: The architecture and design that protect user data 
if the device is lost or stolen, or if an unauthorized person attempts to use or modify it.

• App security: The systems that enable apps to run securely and without 
compromising platform integrity.

• Network security: Industry-standard networking protocols that provide secure 
authentication and encryption of data in transmission.

• Internet services: Apple’s network-based infrastructure for messaging, syncing, and 
backup.

• Device controls: Methods that prevent unauthorized use of the device and enable it to 
be remotely wiped if lost or stolen.

• Privacy controls: Capabilities of iOS that can be used to control access to Location 
Services and user data.
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Security architecture diagram of iOS 
provides a visual overview of the different 
technologies discussed in this document.
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System Security

System security is designed so that both software and hardware are secure across all 
core components of every iOS device. This includes the boot-up process, software 
updates, and Secure Enclave. This architecture is central to security in iOS, and never 
gets in the way of device usability.

The tight integration of hardware and software on iOS devices ensures that each 
component of the system is trusted, and validates the system as a whole. From initial 
boot-up to iOS software updates to third-party apps, each step is analyzed and vetted 
to help ensure that the hardware and software are performing optimally together and 
using resources properly.

Secure boot chain

Each step of the startup process contains components that are cryptographically signed 
by Apple to ensure integrity and that proceed only after verifying the chain of trust. This 
includes the bootloaders, kernel, kernel extensions, and baseband firmware.

When an iOS device is turned on, its application processor immediately executes code 
from read-only memory known as the Boot ROM. This immutable code, known as the 
hardware root of trust, is laid down during chip fabrication, and is implicitly trusted. The 
Boot ROM code contains the Apple Root CA public key, which is used to verify that the 
Low-Level Bootloader (LLB) is signed by Apple before allowing it to load. This is the first 
step in the chain of trust where each step ensures that the next is signed by Apple. 
When the LLB finishes its tasks, it verifies and runs the next-stage bootloader, iBoot, 
which in turn verifies and runs the iOS kernel.

This secure boot chain helps ensure that the lowest levels of software are not tampered 
with and allows iOS to run only on validated Apple devices.

For devices with cellular access, the baseband subsystem also utilizes its own similar 
process of secure booting with signed software and keys verified by the baseband 
processor.

For devices with an A7 or later A-series processor, the Secure Enclave coprocessor also 
utilizes a secure boot process that ensures its separate software is verified and signed 
by Apple.

If one step of this boot process is unable to load or verify the next process, startup is 
stopped and the device displays the “Connect to iTunes” screen. This is called recovery 
mode. If the Boot ROM is not able to load or verify LLB, it enters DFU (Device Firmware 
Upgrade) mode. In both cases, the device must be connected to iTunes via USB and 
restored to factory default settings. For more information on manually entering recovery 
mode, see https://support.apple.com/kb/HT1808.
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Entering Device Firmware Upgrade 
(DFU) mode

Restoring a device after it enters DFU 
mode returns it to a known good state 
with the certainty that only unmodified 
Apple-signed code is present. DFU mode 
can be entered manually: First connect 
the device to a computer using a USB 
cable, then hold down both the Home 
and Sleep/Wake buttons. After 8 seconds, 
release the Sleep/Wake button while 
continuing to hold down the Home 
button. Note: Nothing will be displayed 
on the screen when it’s in DFU mode. If 
the Apple logo appears, the Sleep/ Wake 
button was held down too long. 

https://support.apple.com/kb/HT1808
https://support.apple.com/kb/HT1808


System software authorization

Apple regularly releases software updates to address emerging security concerns 
and also provide new features; these updates are provided for all supported devices 
simultaneously. Users receive iOS update notifications on the device and through 
iTunes, and updates are delivered wirelessly, encouraging rapid adoption of the latest 
security fixes.

The startup process described above helps ensure that only Apple-signed code can be 
installed on a device. To prevent devices from being downgraded to older versions that 
lack the latest security updates, iOS uses a process called System Software Authorization. 
If downgrades were possible, an attacker who gains possession of a device could install 
an older version of iOS and exploit a vulnerability that’s been fixed in the newer version.

On a device with an A7 or later A-series processor, the Secure Enclave coprocessor 
also utilizes System Software Authorization to ensure the integrity of its software and 
prevent downgrade installations. See “Secure Enclave,” below.

iOS software updates can be installed using iTunes or over the air (OTA) on the device. 
With iTunes, a full copy of iOS is downloaded and installed. OTA software updates 
download only the components required to complete an update, improving network 
efficiency rather than downloading the entire OS. Additionally, software updates can 
be cached on a local network server running the caching service on OS X Server so that 
iOS devices do not need to access Apple servers to obtain the necessary update data.

During an iOS upgrade, iTunes (or the device itself, in the case of OTA software updates) 
connects to the Apple installation authorization server and sends it a list of cryptographic 
measurements for each part of the installation bundle to be installed (for example, LLB, 
iBoot, the kernel, and OS image), a random anti-replay value (nonce), and the device’s 
unique ID (ECID).

The authorization server checks the presented list of measurements against versions for 
which installation is permitted, and if it finds a match, adds the ECID to the measurement 
and signs the result. The server passes a complete set of signed data to the device as 
part of the upgrade process. Adding the ECID “personalizes” the authorization for the 
requesting device. By authorizing and signing only for known measurements, the server 
ensures that the update takes place exactly as provided by Apple.

The boot-time chain-of-trust evaluation verifies that the signature comes from Apple 
and that the measurement of the item loaded from disk, combined with the device’s 
ECID, matches what was covered by the signature.

These steps ensure that the authorization is for a specific device and that an old iOS 
version from one device can’t be copied to another. The nonce prevents an attacker 
from saving the server’s response and using it to tamper with a device or otherwise 
alter the system software.

Secure Enclave

The Secure Enclave is a coprocessor fabricated in the Apple A7 or later A-series processor. 
It utilizes its own secure boot and personalized software update separate from the 
application processor. It provides all cryptographic operations for Data Protection key 
management and maintains the integrity of Data Protection even if the kernel has 
been compromised.
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The Secure Enclave uses encrypted memory and includes a hardware random number 
generator. Its microkernel is based on the L4 family, with modifications by Apple. 
Communication between the Secure Enclave and the application processor is isolated 
to an interrupt-driven mailbox and shared memory data buffers.

Each Secure Enclave is provisioned during fabrication with its own UID (Unique ID) that is 
not accessible to other parts of the system and is not known to Apple. When the device 
starts up, an ephemeral key is created, entangled with its UID, and used to encrypt the 
Secure Enclave’s portion of the device’s memory space.

Additionally, data that is saved to the file system by the Secure Enclave is encrypted with 
a key entangled with the UID and an anti-replay counter.

The Secure Enclave is responsible for processing fingerprint data from the Touch ID sensor, 
determining if there is a match against registered fingerprints, and then enabling access or 
purchases on behalf of the user. Communication between the processor and the Touch ID 
sensor takes place over a serial peripheral interface bus. The processor forwards the data 
to the Secure Enclave but cannot read it. It’s encrypted and authenticated with a session 
key that is negotiated using the device’s shared key that is provisioned for the Touch ID 
sensor and the Secure Enclave. The session key exchange uses AES key wrapping with 
both sides providing a random key that establishes the session key and uses AES-CCM 
transport encryption.

Touch ID

Touch ID is the fingerprint sensing system that makes secure access to the device faster 
and easier. This technology reads fingerprint data from any angle and learns more about 
a user’s fingerprint over time, with the sensor continuing to expand the fingerprint map 
as additional overlapping nodes are identified with each use.

Touch ID makes using a longer, more complex passcode far more practical because 
users won’t have to enter it as frequently. Touch ID also overcomes the inconvenience of 
a passcode-based lock, not by replacing it but by securely providing access to the device 
within thoughtful boundaries and time constraints.

Touch ID and passcodes

To use Touch ID, users must set up their device so that a passcode is required to unlock 
it. When Touch ID scans and recognizes an enrolled fingerprint, the device unlocks 
without asking for the device passcode. The passcode can always be used instead of 
Touch ID, and it’s still required under the following circumstances:

• The device has just been turned on or restarted.

• The device has not been unlocked for more than 48 hours.

• After five unsuccessful attempts to match a fingerprint.

• When setting up or enrolling new fingers with Touch ID.

• The device has received a remote lock command.

When Touch ID is enabled, the device immediately locks when the Sleep/Wake button is 
pressed. With passcode-only security, many users set an unlocking grace period to avoid 
having to enter a passcode each time the device is used. With Touch ID, the device locks 
every time it goes to sleep, and requires a fingerprint—or optionally the passcode—at 
every wake.
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Touch ID can be trained to recognize up to five different fingers. With one finger 
enrolled, the chance of a random match with someone else is 1 in 50,000. However, 
Touch ID allows only five unsuccessful fingerprint match attempts before the user is 
required to enter a passcode to obtain access. 

Other uses for Touch ID

Touch ID can also be configured to approve purchases from the iTunes Store, the App 
Store, and the iBooks Store, so users don’t have to enter an Apple ID password. When 
they choose to authorize a purchase, authentication tokens are exchanged between the 
device and the store. The token and nonce are held in the Secure Enclave. The nonce is 
signed with a Secure Enclave key shared by all devices and the iTunes Store.

Additionally, third-party apps can use system-provided APIs to ask the user to authenticate 
using Touch ID or passcode. The app is only notified as to whether the authentication was 
successful; it cannot access Touch ID or the data associated with the enrolled fingerprint.

Keychain items can also be protected with Touch ID, to be released by the Secure Enclave 
only by a fingerprint match or the device passcode. App developers also have APIs to 
verify that a passcode has been set by the user and therefore able to authenticate or 
unlock keychain items using Touch ID.

Touch ID security

The fingerprint sensor is active only when the capacitive steel ring that surrounds the 
Home button detects the touch of a finger, which triggers the advanced imaging array 
to scan the finger and send the scan to the Secure Enclave.

The 88-by-88-pixel, 500-ppi raster scan is temporarily stored in encrypted memory 
within the Secure Enclave while being vectorized for analysis, and then it’s discarded. 
The analysis utilizes subdermal ridge flow angle mapping, which is a lossy process
that discards minutia data that would be required to reconstruct the user’s actual 
fingerprint. The resulting map of nodes is stored without any identity information in 
an encrypted format that can only be read by the Secure Enclave, and is never sent to 
Apple or backed up to iCloud or iTunes.

How Touch ID unlocks an iOS device
If Touch ID is turned off, when a device locks, the keys for Data Protection class Complete, 
which are held in the Secure Enclave, are discarded. The files and keychain items in that 
class are inaccessible until the user unlocks the device by entering their passcode.

With Touch ID turned on, the keys are not discarded when the device locks; instead, 
they’re wrapped with a key that is given to the Touch ID subsystem inside the Secure 
Enclave. When a user attempts to unlock the device, if Touch ID recognizes the user’s 
fingerprint, it provides the key for unwrapping the Data Protection keys, and the device 
is unlocked. This process provides additional protection by requiring the Data Protection 
and Touch ID subsystems to cooperate in order to unlock the device.

The keys needed for Touch ID to unlock the device are lost if the device reboots and 
are discarded by the Secure Enclave after 48 hours or five failed Touch ID recognition 
attempts.
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Encryption and Data Protection

The secure boot chain, code signing, and runtime process security all help to ensure 
that only trusted code and apps can run on a device. iOS has additional encryption 
and data protection features to safeguard user data, even in cases where other parts of 
the security infrastructure have been compromised (for example, on a device with 
unauthorized modifications). This provides important benefits for both users and IT 
administrators, protecting personal and corporate information at all times and providing 
methods for instant and complete remote wipe in the case of device theft or loss.

Hardware security features

On mobile devices, speed and power efficiency are critical. Cryptographic operations are 
complex and can introduce performance or battery life problems if not designed and 
implemented with these priorities in mind.

Every iOS device has a dedicated AES 256 crypto engine built into the DMA path between 
the flash storage and main system memory, making file encryption highly efficient.

The device’s unique ID (UID) and a device group ID (GID) are AES 256-bit keys fused 
(UID) or compiled (GID) into the application processor during manufacturing. No 
software or firmware can read them directly; they can see only the results of encryption 
or decryption operations performed using them. The UID is unique to each device and is 
not recorded by Apple or any of its suppliers. The GID is common to all processors in a 
class of devices (for example, all devices using the Apple A8 processor), and is used as an 
additional level of protection when delivering system software during installation and 
restore. Integrating these keys into the silicon helps prevent them from being tampered 
with or bypassed, or accessed outside the AES engine. The UID and GID are also not 
available via JTAG or other debugging interfaces.

The UID allows data to be cryptographically tied to a particular device. For example, the 
key hierarchy protecting the file system includes the UID, so if the memory chips are 
physically moved from one device to another, the files are inaccessible. The UID is not 
related to any other identifier on the device.

Apart from the UID and GID, all other cryptographic keys are created by the system’s 
random number generator (RNG) using an algorithm based on CTR_DRBG. System 
entropy is generated from timing variations during boot, and additionally from interrupt 
timing once the device has booted. Keys generated inside the Secure Enclave use its 
true hardware random number generator based on multiple ring oscillators post 
processed with CTR_DRBG.

Securely erasing saved keys is just as important as generating them. It’s especially 
challenging to do so on flash storage, where wear-leveling might mean multiple copies 
of data need to be erased. To address this issue, iOS devices include a feature dedicated 
to secure data erasure called Effaceable Storage. This feature accesses the underlying 
storage technology (for example, NAND) to directly address and erase a small number 
of blocks at a very low level.
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Erase all content and settings

The “Erase all content and settings” option in 
Settings obliterates all the keys in Effaceable 
Storage, rendering all user data on the 
device cryptographically inaccessible. 
Therefore, it’s an ideal way to be sure all 
personal information is removed from a 
device before giving it to somebody else or 
returning it for service. Important: Do not use 
the “Erase all content and settings” option 
until the device has been backed up, as 
there is no way to recover the erased data.



File Data Protection

In addition to the hardware encryption features built into iOS devices, Apple uses a 
technology called Data Protection to further protect data stored in flash memory on
the device. Data Protection allows the device to respond to common events such as 
incoming phone calls, but also enables a high level of encryption for user data. Key 
system apps, such as Messages, Mail, Calendar, Contacts, and Photos use Data Protection 
by default, and third-party apps installed on iOS 7 or later receive this protection 
automatically.

Data Protection is implemented by constructing and managing a hierarchy of keys, 
and builds on the hardware encryption technologies built into each iOS device. Data 
Protection is controlled on a per-file basis by assigning each file to a class; accessibility
is determined by whether the class keys have been unlocked.

Architecture overview
Every time a file on the data partition is created, Data Protection creates a new 256-bit 
key (the “per-file” key) and gives it to the hardware AES engine, which uses the key to 
encrypt the file as it is written to flash memory using AES CBC mode. The initialization 
vector (IV) is calculated with the block offset into the file, encrypted with the SHA-1 hash 
of the per-file key.

The per-file key is wrapped with one of several class keys, depending on the circumstances 
under which the file should be accessible. Like all other wrappings, this is performed 
using NIST AES key wrapping, per RFC 3394. The wrapped per-file key is stored in the 
file’s metadata.

When a file is opened, its metadata is decrypted with the file system key, revealing 
the wrapped per-file key and a notation on which class protects it. The per-file key is 
unwrapped with the class key, then supplied to the hardware AES engine, which 
decrypts the file as it is read from flash memory.

The metadata of all files in the file system is encrypted with a random key, which is 
created when iOS is first installed or when the device is wiped by a user. The file system 
key is stored in Effaceable Storage. Since it’s stored on the device, this key is not used to 
maintain the confidentiality of data; instead, it’s designed to be quickly erased on 
demand (by the user, with the “Erase all content and settings” option, or by a user or 
administrator issuing a remote wipe command from a mobile device management 
(MDM) server, Exchange ActiveSync, or iCloud). Erasing the key in this manner renders 
all files cryptographically inaccessible.

The content of a file is encrypted with a per-file key, which is wrapped with a class key 
and stored in a file’s metadata, which is in turn encrypted with the file system key. The 
class key is protected with the hardware UID and, for some classes, the user’s passcode. 
This hierarchy provides both flexibility and performance. For example, changing a file’s 
class only requires rewrapping its per-file key, and a change of passcode just rewraps the 
class key.
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Passcodes

By setting up a device passcode, the user automatically enables Data Protection. 
iOS supports four-digit and arbitrary-length alphanumeric passcodes. In addition 
to unlocking the device, a passcode provides entropy for certain encryption keys. 
This means an attacker in possession of a device can’t get access to data in specific 
protection classes without the passcode.

The passcode is entangled with the device’s UID, so brute-force attempts must be 
performed on the device under attack. A large iteration count is used to make each 
attempt slower. The iteration count is calibrated so that one attempt takes approximately 
80 milliseconds. This means it would take more than 5½ years to try all combinations 
of a six-character alphanumeric passcode with lowercase letters and numbers.

The stronger the user passcode is, the stronger the encryption key becomes. Touch ID 
can be used to enhance this equation by enabling the user to establish a much stronger 
passcode than would otherwise be practical. This increases the effective amount of 
entropy protecting the encryption keys used for Data Protection, without adversely 
affecting the user experience of unlocking an iOS device multiple times throughout 
the day.

To further discourage brute-force passcode attacks, the iOS interface enforces escalating 
time delays after the entry of an invalid passcode at the Lock screen. Users can choose 
to have the device automatically wiped if the passcode is entered incorrectly after 10 
consecutive attempts. This setting is also available as an administrative policy through 
mobile device management (MDM) and Exchange ActiveSync, and can be set to a lower 
threshold.

On a device with an A7 or later A-series processor, the key operations are performed 
by the Secure Enclave, which also enforces a 5-second delay between repeated failed 
unlocking requests. This provides a governor against brute-force attacks in addition to 
safeguards enforced by iOS.

Data Protection classes

When a new file is created on an iOS device, it’s assigned a class by the app that creates 
it. Each class uses different policies to determine when the data is accessible. The basic 
classes and policies are described in the following sections.

Complete Protection

(NSFileProtectionComplete): The class key is protected with a key derived 
from the user passcode and the device UID. Shortly after the user locks a device (10 
seconds, if the Require Password setting is Immediately), the decrypted class key is 
discarded, rendering all data in this class inaccessible until the user enters the passcode 
again or unlocks the device using Touch ID.

Protected Unless Open

(NSFileProtectionCompleteUnlessOpen): Some files may need to be 
written while the device is locked. A good example of this is a mail attachment 
downloading in the background. This behavior is achieved by using asymmetric elliptic 
curve cryptography (ECDH over Curve25519). The usual per-file key is protected by a key 
derived using One-Pass Diffie-Hellman Key Agreement as described in NIST SP 800-56A.

 iOS Security—White Paper  |  September 2014 11

Passcode considerations

If a long password that contains only 
numbers is entered, a numeric keypad is 
displayed at the Lock screen instead 
of the full keyboard. A longer numeric 
passcode may be easier to enter than a 
shorter alphanumeric passcode, while 
providing similar security.



The ephemeral public key for the agreement is stored alongside the wrapped per file 
key. The KDF is Concatenation Key Derivation Function (Approved Alternative 1) as 
described in 5.8.1 of NIST SP 800-56A. AlgorithmID is omitted. PartyUInfo and PartyVInfo 
are the ephemeral and static public keys, respectively. SHA-256 is used as the hashing 
function. As soon as the file is closed, the per-file key is wiped from memory. To open 
the file again, the shared secret is re-created using the Protected Unless Open class’s 
private key and the file’s ephemeral public key; its hash is used to unwrap the per-file 
key, which is then used to decrypt the file.

Protected Until First User Authentication

(NSFileProtectionCompleteUntilFirstUserAuthentication): This 
class behaves in the same way as Complete Protection, except that the decrypted class 
key is not removed from memory when the device is locked. The protection in this class 
has similar properties to desktop full-volume encryption, and protects data from attacks 
that involve a reboot. This is the default class for all third-party app data not otherwise 
assigned to a Data Protection class.

No Protection

(NSFileProtectionNone): This class key is protected only with the UID, and is 
kept in Effaceable Storage. Since all the keys needed to decrypt files in this class are 
stored on the device, the encryption only affords the benefit of fast remote wipe. If a file 
is not assigned a Data Protection class, it is still stored in encrypted form (as is all data 
on an iOS device).

Keychain Data Protection

Many apps need to handle passwords and other short but sensitive bits of data, such 
as keys and login tokens. The iOS keychain provides a secure way to store these items.

The keychain is implemented as a SQLite database stored on the file system. There is 
only one database; the securityd daemon determines which keychain items each process 
or app can access. Keychain access APIs result in calls to the daemon, which queries the 
app’s “keychain-access-groups” and the “application-identifier” entitlement. Rather than 
limiting access to a single process, access groups allow keychain items to be shared 
between apps.

Keychain items can only be shared between apps from the same developer. This is 
managed by requiring third-party apps to use access groups with a prefix allocated to 
them through the iOS Developer Program, or in iOS 8, via application groups. The prefix 
requirement and application group uniqueness are enforced through code signing, 
Provisioning Profiles, and the iOS Developer Program.

Keychain data is protected using a class structure similar to the one used in file Data 
Protection. These classes have behaviors equivalent to file Data Protection classes, but 
use distinct keys and are part of APIs that are named differently.

                                             Availability File Data Protection  Keychain Data Protection

                                    When unlocked NSFileProtectionComplete  kSecAttrAccessibleWhenUnlocked

                                         While locked NSFileProtectionCompleteUnlessOpen N/A

        After first unlock NSFileProtectionCompleteUntilFirstUserAuthentication kSecAttrAccessibleAfterFirstUnlock

                                                   Always NSFileProtectionNone  kSecAttrAccessibleAlways

                               Passcode enabled  N/A  kSecAttrAccessible-
                                                                 WhenPasscodeSetThisDeviceOnly
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Components of a keychain item

Along with the access group, each 
keychain item contains administrative 
metadata (such as “created” and “last 
updated” timestamps).

It also contains SHA-1 hashes of the 
attributes used to query for the item 
(such as the account and server name) 
to allow lookup without decrypting 
each item. And finally, it contains the 
encryption data, which includes the 
following:

• Version number

• Access control list (ACL) data

• Value indicating which protection 
class the item is in

• Per-item key wrapped with the 
protection class key

• Dictionary of attributes describing 
the item (as passed to SecItemAdd), 
encoded as a binary plist and 
encrypted with the per-item key

The encryption is AES 128 in GCM 
(Galois/ Counter Mode); the access 
group is included in the attributes and 
protected by the GMAC tag calculated 
during encryption.



Apps that utilize background refresh services can use 
kSecAttrAccessibleAfterFirstUnlock for keychain items that need to be 
accessed during background updates.

The class kSecAttrAccessibleWhenPasscodeSetThisDeviceOnly is 
available only when the device is configured with a passcode. Items in this class exist 
only in the system keybag; they do not sync to iCloud Keychain, are not backed up, and 
are not included in escrow keybags. If the passcode is removed or reset, the items are 
rendered useless by discarding the class keys.

Other keychain classes have a “This device only” counterpart, which is always protected 
with the UID when being copied from the device during a backup, rendering it useless if 
restored to a different device.

Apple has carefully balanced security and usability by choosing keychain classes that 
depend on the type of information being secured and when it’s needed by iOS. For 
example, a VPN certificate must always be available so the device keeps a continuous 
connection, but it’s classified as “non-migratory,” so it can’t be moved to another device.

For keychain items created by iOS, the following class protections are enforced:

                                                        Item   Accessible

                                   Wi-Fi passwords   After first unlock

                                       Mail accounts   After first unlock

                               Exchange accounts  After first unlock

                                    VPN passwords   After first unlock

                               LDAP, CalDAV, CardDAV  After first unlock

                               Social network account tokens  After first unlock

                               Handoff advertisement encryption keys  After first unlock

                                         iCloud token   After first unlock

                               Home sharing password  When unlocked

                               Find My iPhone token  Always

                                              Voicemail    Always

                                      iTunes backup   When unlocked, non-migratory

                                  Safari passwords    When unlocked

                                    VPN certificates    Always, non-migratory

                                     Bluetooth keys    Always, non-migratory

                               Apple Push Notification service token  Always, non-migratory

                               iCloud certificates and private key  Always, non-migratory

                                      iMessage keys   Always, non-migratory

                        Certificates and private keys installed by Configuration Profile Always, non-migratory

                                                  SIM PIN   Always, non-migratory
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Keychain access control 

Keychains can use access control lists (ACLs) to set policies for accessibility and 
authentication requirements. Items can establish conditions that require user presence 
by specifying that they can’t be accessed unless authenticated using Touch ID or by 
entering the device’s passcode. ACLs are evaluated inside the Secure Enclave and are 
released to the kernel only if their specified constraints are met.

Access to Safari saved passwords

iOS apps can interact with keychain items saved by Safari for password autofill using 
the following two APIs:

• SecRequestSharedWebCredential

• SecAddSharedWebCredential

Access will be granted only if both the app developer and website administrator have 
given their approval, and the user has given consent. App developers express their 
intent to access Safari saved passwords by including an entitlement in their app. The 
entitlement lists the fully qualified domain names of associated websites. The websites 
must place a CMS signed file on their server listing the unique app identifiers of apps 
they’ve approved. When an app with the com.apple.developer.associated-domains 
entitlement is installed, iOS 8 makes a TLS request to each listed website, requesting the 
file /apple-app-site-association. If the signature is from an identity valid for the domain 
and trusted by iOS, and the file lists the app identifier of the app being installed, then 
iOS marks the website and app as having a trusted relationship. Only with a trusted 
relationship will calls to these two APIs result in a prompt to the user, who must agree 
before any passwords are released to the app, or are updated or deleted.

Keybags

The keys for both file and keychain Data Protection classes are collected and managed in 
keybags. iOS uses the following four keybags: system, backup, escrow, and iCloud Backup.

System keybag is where the wrapped class keys used in normal operation of 
the device are stored. For example, when a passcode is entered, the 
NSFileProtectionComplete key is loaded from the system keybag and 
unwrapped. It is a binary plist stored in the No Protection class, but whose contents are 
encrypted with a key held in Effaceable Storage. In order to give forward security to 
keybags, this key is wiped and regenerated each time a user changes their passcode. 
The AppleKeyStore kernel extension manages the system keybag, and can be 
queried regarding a device’s lock state. It reports that the device is unlocked only 
if all the class keys in the system keybag are accessible, and have been unwrapped 
successfully.

Backup keybag is created when an encrypted backup is made by iTunes and stored on 
the computer to which the device is backed up. A new keybag is created with a new set 
of keys, and the backed-up data is re-encrypted to these new keys. As explained earlier, 
non-migratory keychain items remain wrapped with the UID-derived key, allowing them 
to be restored to the device they were originally backed up from, but rendering them 
inaccessible on a different device.

The keybag is protected with the password set in iTunes, run through 10,000 iterations of 
PBKDF2. Despite this large iteration count, there’s no tie to a specific device, and therefore 
a brute-force attack parallelized across many computers could theoretically be attempted 
on the backup keybag. This threat can be mitigated with a sufficiently strong password.
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If a user chooses not to encrypt an iTunes backup, the backup files are not encrypted 
regardless of their Data Protection class, but the keychain remains protected with a 
UID-derived key. This is why keychain items migrate to a new device only if a backup 
password is set.

Escrow keybag is used for iTunes syncing and MDM. This keybag allows iTunes to back 
up and sync without requiring the user to enter a passcode, and it allows an MDM 
server to remotely clear a user’s passcode. It is stored on the computer that’s used to 
sync with iTunes, or on the MDM server that manages the device.

The escrow keybag improves the user experience during device synchronization, 
which potentially requires access to all classes of data. When a passcode-locked device 
is first connected to iTunes, the user is prompted to enter a passcode. The device then 
creates an escrow keybag containing the same class keys used on the device, protected 
by a newly generated key. The escrow keybag and the key protecting it are split 
between the device and the host or server, with the data stored on the device in the 
Protected Until First User Authentication class. This is why the device passcode must 
be entered before the user backs up with iTunes for the first time after a reboot.

A specific instance of an escrow keybag, called a stash keybag, is used during a software 
update to give the update process access to files and keychain items with any data 
protection level. Access is required after the device reboots during the update in order 
to run data migrators, which perform tasks such as updating database schemas, 
generating new item previews, or even upgrading data protection levels.

In the case of an OTA software update, the user is prompted for their passcode when 
initiating the update. This is used to securely set a flag in the system keybag that causes 
a stash keybag to be created in memory while the device is unlocked. When the user is 
ready to perform the update, which can only be done when the device is unlocked, the 
stash keybag is written to disk, protected by a key in Effaceable Storage. When updating 
with iTunes from a paired host with a valid escrow keybag, users are prompted to unlock 
their device before the update starts to also allow the stash keybag to be written to disk 
while the device is unlocked.

When the data migrators run, they cause the stash keybag to be loaded, giving access to 
the Data Protection class keys. At that time, the stash keybag on disk is deleted and the 
key protecting it is removed from Effaceable Storage to ensure that it can’t be used 
again. When the data migrator process exits, the keys that usually only exist while the 
device is unlocked are discarded, putting the device in an after first unlock state.

If a stash keybag couldn’t be created before the update, after rebooting the device will 
display a prompt to “Slide to upgrade” and ask for the passcode to complete the update 
process.

iCloud Backup keybag is similar to the backup keybag. All the class keys in this keybag 
are asymmetric (using Curve25519, like the Protected Unless Open Data Protection 
class), so iCloud backups can be performed in the background. For all Data Protection 
classes except No Protection, the encrypted data is read from the device and sent to 
iCloud. The corresponding class keys are protected by iCloud keys. The keychain class 
keys are wrapped with a UID-derived key in the same way as an unencrypted iTunes 
backup. An asymmetric keybag is also used for the backup in the keychain recovery 
aspect of iCloud Keychain.

FIPS 140-2

The cryptographic modules in iOS 8 are undergoing validation for compliance with U.S. 
Federal Information Processing Standards (FIPS) 140-2 Level 1. This validates the integrity 
of cryptographic operations for Apple apps and third-party apps that properly utilize iOS 
cryptographic services. For information on previous validations and status relating to 
iOS 8, see https://support.apple.com/kb/HT5808.
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App Security

Apps are among the most critical elements of a modern mobile security architecture. 
While apps provide amazing productivity benefits for users, they also have the potential 
to negatively impact system security, stability, and user data if they’re not handled 
properly.

Because of this, iOS provides layers of protection to ensure that apps are signed and 
verified, and are sandboxed to protect user data. These elements provide a stable, secure 
platform for apps, enabling thousands of developers to deliver hundreds of thousands 
of apps on iOS without impacting system integrity. And users can access these apps on 
their iOS devices without undue fear of viruses, malware, or unauthorized attacks.

App code signing

Once the iOS kernel has started, it controls which user processes and apps can be run. 
To ensure that all apps come from a known and approved source and have not been 
tampered with, iOS requires that all executable code be signed using an Apple-issued 
certificate. Apps provided with the device, like Mail and Safari, are signed by Apple. 
Third-party apps must also be validated and signed using an Apple-issued certificate. 
Mandatory code signing extends the concept of chain of trust from the OS to apps, 
and prevents third-party apps from loading unsigned code resources or using self-
modifying code.

In order to develop and install apps on iOS devices, developers must register with Apple 
and join the iOS Developer Program. The real-world identity of each developer, whether 
an individual or a business, is verified by Apple before their certificate is issued. This 
certificate enables developers to sign apps and submit them to the App Store for 
distribution. As a result, all apps in the App Store have been submitted by an identifiable 
person or organization, serving as a deterrent to the creation of malicious apps. They 
have also been reviewed by Apple to ensure they operate as described and don’t 
contain obvious bugs or other problems. In addition to the technology already 
discussed, this curation process gives customers confidence in the quality of the apps 
they buy.

iOS 8 allows developers to embed frameworks inside of their apps, which can be used 
by the app itself or by extensions embedded within the app. To protect the system and 
other apps from loading third-party code inside of their address space, the system will 
perform a code signature validation of all the dynamic libraries that a process links 
against at launch time. This verification is accomplished through the team identifier 
(Team ID), which is extracted from an Apple-issued certificate. A team identifier is a 
10-character alphanumeric string; for example, 1A2B3C4D5F. A program may link against 
any platform library that ships with the system or any library with the same team 
identifier in its code signature as the main executable. Since the executables shipping 
as part of the system don't have a team identifier, they can only link against libraries 
that ship with the system itself.
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Businesses also have the ability to write in-house apps for use within their organization 
and distribute them to their employees. Businesses and organizations can apply to 
the iOS Developer Enterprise Program (iDEP) with a D-U-N-S number. Apple approves 
applicants after verifying their identity and eligibility. Once an organization becomes a 
member of iDEP, it can register to obtain a Provisioning Profile that permits in-house 
apps to run on devices it authorizes. Users must have the Provisioning Profile installed in 
order to run the in-house apps. This ensures that only the organization’s intended users 
are able to load the apps onto their iOS devices. In-house apps also check to ensure the 
signature is valid at runtime. Apps with an expired or revoked certificate will not run.

Unlike other mobile platforms, iOS does not allow users to install potentially malicious 
unsigned apps from websites, or run untrusted code. At runtime, code signature checks 
of all executable memory pages are made as they are loaded to ensure that an app has 
not been modified since it was installed or last updated.

Runtime process security

Once an app is verified to be from an approved source, iOS enforces security measures 
designed to prevent it from compromising other apps or the rest of the system.

All third-party apps are “sandboxed,” so they are restricted from accessing files stored by 
other apps or from making changes to the device. This prevents apps from gathering or 
modifying information stored by other apps. Each app has a unique home directory for 
its files, which is randomly assigned when the app is installed. If a third-party app needs 
to access information other than its own, it does so only by using services explicitly 
provided by iOS.

System files and resources are also shielded from the user’s apps. The majority of iOS 
runs as the non-privileged user “mobile,” as do all third-party apps. The entire OS 
partition is mounted as read-only. Unnecessary tools, such as remote login services, 
aren’t included in the system software, and APIs do not allow apps to escalate their 
own privileges to modify other apps or iOS itself.

Access by third-party apps to user information and features such as iCloud and 
extensibility is controlled using declared entitlements. Entitlements are key value pairs 
that are signed in to an app and allow authentication beyond runtime factors like unix 
user ID. Since entitlements are digitally signed, they cannot be changed. Entitlements 
are used extensively by system apps and daemons to perform specific privileged 
operations that would otherwise require the process to run as root. This greatly reduces 
the potential for privilege escalation by a compromised system application or daemon.

In addition, apps can only perform background processing through system-provided 
APIs. This enables apps to continue to function without degrading performance or 
dramatically impacting battery life.

Address space layout randomization (ASLR) protects against the exploitation of 
memory corruption bugs. Built-in apps use ASLR to ensure that all memory regions are 
randomized upon launch. Randomly arranging the memory addresses of executable 
code, system libraries, and related programming constructs reduces the likelihood of 
many sophisticated exploits. For example, a return-to-libc attack attempts to trick a 
device into executing malicious code by manipulating memory addresses of the stack 
and system libraries. Randomizing the placement of these makes the attack far more 
difficult to execute, especially across multiple devices. Xcode, the iOS development 
environment, automatically compiles third-party programs with ASLR support turned on.
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Further protection is provided by iOS using ARM’s Execute Never (XN) feature, which 
marks memory pages as non-executable. Memory pages marked as both writable and 
executable can be used only by apps under tightly controlled conditions: The kernel 
checks for the presence of the Apple-only dynamic code-signing entitlement. Even 
then, only a single mmap call can be made to request an executable and writable page, 
which is given a randomized address. Safari uses this functionality for its JavaScript JIT 
compiler.

Extensions

iOS allows apps to provide functionality to other apps by providing extensions. 
Extensions are special-purpose signed executable binaries, packaged within an app. 
The system automatically detects extensions at install time and makes them available 
to other apps using a matching system.

A system area that supports extensions is called an extension point. Each extension 
point provides APIs and enforces policies for that area. The system determines which 
extensions are available based on extension point–specific matching rules. The system 
automatically launches extension processes as needed and manages their lifetime. 
Entitlements can be used to restrict extension availability to particular system 
applications. For example, a Today view widget appears only in the Notification Center, 
and a sharing extension is available only from the Sharing panel. The extension points 
are Today widgets, Share, Custom actions, Photo Editing, Document Provider, and 
Custom Keyboard.

Extensions run in their own address space. Communication between the extension and 
the app from which it was activated uses interprocess communications mediated by 
the system framework. They do not have access to each other’s files or memory spaces. 
Extensions are designed to be isolated from each other, from their containing apps, and 
from the apps that use them. They are sandboxed like any other third-party app and 
have a container separate from the containing app’s container. However, they share the 
same access to privacy controls as the container app. So if a user grants Contacts access 
to an app, this grant will be extended to the extensions that are embedded within the 
app, but not to the extensions activated by the app.

Custom keyboards are a special type of extensions since they are enabled by the user 
for the entire system. Once enabled, the extension will be used for any text field except 
the passcode input and any secure text view. For privacy reasons, custom keyboards run 
by default in a very restrictive sandbox that blocks access to the network, to services 
that perform network operations on behalf a process, and to APIs that would allow the 
extension to exfiltrate typing data. Developers of custom keyboards can request that 
their extension have Open Access, which will let the system run the extension in the 
default sandbox after getting consent from the user.

For devices enrolled in mobile device management, document and keyboard extensions 
obey Managed Open In rules. For example, the MDM server can prevent a user from 
exporting a document from a managed app to an unmanaged Document Provider, or 
using an unmanaged keyboard with a managed app. Additionally, app developers can 
prevent the use of third-party keyboard extensions within their app.
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App Groups

Apps and extensions owned by a given developer account can share content when 
configured to be part of an App Group. It is up to the developer to create the 
appropriate groups on the Apple Developer Portal and include the desired set of 
apps and extensions. Once configured to be part of an App Group, apps have access 
to the following:

• A shared on-disk container for storage, which will stay on the device as long as at 
least one app from the group is installed

• Shared preferences

• Shared keychain items

The Apple Developer Portal guarantees that App Group IDs are unique across the 
ecosystem.

Data Protection in apps

The iOS Software Development Kit (SDK) offers a full suite of APIs that make it easy for 
third-party and in-house developers to adopt Data Protection and help ensure the 
highest level of protection in their apps. Data Protection is available for file and database 
APIs, including NSFileManager, CoreData, NSData, and SQLite.

The Mail app (including attachments), managed books, app launch images, and location 
data are also stored encrypted with keys protected by the user’s passcode on their 
device. Calendar (excluding attachments), Contacts, Reminders, Notes, Messages, 
Photos, and Health ancillary data implement Protected Until First User Authentication.

User-installed apps that do not opt-in to a specific Data Protection class receive 
Protected Until First User Authentication by default.

Accessories

The Made for iPhone, iPod touch, and iPad (MFi) licensing program provides vetted 
accessory manufacturers access to the iPod Accessories Protocol (IAP) and the necessary 
supporting hardware components.

When an MFi accessory communicates with an iOS device using a Lightning connector 
or via Bluetooth, the device asks the accessory to prove it has been authorized by 
Apple by responding with an Apple-provided certificate, which is verified by the device. 
The device then sends a challenge, which the accessory must answer with a signed 
response. This process is entirely handled by a custom integrated circuit that Apple 
provides to approved accessory manufacturers and is transparent to the accessory itself.

Accessories can request access to different transport methods and functionality; 
for example, access to digital audio streams over the Lightning cable, or location 
information provided over Bluetooth. An authentication IC ensures that only approved 
devices are granted full access to the device. If an accessory does not provide 
authentication, its access is limited to analog audio and a small subset of serial (UART) 
audio playback controls.

AirPlay also utilizes the authentication IC to verify that receivers have been approved 
by Apple. AirPlay audio and CarPlay video streams utilize the MFi-SAP (Secure 
Association Protocol), which encrypts communication between the accessory and 
device using AES-128 in CTR mode. Ephemeral keys are exchanged using ECDH 
key exchange (Curve25519) and signed using the authentication IC's 1024-bit RSA key 
as part of the station-to-station (STS) protocol.
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Network Security

In addition to the built-in safeguards Apple uses to protect data stored on iOS devices, 
there are many network security measures that organizations can take to keep 
information secure as it travels to and from an iOS device.

Mobile users must be able to access corporate networks from anywhere in the world, 
so it’s important to ensure that they are authorized and their data is protected during 
transmission. iOS uses—and provides developer access to—standard networking 
protocols for authenticated, authorized, and encrypted communications. To accomplish 
these security objectives, iOS integrates proven technologies and the latest standards
for both Wi-Fi and cellular data network connections.

On other platforms, firewall software is needed to protect open communication ports 
against intrusion. Because iOS achieves a reduced attack surface by limiting listening 
ports and removing unnecessary network utilities such as telnet, shells, or a web server, 
no additional firewall software is needed on iOS devices.

SSL, TLS

iOS supports Secure Socket Layer (SSL v3) as well as Transport Layer Security (TLS v1.0, 
TLS v1.1, TLS v1.2) and DTLS. Safari, Calendar, Mail, and other Internet apps automatically 
use these mechanisms to enable an encrypted communication channel between the 
device and network services. High-level APIs (such as CFNetwork) make it easy for 
developers to adopt TLS in their apps, while low-level APIs (SecureTransport) provide 
fine-grained control.

VPN

Secure network services like virtual private networking typically require minimal setup 
and configuration to work with iOS devices. iOS devices work with VPN servers that 
support the following protocols and authentication methods:

• Juniper Networks, Cisco, Aruba Networks, SonicWALL, Check Point, Palo Alto Networks, 
Open VPN, AirWatch, MobileIron, NetMotion Wireless, and F5 Networks SSL-VPN using 
the appropriate client app from the App Store.

• Cisco IPSec with user authentication by Password, RSA SecurID or CRYPTOCard, and 
machine authentication by shared secret and certificates. Cisco IPSec supports VPN 
On Demand for domains that are specified during device configuration.

• L2TP/IPSec with user authentication by MS-CHAPV2 Password, RSA SecurID or 
CRYPTOCard, and machine authentication by shared secret.

• PPTP with user authentication by MS-CHAPV2 Password and RSA SecurID or 
CRYPTOCard.

iOS supports VPN On Demand for networks that use certificate-based authentication. 
IT policies specify which domains require a VPN connection by using a configuration 
profile.

iOS also supports Per App VPN support, facilitating VPN connections on a much more 
granular basis. Mobile device management (MDM) can specify a connection for each 
managed app and/or specific domains in Safari. This helps ensure that secure data always 
goes to and from the corporate network—and that a user’s personal data does not.
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iOS 8 introduces Always-on VPN, which can be configured for devices managed via 
MDM and supervised using Apple Configurator or the Device Enrollment Program. This 
eliminates the need for users to turn on VPN to enable protection when connecting to 
Wi-Fi networks. Always-on VPN gives an organization full control over device traffic by 
tunneling all IP traffic back to the organization. The default tunneling protocol, IKEv2, 
secures traffic transmission with data encryption. The organization can now monitor and 
filter traffic to and from its devices, secure data within its network, and restrict device 
access to the Internet.

Wi-Fi 

iOS supports industry-standard Wi-Fi protocols, including WPA2 Enterprise, to 
provide authenticated access to wireless corporate networks. WPA2 Enterprise uses 
128-bit AES encryption, giving users the highest level of assurance that their data 
remains protected when sending and receiving communications over a Wi-Fi 
network connection. With support for 802.1X, iOS devices can be integrated into a 
broad range of RADIUS authentication environments. 802.1X wireless authentication 
methods supported on iPhone and iPad include EAP-TLS, EAP-TTLS, EAP-FAST, 
EAP-SIM, PEAPv0, PEAPv1, and LEAP.

When iOS 8 is not associated with a Wi-Fi network and a device’s processor is asleep, 
iOS 8 uses a randomized Media Access Control (MAC) address when conducting PNO 
scans. When iOS 8 is not associated with a Wi-Fi network or a device’s processor is 
asleep, iOS 8 uses a randomized MAC address when conducting ePNO scans. Because
a device's MAC address now changes when it's not connected to a network, it can’t 
be used to persistently track a device by passive observers of Wi-Fi traffic.

Bluetooth

Bluetooth support in iOS has been designed to provide useful functionality without 
unnecessary increased access to private data. iOS devices support Encryption Mode 3, 
Security Mode 4, and Service Level 1 connections. iOS supports the following Bluetooth 
profiles:

• Hands-Free Profile (HFP 1.5)

• Phone Book Access Profile (PBAP)

• Advanced Audio Distribution Profile (A2DP)

• Audio/Video Remote Control Profile (AVRCP)

• Personal Area Network Profile (PAN)

• Human Interface Device Profile (HID) 

Support for these profiles varies by device. For more information, see 
https://support.apple.com/kb/ht3647.

Single Sign-on

iOS supports authentication to enterprise networks through Single Sign-on (SSO). 
SSO works with Kerberos-based networks to authenticate users to services they are 
authorized to access. SSO can be used for a range of network activities, from secure 
Safari session to third-party apps.
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iOS SSO utilizes SPNEGO tokens and the HTTP Negotiate protocol to work with 
Kerberos-based authentication gateways and Windows Integrated Authentication 
systems that support Kerberos tickets. Certificated-based authentication is also 
supported. SSO support is based on the open source Heimdal project.

The following encryption types are supported:

• AES128-CTS-HMAC-SHA1-96

• AES256-CTS-HMAC-SHA1-96

• DES3-CBC-SHA1

 • ARCFOUR-HMAC-MD5

Safari supports SSO, and third-party apps that use standard iOS networking APIs can 
also be configured to use it. To configure SSO, iOS supports a configuration profile 
payload that allows MDM servers to push down the necessary settings. This includes 
setting the user principal name (that is, the Active Directory user account) and Kerberos 
realm settings, as well as configuring which apps and/or Safari web URLs should be 
allowed to use SSO.

AirDrop security

iOS devices that support AirDrop use Bluetooth Low Energy (BLE) and Apple-created 
peer-to-peer Wi-Fi technology to send files and information to nearby devices, including 
AirDrop-capable Mac computers running OS X Yosemite. The Wi-Fi radio is used to 
communicate directly between devices without using any Internet connection or Wi-Fi 
Access Point.

When a user enables AirDrop, a 2048-bit RSA identity is stored on the device. 
Additionally, an AirDrop identity hash is created based on the email addresses and 
phone numbers associated with the user’s Apple ID.

When a user chooses AirDrop as the method for sharing an item, the device emits an 
AirDrop signal over Bluetooth Low Energy. Other devices that are awake, in close 
proximity, and have AirDrop turned on detect the signal and respond with a shortened 
version of their owner’s identity hash.

AirDrop is set to share with Contacts Only by default. Users can also choose if they want 
to be able to use AirDrop to share with Everyone or turn off the feature entirely. In 
Contacts Only mode, the received identity hashes are compared with hashes of people in 
the initiator’s Contacts. If a match is found, the sending device creates a peer-to-peer Wi-Fi 
network and advertises an AirDrop connection using Bonjour. Using this connection, the 
receiving devices send their full identity hashes to the initiator. If the full hash still matches 
Contacts, the recipient’s first name and photo (if present in Contacts) are displayed in the 
AirDrop sharing sheet.

When using AirDrop, the sending user selects who they want to share with. The sending 
device initiates an encrypted (TLS) connection with the receiving device, which 
exchanges their iCloud identity certificates. The identity in the certificates is verified 
against each user’s Contacts. Then the receiving user is asked to accept the incoming 
transfer from the identified person or device. If multiple recipients have been selected, 
this process is repeated for each destination.

In the Everyone mode, the same process is used but if a match in Contacts is not found, 
the receiving devices are shown in the AirDrop sending sheet with a silhouette and with 
the device’s name, as defined in Settings > General > About > Name.
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Internet Services

Apple has built a robust set of services to help users get even more utility and productivity 
out of their devices, including iMessage, FaceTime, Siri, Spotlight Suggestions, iCloud, 
iCloud Backup, and iCloud Keychain.

These Internet services have been built with the same security goals that iOS promotes 
throughout the platform. These goals include secure handling of data, whether at 
rest on the device or in transit over wireless networks; protection of users’ personal 
information; and threat protection against malicious or unauthorized access to 
information and services. Each service uses its own powerful security architecture 
without compromising the overall ease of use of iOS.

Apple ID

An Apple ID is the username and password that is used to sign in to Apple services such 
as iCloud, iMessage, FaceTime, the iTunes Store, the iBooks Store, the App Store, and more. 
It is important for users to keep their Apple IDs secure to prevent unauthorized access to 
their accounts. To help with this, Apple requires strong passwords that must be at least 
eight characters in length, contain both letters and numbers, must not contain more than 
three consecutive identical characters, and cannot be a commonly used password. Users 
are encouraged to exceed these guidelines by adding extra characters and punctuation 
marks to make their passwords even stronger. Apple also sends email and push 
notifications to users when important changes are made to their account; for example, 
if a password or billing information has been changed, or the Apple ID has been used 
to sign in on a new device. If anything does not look familiar, users are instructed to 
change their Apple ID password immediately.

Apple also offers two-step verification for Apple ID, which provides a second layer of 
security for the user’s account. With two-step verification enabled, the user’s identity 
must be verified via a temporary code sent to one of their trusted devices before they 
can make changes to their Apple ID account information, sign in to iCloud, or make an 
iTunes, iBooks, or App Store purchase from a new device. This can prevent anyone from 
accessing a user’s account, even if they know the password. Users are also provided with 
a 14-character Recovery Key to be stored in a safe place in case they ever forget their 
password or lose access to their trusted devices. 

 For more information on two-step verification for Apple ID, visit
 https://support.apple.com/kb/ht5570.

iMessage

Apple iMessage is a messaging service for iOS devices and Mac computers. iMessage 
supports text and attachments such as photos, contacts, and locations. Messages appear 
on all of a user’s registered devices so that a conversation can be continued from any of 
the user’s devices. iMessage makes extensive use of the Apple Push Notification service 
(APNs). Apple does not log messages or attachments, and their contents are protected 
by end-to-end encryption so no one but the sender and receiver can access them. Apple 
cannot decrypt the data.
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Apple IDs are used to connect to a number

of services including iCloud, FaceTime, 
and iMessage. To help users create strong 
passwords, all new accounts must contain 
the following password attributes:

• At least eight characters
• At least one letter

• At least one uppercase letter
• At least one number

• No more than three consecutive 
identical characters

• Not the same as the account name
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When a user turns on iMessage, the device generates two pairs of keys for use with the 
service: an RSA 1280-bit key for encryption and an ECDSA 256-bit key for signing. For 
each key pair, the private keys are saved in the device’s keychain and the public keys are 
sent to Apple’s directory service (IDS), where they are associated with the user’s phone 
number or email address, along with the device’s APNs address.

As users enable additional devices for use with iMessage, their public keys, APNs 
addresses, and associated phone numbers are added to the directory service. Users can 
also add more email addresses, which will be verified by sending a confirmation link. 
Phone numbers are verified by the carrier network and SIM. Further, all of the user’s 
registered devices display an alert message when a new device, phone number, or email 
address is added.

How iMessage sends and receives messages
Users start a new iMessage conversation by entering an address or name. If they enter 
a phone number or email address, the device contacts the IDS to retrieve the public 
keys and APNs addresses for all of the devices associated with the addressee. If the user 
enters a name, the device first utilizes the user’s Contacts to gather the phone numbers 
and email addresses associated with that name, then gets the public keys and APNs 
addresses from the IDS.

The user’s outgoing message is individually encrypted using AES-128 in CTR mode 
for each of the recipient’s devices, signed using the sender’s private key, and then 
dispatched to the APNs for delivery. Metadata, such as the timestamp and APNs routing 
information, is not encrypted. Communication with APNs is encrypted using TLS.

If the message text is too long, or if an attachment such as a photo is included, the 
attachment is encrypted using a random key and uploaded to iCloud. The key and 
URI (Uniform Resource Identifier) for the attachment are encrypted and signed, as 
shown below. 

User 2

Attachment
encrypted with

random key

Public key 
and APNs token 

for user 2

iCloud

IDS

User 1

Public key 
and APNs token 

for user 1

Signed and encrypted 
message for user 2 with URI and 

key for attachment

APNs

For group conversations, this process is repeated for each recipient and their devices.
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On the receiving side, each device receives its copy of the message from APNs, and, if 
necessary, retrieves the attachment from iCloud. The incoming phone number or email 
address of the sender is matched to the receiver’s Contacts so that a name can be 
displayed, if possible.

As with all push notifications, the message is deleted from APNs when it is delivered. 
Unlike other APNs notifications, however, iMessages are queued for delivery to offline 
devices. Messages are stored for up to seven days.

FaceTime

FaceTime is Apple’s video and audio calling service. Similar to iMessage, FaceTime calls 
also use the Apple Push Notification service to establish an initial connection to the 
user’s registered devices. The audio/video contents of FaceTime calls are protected by 
end-to-end encryption, so no one but the sender and receiver can access them. Apple 
cannot decrypt the data.

FaceTime uses Internet Connectivity Establishment (ICE) to establish a peer-to-peer 
connection between devices. Using Session Initiation Protocol (SIP) messages, the 
devices verify their identity certificates and establish a shared secret for each session. 
The nonces supplied by each device are combined to salt keys for each of the media 
channels, which are streamed via Secure Real Time Protocol (SRTP) using AES-256 
encryption.

iCloud

iCloud stores contacts, calendars, photos, documents, and more and lets users access 
them on all their devices automatically. iCloud can also be used by third-party apps 
to store and sync documents as well as key values for app data as defined by the 
developer. An iCloud account is configured via the Settings app by the user. iCloud 
features, including My Photo Stream, iCloud Drive, and Backup, can be disabled by IT 
administrators via a configuration profile. The service is agnostic about what is being 
stored and handles all file content the same way, as a collection of bytes. 

Each file is broken into chunks and encrypted by iCloud using AES-128 and a key derived 
from each chunk’s contents that utilizes SHA-256. The keys, and the file’s metadata, 
are stored by Apple in the user’s iCloud account. The encrypted chunks of the file are 
stored, without any user-identifying information, using third-party storage services, such 
as Amazon S3 and Windows Azure.

CloudKit and iCloud Drive
iCloud Drive adds account-based keys to protect documents stored in iCloud. As with 
existing iCloud services, it chunks and encrypts file contents and stores the encrypted 
chunks using third-party services. However, the file content keys are wrapped by record 
keys stored with the iCloud Drive metadata. These record keys are in turn protected by 
the user’s iCloud Drive service key, which is then stored with the user’s iCloud account. 
Users get access to their iCloud documents metadata by having authenticated with 
iCloud, but must also possess the iCloud Drive service key to expose protected parts of 
iCloud Drive storage.
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iCloud Backup

iCloud also backs up information—including device settings, app data, photos, and 
videos in the Camera Roll, and conversations in the Messages app—daily over Wi-Fi. 
iCloud secures the content by encrypting it when sent over the Internet, storing it in an 
encrypted format, and using secure tokens for authentication. iCloud Backup occurs 
only when the device is locked, connected to a power source, and has Wi-Fi access to 
the Internet. Because of the encryption used in iOS, the system is designed to keep 
data secure while allowing incremental, unattended backup and restoration to occur.

Here’s what iCloud backs up:

• Information about purchased music, movies, TV shows, apps, and books, but not 
the purchased content itself

• Photos and videos in Camera Roll

• Contacts, calendar events, reminders, and notes

• Device settings

• App data

• PDFs and books added to iBooks but not purchased

• Call history

• Home screen and app organization

• iMessage, text (SMS), and MMS messages

• Ringtones

• HomeKit data

• HealthKit data

• Visual Voicemail

When files are created in Data Protection classes that are not accessible when the device 
is locked, their per-file keys are encrypted using the class keys from the iCloud Backup 
keybag. Files are backed up to iCloud in their original, encrypted state. Files in Data 
Protection class No Protection are encrypted during transport as described previously in 
iCloud section.

The iCloud Backup keybag contains asymmetric (Curve25519) keys for each Data 
Protection class, which are used to encrypt the per-file keys. For more information about 
the contents of the backup keybag and the iCloud Backup keybag, see “Keychain Data 
Protection” in the Encryption and Data Protection section.

The backup set is stored in the user’s iCloud account and consists of a copy of the 
user’s files, and the iCloud Backup keybag. The iCloud Backup keybag is protected by a 
random key, which is also stored with the backup set. (The user’s iCloud password is not 
utilized for encryption so that changing the iCloud password won’t invalidate existing 
backups.)

While the user’s keychain database is backed up to iCloud, it remains protected by a 
UID-tangled key. This allows the keychain to be restored only to the same device from 
which it originated, and it means no one else, including Apple, can read the user’s 
keychain items.

On restore, the backed-up files, iCloud Backup keybag, and the key for the keybag are 
retrieved from the user’s iCloud account. The iCloud Backup keybag is decrypted using 
its key, then the per-file keys in the keybag are used to decrypt the files in the backup 
set, which are written as new files to the filesystem, thus re-encrypting them as per their 
Data Protection class. 
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iCloud Keychain

iCloud Keychain allows users to securely sync their passwords between iOS devices 
and Mac computers without exposing that information to Apple. In addition to strong 
privacy and security, other goals that heavily influenced the design and architecture of 
iCloud Keychain were ease of use and the ability to recover a keychain. iCloud Keychain 
consists of two services, keychain syncing and keychain recovery.

Apple designed iCloud Keychain and Keychain Recovery so that a user’s passwords are 
still protected under the following conditions:

• A user’s iCloud account is compromised.

• iCloud is compromised by an external attacker or employee.

 • Third-party access to user accounts.

Keychain syncing

When a user enables iCloud Keychain for the first time, the device establishes a circle 
of trust and creates a syncing identity for itself. A syncing identity consists of a private 
key and a public key. The public key of the syncing identity is put in the circle, and the 
circle is signed twice: first by the private key of the syncing identity, then again with an 
asymmetric elliptical key (using P256) derived from the user’s iCloud account password. 
Also stored with the circle are the parameters (random salt and iterations) used to create 
the key that is based on the user’s iCloud password. 

The signed syncing circle is placed in the user’s iCloud key value storage area. It cannot 
be read without knowing the user’s iCloud password, and cannot be modified validly 
without having the private key of the syncing identity of its member. 

When the user turns on iCloud Keychain on another device, the new device notices in 
iCloud that the user has a previously established syncing circle that it is not a member 
of. The device creates its syncing identity key pair, then creates an application ticket to 
request membership in the circle. The ticket consists of the device’s public key of its 
syncing identity, and the user is asked to authenticate with their iCloud password. The 
elliptical key generation parameters are retrieved from iCloud and generate a key that is 
used to sign the application ticket. Finally, the application ticket is placed in iCloud. 

When the first device sees that an application ticket has arrived, it displays a notice for 
the user to acknowledge that a new device is asking to join the syncing circle. The user 
enters their iCloud password, and the application ticket is verified as signed by a 
matching private key. This establishes that the person who generated the request to join 
the circle entered the user’s iCloud password at the time the request was made. 

Upon the user’s approval to add the new device to the circle, the first device adds the 
public key of the new member to the syncing circle, signs it again with both its syncing 
identity and the key derived from the user’s iCloud password. The new syncing circle is 
placed in iCloud, where it is similarly signed by the new member of the circle.

How keychain syncing works

There are now two members of the signing circle, and each member has the public 
key of its peer. They now begin to exchange individual keychain items via iCloud key 
value storage. If both circle members have the same item, the one with the most 
recent modification date will be synced. Items are skipped if the other member has the 
item and the modification dates are identical. Each item that is synced is encrypted 
specifically for the device it is being sent to. It cannot be decrypted by other devices 
or Apple. Additionally, the encrypted item is ephemeral in iCloud; it’s overwritten with 
each new item that’s synced. 
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This process is repeated as new devices join the syncing circle. For example, when a 
third device joins, the confirmation appears on both of the other members. The user can 
approve the new member from either of those devices. As new peers are added, each 
peer syncs with the new one to ensure that all members have the same keychain items. 

However, the entire keychain is not synced. Some items are device-specific, such 
as VPN identities, and shouldn’t leave the device. Only items with the attribute 
kSecAttrSynchronizable are synced. Apple has set this attribute for Safari 
user data (including user names, passwords, and credit card numbers), as well as 
Wi-Fi passwords and HomeKit encryption keys.

Additionally, by default, keychain items added by third-party apps do not sync. 
Developers must set the kSecAttrSynchronizable when adding items to 
the keychain.

Keychain recovery

Keychain recovery provides a way for users to optionally escrow their keychain with 
Apple, without allowing Apple to read the passwords and other data it contains. Even 
if the user has only a single device, keychain recovery provides a safety net against 
data loss. This is particularly important when Safari is used to generate random, strong 
passwords for web accounts, as the only record of those passwords is in the keychain.

A cornerstone of keychain recovery is secondary authentication and a secure escrow 
service, created by Apple specifically to support this feature. The user’s keychain is 
encrypted using a strong passcode, and the escrow service will provide a copy of the 
keychain only if a strict set of conditions are met.

When iCloud Keychain is turned on, the user is asked to create an iCloud Security Code. 
This code is required to recover an escrowed keychain. By default, the user is asked to 
provide a simple four-digit value for the security code. However, users can also specify 
their own, longer code, or let their devices create a cryptographically random code that 
they can record and keep on their own.

Next, the iOS device exports a copy of the user’s keychain, encrypts wrapped to keys in 
an asymmetric keybag, and places it in the user’s iCloud key value storage area. The 
keybag is wrapped with the user’s iCloud Security Code and the public key of the HSM 
(hardware security module) cluster that will store the escrow record. This becomes the 
user’s iCloud Escrow Record.

If the user decided to accept a cryptographically random security code, instead of 
specifying their own or using a four-digit value, no escrow record is necessary. Instead, 
the iCloud Security Code is used to wrap the random key directly.

In addition to establishing a security code, users must register a phone number. This is 
used to provide a secondary level of authentication during keychain recovery. The user 
will receive an SMS that must be replied to in order for the recovery to proceed.

Escrow security
iCloud provides a secure infrastructure for keychain escrow that ensures only authorized 
users and devices can perform a recovery. Topographically positioned behind iCloud are 
clusters of hardware security modules (HSM). These clusters guard the escrow records. 
Each has a key that is used to encrypt the escrow records under their watch, as 
described previously. 
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To recover a keychain, the user must authenticate with their iCloud account and 
password and respond to an SMS sent to their registered phone number. Once this is 
done, the user must enter their iCloud Security Code. The HSM cluster verifies that the 
user knows their iCloud Security Code using Secure Remote Password protocol (SRP); 
the code itself is not sent to Apple. Each member of the cluster independently verifies 
that the user has not exceeded the maximum number of attempts that are allowed to 
retrieve their record, as discussed below. If a majority agree, the cluster unwraps the 
escrow record and sends it to the user’s device. 

Next, the device uses the iCloud Security Code to unwrap the random key used to 
encrypt the user’s keychain. With that key, the keychain—retrieved from iCloud key 
value storage—is decrypted and restored onto the device. Only 10 attempts to 
authenticate and retrieve an escrow record are allowed. After several failed attempts, 
the record is locked and the user must call Apple Support to be granted more attempts. 
After the 10th failed attempt, the HSM cluster destroys the escrow record and the 
keychain is lost forever. This provides protection against a brute-force attempt to 
retrieve the record, at the expense of sacrificing the keychain data in response. 

These policies are coded in the HSM firmware. The administrative access cards that 
permit the firmware to be changed have been destroyed. Any attempt to alter the 
firmware or access the private key will cause the HSM cluster to delete the private key. 
Should this occur, the owners of all keychains protected by the cluster will receive a 
message informing them that their escrow record has been lost. They can then choose 
to re-enroll. 

Siri

By simply talking naturally, users can enlist Siri to send messages, schedule meetings, 
place phone calls, and more. Siri uses speech recognition, text-to-speech, and a client- 
server model to respond to a broad range of requests. The tasks that Siri supports have 
been designed to ensure that only the absolute minimal amount of personal 
information is utilized and that it is fully protected. 

When Siri is turned on, the device creates random identifiers for use with the voice 
recognition and Siri servers. These identifiers are used only within Siri and are utilized to 
improve the service. If Siri is subsequently turned off, the device will generate a new 
random identifier to be used if Siri is turned back on. 

In order to facilitate Siri’s features, some of the user’s information from the device is sent 
to the server. This includes information about the music library (song titles, artists, and 
playlists), the names of Reminders lists, and names and relationships that are defined in 
Contacts. All communication with the server is over HTTPS. 

When a Siri session is initiated, the user’s first and last name (from Contacts), along with 
a rough geographic location, is sent to the server. This is so Siri can respond with the 
name or answer questions that only need an approximate location, such as those about 
the weather.

If a more precise location is necessary, for example, to determine the location of nearby 
movie theaters, the server asks the device to provide a more exact location. This is an 
example of how, by default, information is sent to the server only when it’s strictly 
necessary to process the user’s request. In any event, session information is discarded 
after 10 minutes of inactivity.
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The recording of the user’s spoken words is sent to Apple’s voice recognition server. 
If the task involves dictation only, the recognized text is sent back to the device. 
Otherwise, Siri analyzes the text and, if necessary, combines it with information from the 
profile associated with the device. For example, if the request is “send a message to my 
mom,” the relationships and names that were uploaded from Contacts are utilized. The 
command for the identified action is then sent back to the device to be carried out.

Many Siri functions are accomplished by the device, under the direction of the server. 
For example, if the user asks Siri to read an incoming message, the server simply tells the 
device to speak the contents of its unread messages. The contents and sender of the 
message are not sent to the server.

User voice recordings are saved for a six-month period so that the recognition system 
can utilize them to better understand the user’s voice. After six months, another copy is 
saved, without its identifier, for use by Apple in improving and developing Siri for up to 
two years. Additionally, some recordings that reference music, sports teams and players, 
and businesses or points of interest are similarly saved for purposes of improving Siri.

Siri can also be invoked hands-free via voice activation. The voice trigger detection is 
performed locally on the device. In this mode, Siri is activated only when the incoming 
audio pattern sufficiently matches the acoustics of the specified trigger phrase. When 
the trigger is detected, the corresponding audio including the subsequent Siri 
command is sent to Apple’s voice recognition server for further processing, which 
follows the same rules as other user voice recordings made through Siri.

iPhone Cellular Call Relay

When your Mac, iPad, or iPod is on the same Wi-Fi network as your iPhone, it can 
make and receive phone calls using your iPhone cellular connection. Configuration 
requires your devices to be signed in to both iCloud and FaceTime using the same 
Apple ID account.

When an incoming call arrives, all configured devices will be notified via the Apple Push 
Notification service (APNs), with each notification using the same end-to-end encryption 
as iMessage uses. Devices that are on the same network will present the incoming call 
notification UI. Upon answering the call, the audio will be seamlessly transmitted from 
your iPhone using a secure peer-to-peer connection between the two devices.

Outgoing calls will also be relayed to the iPhone via the Apple Push Notification service, 
and audio will be similarly transmitted over the secure peer-to-peer link between devices.

Users can disable phone call relay on a device by turning off iPhone Cellular Calls in the 
FaceTime settings.

Handoff

With Handoff, when a user’s Mac and iOS device are near each other, the user can 
automatically pass whatever they’re working on from one device to the other. Handoff 
lets the user switch devices and instantly continue working.

When a user signs in to iCloud on a second Handoff capable device, the two devices 
establish a Bluetooth Low Energy 4.0 pairing out of band via the Apple Push Notification 
service (APNs). The individual messages are encrypted in a similar fashion to iMessage.
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Once the devices are paired, each will generate a symmetric 256-bit AES key that gets 
stored in the device’s keychain. This key is used to encrypt and authenticate the Bluetooth 
Low Energy advertisements that communicate the device’s current activity to other iCloud 
paired devices using AES-256 in GCM mode, with replay protection measures. The first 
time a device receives an advertisement from a new key, it will establish a Bluetooth Low 
Energy connection to the originating device and perform an advertisement encryption 
key exchange. This connection is secured using standard Bluetooth Low Energy 4.0 
encryption as well as encryption of the individual messages, which is similar to how 
iMessage is encrypted. In some situations, these messages will go via the Apple Push 
Notification service instead of Bluetooth Low Energy. The activity payload is protected 
and transferred in the same way as an iMessage.

Handoff between native apps and websites

Handoff allows an iOS native app to resume web pages in domains legitimately 
controlled by the app developer. It also allows the native app user activity to be 
resumed in a web browser.

To prevent native apps from claiming to resume websites not controlled by the 
developer, the app must demonstrate legitimate control over the web domains it 
wants to resume. Control over a website domain is established via the mechanism 
used for shared web credentials. For details, refer to “Access to Safari saved passwords” 
in the Encryption and Data Protection section. The system must validate an app’s 
domain name control before the app is permitted to accept user activity Handoff. 

The source of a web page Handoff can be any browser that has adopted the Handoff 
APIs. When the user views a web page, the system advertises the domain name of the 
web page in the encrypted Handoff advertisement bytes. Only the user’s other devices 
can decrypt the advertisement bytes (as previously described in “Handoff” section).

On a receiving device, the system detects that an installed native app accepts Handoff 
from the advertised domain name and displays that native app icon as the Handoff 
option. When launched, the native app receives the full URL and the title of the web 
page. No other information is passed from the browser to the native app.

In the opposite direction, a native app may specify a fallback URL when a Handoff-
receiving device does not have the same native app installed. In this case, the system 
displays the user’s default browser as the Handoff app option (if that browser has 
adopted Handoff APIs). When Handoff is requested, the browser will be launched and 
given the fallback URL provided by the source app. There is no requirement that the 
fallback URL be limited to domain names controlled by the native app developer.

Handoff of larger data

In addition to the basic feature of Handoff, some apps may elect to use APIs that 
support sending larger amounts of data over Apple-created peer-to-peer Wi-Fi 
technology (in a similar fashion to AirDrop). For example, the Mail app uses these 
APIs to support Handoff of a mail draft, which may include large attachments.

When an app uses this facility, the exchange between the two devices starts off just as 
in Handoff (see previous sections). However, after receiving the initial payload using 
Bluetooth Low Energy, the receiving device initiates a new connection over Wi-Fi. This 
connection is encrypted (TLS), which exchanges their iCloud identity certificates. The 
identity in the certificates is verified against the user’s identity. Further payload data is 
sent over this encrypted connection until the transfer is complete.
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Instant Hotspot

iOS devices that support Instant Hotspot use Bluetooth Low Energy to discover and 
communicate to devices that have signed in to the same iCloud account. Compatible 
Mac computers running OS X Yosemite use the same technology to discover and 
communicate with Instant Hotspot iOS devices.

When a user enters Wi-Fi Settings on the iOS device, the device emits a Bluetooth Low 
Energy signal containing an identifier that all devices signed in to the same iCloud 
account agree upon. The identifier is generated from an DSID tied to the iCloud 
account, and rotated periodically. When other devices signed in to the same iCloud 
account are in close proximity and support personal hotspot, they detect the signal and 
respond, indicating availability.

When a user chooses a device available for personal hotspot, a request to turn on 
personal hotspot is sent to that device. The request is sent across a link that is encrypted 
using standard Bluetooth Low Energy encryption, and the request is encrypted in a 
fashion similar to iMessage encryption. The device then responds across the same 
Bluetooth Low Energy link using the same per-message encryption with personal 
hotspot connection information.

Spotlight Suggestions

Safari search and Spotlight search now include Spotlight Suggestions, which provides 
search suggestions from the Internet, iTunes, App Store, movie showtimes, locations 
nearby, and more. 

To make suggestions more relevant to users, Spotlight Suggestions includes user 
context and search feedback with search query requests sent to Apple. 

Context sent with search requests provides Apple with: i) the device's approximate 
location; ii) the device type (e.g., Mac, iPhone, iPad, or iPod); iii) the client app, which is 
either Spotlight or Safari; iv) the device’s default language and region settings; v) the 
three most recently used apps on the device; and vi) an anonymous session ID. All 
communication with the server is encrypted via HTTPS. 

To help protect user privacy, Spotlight Suggestions never sends exact location, instead 
blurring the location on the client before sending. The level of blurring is based on 
estimated population density at the device’s location; for instance, more blurring is used 
in a rural location versus less blurring in a city center where users will typically be closer 
together. Further, users can disable the sending of all location information to Apple in 
Settings, by turning off Location Services for Spotlight Suggestions. If Location Services 
is disabled, then Apple may use the client’s IP address to infer an approximate location. 

The anonymous session ID allows Apple to analyze patterns between queries conducted 
in a 15-minute period. For instance, if users frequently search for “Café phone number” 
shortly after searching for “Café,” Apple may learn to make the phone number more 
available in results. Unlike most search engines, however, Apple’s search service does not 
use a persistent personal identifier across a user’s search history to tie queries to a user 
or device; instead, Apple devices use a temporary anonymous session ID for at most a 
15-minute period before discarding that ID. 
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Information on the three most recently used apps on the device is included as additional 
search context. To protect the privacy of users, only apps that are in an Apple-maintained 
whitelist of popular apps and have been accessed within the last three hours are included.

Search feedback sent to Apple provides Apple with: i) timings between user actions 
such as key-presses and result selections; ii) Spotlight Suggestions result selected, if any; 
and iii) type of local resulted selected (e.g., “Bookmark” or “Contact”). Just as with search 
context, the search feedback is not tied to any individual person or device. 

Apple retains Spotlight Suggestions logs with queries, context, and feedback for up to 
18 months. Reduced logs including only query, country, language, date (to the hour), and 
device-type are retained up to two years. IP addresses are not retained with query logs. 

In some cases, Spotlight Suggestions may forward queries for common words and 
phrases to a qualified partner in order to receive and display the partner’s search results. 
These queries are not stored by the qualified partner and partners do not receive search 
feedback. Partners also do not receive user IP addresses. Communication with the 
partner is encrypted via HTTPS. Apple will provide city-level location, device type, and 
client language as search context to the partner based on which locations, device types, 
and languages Apple sees repeated queries from. 

Spotlight Suggestions can be turned off in Settings for Spotlight, for Safari, or for both. If  
turned off for Spotlight, then Spotlight is reverted to being a local on-device-only search 
client that does not transmit information to Apple. If turned off in Safari, the user’s 
search queries, search context, and search feedback are not transmitted to Apple.
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Device Controls

iOS supports flexible security policies and configurations that are easy to enforce and 
manage. This enables organizations to protect corporate information and ensure that 
employees meet enterprise requirements, even if they are using devices they’ve provided 
themselves—for example, as part of a “bring your own device” (BYOD) program.

Organizations can use resources such as passcode protection, configuration profiles, 
remote wipe, and third-party MDM solutions to manage fleets of devices and help 
keep corporate data secure, even when employees access this data on their personal 
iOS devices.

Passcode protection

In addition to providing the cryptographic protection discussed earlier, passcodes 
prevent unauthorized access to the device’s UI. The iOS interface enforces escalating 
time delays after the entry of an invalid passcode, dramatically reducing the 
effectiveness of brute-force attacks via the Lock screen. Users can choose to have the 
device automatically wiped if the passcode is entered incorrectly after 10 consecutive 
attempts. This setting is available as an administrative policy and can also be set to a 
lower threshold through configuration profiles, MDM, and Exchange ActiveSync.

By default, the user’s passcode can be defined as a four-digit PIN. Users can specify a 
longer, alphanumeric passcode by turning on Settings > General > Passcode > Complex 
Passcode. Longer and more complex passcodes are harder to guess or attack, and are 
recommended for enterprise use.

Administrators can enforce complex passcode requirements and other policies using 
MDM or Exchange ActiveSync, or by requiring users to manually install configuration 
profiles. The following passcode policies are available:

• Allow simple value

• Require alphanumeric value

• Minimum passcode length

• Minimum number of complex characters

• Maximum passcode age

• Passcode history

• Auto-lock timeout

• Grace period for device lock

• Maximum number of failed attempts

 • Allow Touch ID

For details about each policy, see the Configuration Profile Key Reference 
documentation at https://developer.apple.com/library/ios/featuredarticles/
iPhoneConfigurationProfileRef/.
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iOS pairing model

iOS uses a pairing model to control access to a device from a host computer. 
Pairing establishes a trust relationship between the device and its connected host, 
signified by public key exchange. iOS uses this sign of trust to enable additional 
functionality with the connected host, such as data synchronization.

The pairing process requires the user to unlock the device and accept the pairing 
request from the host. After the user has done this, the host and device exchange 
and save 1024-bit RSA public keys, and the host is given a 256-bit key that can unlock 
an escrow keybag stored on the device (see Escrow keybags in Keybags section). 
The exchanged keys are used to start an encrypted SSL session, which the device 
requires before it will send protected data to the host or start a service (iTunes syncing, 
file transfers, Xcode development, etc.). The device requires connections from a host 
over Wi-Fi to use this encrypted session for all communication, so it must have been 
previously paired over USB. Pairing also enables several diagnostic capabilities. 
For more information, see https://support.apple.com/kb/HT6331.

In iOS 8, certain services, including com.apple.pcapd, are restricted to work only 
over USB. Additionally, in iOS 8 the com.apple.file_relay service requires an Apple-
signed configuration profile to be installed.

A user can clear the list of trusted hosts by using the “Reset Network Settings” or 
“Reset Location & Privacy” options. For more information, see
https://support.apple.comkb/HT5868.

Configuration enforcement

A configuration profile is an XML file that allows an administrator to distribute 
configuration information to iOS devices. Settings that are defined by an installed 
configuration profile can’t be changed by the user. If the user deletes a configuration 
profile, all the settings defined by the profile are also removed. In this manner, 
administrators can enforce settings by tying policies to access. For example, a 
configuration profile that provides an email configuration can also specify a device 
passcode policy. Users won’t be able to access mail unless their passcodes meet the 
administrator’s requirements.

An iOS configuration profile contains a number of settings that can be specified, 
including:

• Passcode policies

• Restrictions on device features (disabling the camera, for example)

• Wi-Fi settings

• VPN settings

• Mail server settings

• Exchange settings

• LDAP directory service settings

• CalDAV calendar service settings

• Web clips

• Credentials and keys

 • Advanced cellular network settings
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Configuration profiles can be signed and encrypted to validate their origin, ensure 
their integrity, and protect their contents. Configuration profiles are encrypted using 
CMS (RFC 3852), supporting 3DES and AES-128.

Configuration profiles can also be locked to a device to completely prevent their 
removal, or to allow removal only with a passcode. Since many enterprise users own 
their iOS devices, configuration profiles that bind a device to an MDM server can be 
removed—but doing so will also remove all managed configuration information, 
data, and apps.

Users can install configuration profiles directly on their devices using Apple 
Configurator, or they can be downloaded via Safari, sent via a mail message, or 
sent over the air using an MDM server.

Mobile device management (MDM)

iOS support for MDM allows businesses to securely configure and manage scaled 
iPhone and iPad deployments across their organizations. MDM capabilities are built 
on existing iOS technologies such as configuration profiles, over-the-air enrollment, 
and the Apple Push Notification service. Using MDM, IT departments can enroll 
iOS devices in an enterprise environment, wirelessly configure and update settings, 
monitor compliance with corporate policies, and even remotely wipe or lock 
managed devices. For more information on mobile device management, see 
https://www.apple.com/iphone/business/it/management.html.

Device Enrollment Program

The Device Enrollment Program (DEP) provides a fast, streamlined way to deploy iOS 
devices that an organization has purchased directly from Apple. The organization can 
automatically enroll devices in MDM without having to physically touch or prep the 
devices before users get them. The setup process for users can be further simplified by 
removing specific steps in the Setup Assistant, so users are up and running quickly. 
Administrators can also control whether or not the user can remove the MDM profile 
from the device. For example, they can order the devices from Apple, configure all the 
management settings, and have the devices shipped directly to the user’s home address. 
Once the device is unboxed and activated, the device enrolls in the organization’s MDM—
and all management settings, apps, and books are ready for the user.

The process is simple: After enrolling in the program, administrators log into the 
program website, link the program to their MDM server, and “claim” the iOS devices 
purchased through Apple. The devices can then be assigned to users via MDM. Once 
a user has been assigned, any MDM-specified configurations, restrictions, or controls 
are automatically installed. For more information, see https://deploy.apple.com.

Note: The Device Enrollment Program is not available in all countries or regions.
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Apple Configurator

In addition to MDM, Apple Configurator for OS X makes it easy for anyone to deploy iOS 
devices. Apple Configurator can be used to quickly configure large numbers of devices 
with the settings, apps, and data. Devices that are initially configured using Apple 
Configurator can be “supervised,” enabling additional settings and restrictions to be 
installed. Once a device is supervised with Apple Configurator, all available settings and 
restrictions can be installed over the air via MDM as well. 

For more information on configuring and managing devices using both MDM 
or Apple Configurator, see the iOS Deployment Reference at 
https://help.apple.com/deployment/ios.

Device Restrictions

Administrators can restrict device features by installing a configuration profile. 
The following restrictions are available:

• Allow app installs

• Allow use of camera

• Allow FaceTime

• Allow screenshots

• Allow voice dialing

• Allow automatic sync while roaming

• Allow in-app purchases

• Allow syncing of Mail recents

• Force user to enter store password for all purchases

• Allow multiplayer gaming

• Allow adding Game Center friends

• Allow Siri

• Allow Siri while device is locked

• Allow use of YouTube

• Allow Passbook notifications while device is locked

• Allow use of iTunes Store

• Allow explicit media

• Allow erotica from iBooks Store

• Allow documents from managed sources in unmanaged destinations

• Allow documents from unmanaged sources in managed destinations

• Allow iCloud Keychain

• Allow updating certificate trust database over the air

• Allow showing notifications on Lock screen

• Force AirPlay connections to use pairing passwords

• Allow Spotlight to show user-generated content from the Internet

• Enable Spotlight Suggestions in Safari

• Enable Spotlight Suggestions in Spotlight

• Allow Handoff

• Allow enterprise books to be backed up

• Allow notes and bookmarks in enterprise books to sync across the user’s devices

• Restrict movie ratings
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• Restrict TV ratings

• Restrict App ratings

• Allow use of Safari

• Enable Safari autofill

• Force Fraudulent Website Warning

• Enable JavaScript

• Limit ad tracking in Safari

• Block pop-ups

• Accept cookies

• Allow iCloud backup

• Allow iCloud document and key-value sync

• Allow Photo Streams

• Allow Shared Photo Streams

• Allow diagnostics to be sent to Apple

• Allow user to accept untrusted TLS certificates

• Force encrypted backups

• Restrict media by content rating

• Allow Touch ID

• Allow Control Center access from Lock screen

• Allow Today view from Lock screen

Supervised-only restrictions

• Allow iMessage

• Allow Game Center

• Allow iBooks Store

• Allow removal of apps 

• Enable Siri profanity filter 

• Allow manual install of configuration profiles

• Global network proxy for HTTP

• Allow pairing to computers for content sync

• Restrict AirPlay connections with whitelist and optional connection passcodes

• Allow AirDrop

• Allow Podcasts

• Allow Find My Friends modification

• Allow autonomous Single App Mode for certain managed apps

• Allow account modification

• Allow cellular data modification

• Allow host pairing (iTunes)

• Allow Activation Lock

• Prevent Erase All Content and Settings

• Prevent enabling restrictions

• Third-party content filter

• Single App mode

• Always-on VPN 
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Remote wipe

iOS devices can be erased remotely by an administrator or user. Instant remote wipe 
is achieved by securely discarding the block storage encryption key from Effaceable 
Storage, rendering all data unreadable. A remote wipe command can be initiated by 
MDM, Exchange, or iCloud.

When a remote wipe command is triggered by MDM or iCloud, the device sends an 
acknowledgment and performs the wipe. For remote wipe via Exchange, the device 
checks in with the Exchange Server before performing the wipe.

Users can also wipe devices in their possession using the Settings app. And as mentioned, 
devices can be set to automatically wipe after a series of failed passcode attempts.

Find My iPhone and Activation Lock 

If a device is lost or stolen, it’s important to deactivate and erase the device. With iOS 7 
or later, when Find My iPhone is turned on, the device can’t be reactivated without 
entering the owner’s Apple ID credentials. It’s a good idea for an organization to either 
supervise its devices or have a policy in place for users to disable the feature so that 
Find My iPhone doesn’t prevent the organization from assigning the device to another 
individual.

With iOS 7.1 or later, a compatible MDM solution can enable Activation Lock on 
supervised devices when a user turns on Find My iPhone. MDM administrators can 
manage Find My iPhone Activation Lock by supervising devices with Apple Configurator 
or the Device Enrollment Program. The MDM solution can then store a bypass code 
when Activation Lock is enabled, and later use this code to clear Activation Lock 
automatically when the device needs to be erased and assigned to a new user. See 
your MDM solution documentation for details.

Important: By default, supervised devices never have Activation Lock enabled, even if the 
user turns on Find My iPhone. However, an MDM server may retrieve a bypass code and 
permit Activation Lock on the device. If Find My iPhone is turned on when the MDM 
server enables Activation Lock, it is enabled at that point. If Find My iPhone is turned 
off when the MDM server enables Activation Lock, it’s enabled the next time the user 
activates Find My iPhone.
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Privacy Controls

Apple takes customer privacy seriously and has built-in numerous controls and options 
that allow iOS users to decide how and when apps utilize their information, as well as 
what information is being utilized. 

Location Services

Location Services uses GPS, Bluetooth, and crowd-sourced Wi-Fi hotspot and cell tower 
locations to determine the user’s approximate location. Location services can be turned 
off using a single switch in Settings, or users can approve access for each app that uses 
the service. Apps may request to receive location data only while the app is being used 
or allow it at any time. Users may choose not to allow this access, and may change their 
choice at any time in Settings. From Settings, access can be set to never allowed, allowed 
when in use, or always, depending on the app’s requested location use. Also, if apps 
granted access to use location at any time make use of this permission while in 
background mode, users are reminded of their approval and may change an app’s access.

Additionally, users are given fine-grained control over system services’ use of location 
information. This includes being able to turn off the inclusion of location information 
in information collected by the diagnostic and usage services used by Apple to improve 
iOS, location-based Siri information, location-based context for Spotlight Suggestions 
searches, local traffic conditions, and frequently visited locations used to estimate travel 
times.

Access to personal data 

iOS helps prevent apps from accessing a user’s personal information without permission. 
Additionally, in Settings, users can see which apps they have permitted to access 
certain information, as well as grant or revoke any future access. This includes access to:

• Contacts    •  Microphone

• Calendars    •  Camera

• Reminders    •  HomeKit

• Photos •  HealthKit

• Motion activity on iPhone 5s or later  •  Bluetooth sharing

 • Social media accounts, such as 
Twitter and Facebook

If the user signs in to iCloud, apps are granted access by default to iCloud Drive. Users 
may control each app’s access under iCloud in Settings. Additionally, iOS provides 
restrictions that prevent data movement between apps and accounts installed by MDM 
and those installed by the user.

Privacy policy

Apple’s privacy policy is available online at https://www.apple.com/legal/privacy.

 iOS Security—White Paper  |  September 2014 40

https://www.apple.com/legal/privacy
https://www.apple.com/legal/privacy


Conclusion

A commitment to security

Apple is committed to helping protect customers with leading privacy and security 
technologies that are designed to safeguard personal information, as well as 
comprehensive methods to help protect corporate data in an enterprise environment.

Security is built into iOS. From the platform to the network to the apps, everything a 
business needs is available in the iOS platform. Together, these components give iOS 
its industry-leading security without compromising the user experience.

Apple uses a consistent, integrated security infrastructure throughout iOS and the iOS 
apps ecosystem. Hardware-based storage encryption provides remote wipe capabilities 
when a device is lost, and enables users to completely remove all corporate and 
personal information when a device is sold or transferred to another owner. Diagnostic 
information is also collected anonymously.

iOS apps designed by Apple are built with enhanced security in mind. Safari offers safe 
browsing with support for Online Certificate Status Protocol (OCSP), EV certificates, and 
certificate verification warnings. Mail leverages certificates for authenticated and 
encrypted Mail by supporting S/MIME, which, as of iOS 8, permits per-message S/MIME, 
so S/MIME users can choose to always sign and encrypt by default, or selectively control 
how individual messages are protected. iMessage and FaceTime also provide client-to-
client encryption.

For third-party apps, the combination of required code signing, sandboxing, and 
entitlements gives users solid protection against viruses, malware, and other exploits 
that compromise the security of other platforms. The App Store submission process 
works to further shield users from these risks by reviewing every iOS app before it’s 
made available for sale.

To make the most of the extensive security features built into iOS, businesses are 
encouraged to review their IT and security policies to ensure that they are taking full 
advantage of the layers of security technology offered by this platform.

Apple maintains a dedicated security team to support all Apple products. The team 
provides security auditing and testing for products under development, as well as for 
released products. The Apple team also provides security tools and training, and actively 
monitors for reports of new security issues and threats. Apple is a member of the Forum 
of Incident Response and Security Teams (FIRST). To learn more about reporting issues 
to Apple and subscribing to security notifications, go to apple.com/support/security.
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Glossary

Address space layout randomization (ASLR) A technique employed by iOS to make the successful exploitation of a software bug much 
more difficult. By ensuring memory addresses and offsets are unpredictable, exploit code 
can’t hard code these values. In iOS 5 and later, the position of all system apps and libraries 
are randomized, along with all third-party apps compiled as position-independent 
executables.

Apple Push Notification service (APNs) A worldwide service provided by Apple that delivers push notifications to iOS devices.

Boot ROM The very first code executed by a device’s processor when it first boots. As an integral part 
of the processor, it can’t be altered by either Apple or an attacker. 

Data Protection File and keychain protection mechanism for iOS. It can also refer to the APIs that apps use 
to protect files and keychain items.

Device Firmware Upgrade (DFU) A mode in which a device’s Boot ROM code waits to be recovered over USB. The screen 
is black when in DFU mode, but upon connecting to a computer running iTunes, the 
following prompt is presented: “iTunes has detected an iPad in recovery mode. You must 
restore this iPad before it can be used with iTunes.” 

ECID A 64-bit identifier that’s unique to the processor in each iOS device. Used as part of the 
personalization process, it’s not considered a secret.

Effaceable Storage A dedicated area of NAND storage, used to store cryptographic keys, that can be addressed 
directly and wiped securely. While it doesn’t provide protection if an attacker has physical 
possession of a device, keys held in Effaceable Storage can be used as part of a key 
hierarchy to facilitate fast wipe and forward security.

File system key The key that encrypts each file’s metadata, including its class key. This is kept in Effaceable 
Storage to facilitate fast wipe, rather than confidentiality.

Group ID (GID) Like the UID but common to every processor in a class.

Hardware security module (HSM) A specialized tamper-resistant computer that safeguards and manages digital keys. 

iBoot Code that’s loaded by LLB, and in turn loads XNU, as part of the secure boot chain. 

Identity Service (IDS) Apple’s directory of iMessage public keys, APNs addresses, and phone numbers and email 
addresses that are used to look up the keys and device addresses.

Integrated circuit (IC) Also known as a microchip.

Joint Test Action Group (JTAG) Standard hardware debugging tool used by programmers and circuit developers. 

Keybag A data structure used to store a collection of class keys. Each type (system, backup, escrow, 
or iCloud Backup) has the same format:
• A header containing:

– Version (set to 3 in iOS 5)
– Type (system, backup, escrow, or iCloud Backup)
– Keybag UUID
– An HMAC if the keybag is signed
– The method used for wrapping the class keys: tangling with the UID or PBKDF2, along 

with the salt and iteration count
• A list of class keys:

– Key UUID
– Class (which file or keychain Data Protection class this is)
– Wrapping type (UID-derived key only; UID-derived key and passcode-derived key)
– Wrapped class key
– Public key for asymmetric classes
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Keychain The infrastructure and a set of APIs used by iOS and third-party apps to store and retrieve 
passwords, keys, and other sensitive credentials.

Key wrapping Encrypting one key with another. iOS uses NIST AES key wrapping, as per RFC 3394.

Low-Level Bootloader (LLB) Code that’s invoked by the Boot ROM, and in turn loads iBoot, as part of the secure boot 
chain.

Per-file key The AES 256-bit key used to encrypt a file on the file system. The per-file key is wrapped by 
a class key and is stored in the file’s metadata.

Provisioning Profile A plist signed by Apple that contains a set of entities and entitlements allowing apps to be 
installed and tested on an iOS device. A development Provisioning Profile lists the devices 
that a developer has chosen for ad hoc distribution, and a distribution Provisioning Profile 
contains the app ID of an enterprise-developed app.

Ridge flow angle mapping A mathematical representation of the direction and width of the ridges extracted from a 
portion of a fingerprint.

Smart card An integrated, embedded circuit that provides secure identification, authentication, and 
data storage.

System on a chip (SoC) An integrated circuit (IC) that incorporates multiple components into a single chip. The 
Secure Enclave is an SoC within Apple’s A7 central processor.

Tangling The process by which a user’s passcode is turned into a cryptographic key and 
strengthened with the device’s UID. This ensures that a brute-force attack must be 
performed on a given device, and thus is rate limited and cannot be performed in parallel. 
The tangling algorithm is PBKDF2, which uses AES as the pseudorandom function (PRF) 
with a UID-derived key.

Uniform Resource Identifier (URI) A string of characters that identifies a web-based resource.

Unique ID (UID) A 256-bit AES key that’s burned into each processor at manufacture. It cannot be read by 
firmware or software, and is used only by the processor’s hardware AES engine. To obtain 
the actual key, an attacker would have to mount a highly sophisticated and expensive 
physical attack against the processor’s silicon. The UID is not related to any other identifier 
on the device including, but not limited to, the UDID.

XNU The kernel at the heart of the iOS and OS X operating systems. It’s assumed to be trusted, 
and enforces security measures such as code signing, sandboxing, entitlement checking, 
and ASLR.


