
Wire Security Whitepaper

Wire Swiss GmbH∗

March 3, 2016

Contents
1 Introduction 2

2 Application layer 2

3 Registration 2
3.1 User Registration . 3

3.1.1 Registration by e-mail . 3
3.1.2 Registration by phone . 3
3.1.3 Passwords . 4
3.1.4 Further data . 4

3.2 Client registration . 4
3.2.1 Further data . 5
3.2.2 Metadata . 6
3.2.3 Notifications . 6

3.3 Push token registration . 6

4 Authentication 6
4.1 Tokens . 6
4.2 Login . 7

4.2.1 Password login . 8
4.2.2 SMS login . 8

4.3 Password Reset . 8

5 Messaging 8
5.1 End-to-end encryption . 9

5.1.1 Prekeys . 9
5.2 Message exchange and client discovery 9
5.3 Assets . 10
5.4 Notifications . 11

6 Calling 12
6.1 Call signaling . 12

∗privacy@wire.com

1

6.2 Media transport . 12
6.3 Encryption . 12
6.4 WebRTC . 13

A Cookie and access token format 13

1 Introduction

Wire runs on Android and iOS devices, on Windows and OS X as well as on
the Web in browsers. Registered users engage in conversations whose contents
are synchronized across all devices of a user.

This document provides an overview on the cryptographic protocols and security
aspects implemented to protect the privacy of users.

2 Application layer

Wire clients interact with backend servers over HTTPS connections supporting
the following TLS parameters:

TLS versions

• TLSv1.0

• TLSv1.1

• TLSv1.2

The server indicates the order preference of cipher suites and communicates
HTTP Strict Transport Security [2] to all clients.

In addition to requests to HTTP resources, clients can maintain a websocket
connection to receive real-time push notifications, as well as register for push
notifications through external transports such as GCM [3] and APNs [4]. See
section 5.4 on page 11 for details on push notifications.

3 Registration

Registration on Wire involves up to three steps, whereby only the first is strictly
required in order to start using the service:

1. User registration.

2. Client registration.

3. Push token registration.

2

Client Server E-Mail Server

c ∈R [0, 2192 − 1]

Register (Profile name, E-Mail)

E-Mail c

Fetch E-Mail

E-Mail Response

c

(UUID, Cookie)

Figure 3.1: User Registration (E-Mail)

3.1 User Registration

Wire supports two basic registration flows, which can optionally be composed.
All flows have in common that a profile name must be provided, which does not
have to be unique. For more details on the data collected please see the Wire
Privacy Whitepaper.

3.1.1 Registration by e-mail

Registration by e-mail (figure 3.1) requires a profile name and a valid e-mail
address. To verify the e-mail address, the server generates a random verification
code c ∈R [0, 2192 − 1] and sends it to the given e-mail address to complete the
registration. The server allows only 3 attempts to send the correct verification
code before the code is automatically invalidated and a new code needs to be
requested. Verification codes expire after two weeks.

Upon successful registration the client receives a Wire internal ID (UUID v4)
and an authentication cookie.

3.1.2 Registration by phone

Registration by phone number (figure 3.2) requires a profile name and a valid
phone number. Before the client application sends the actual registration re-
quest, it asks the server to send a verification code c ∈R [0, 106 − 1] via SMS to
the phone number the user provided. The actual registration request includes
c. A client only has 3 attempts to send the correct verification code before it is
invalidated, in which case a new code needs to be requested.

3

Client Server SMS Provider

c ∈R [0, 106 − 1]

Request SMS verification code

SMS c

Push SMS

Register (Profile name, Phone, c)

(UUID, Cookie)

Figure 3.2: User Registration (Phone)

Upon successful registration the client receives a Wire internal ID (UUID v4)
and an authentication cookie.

3.1.3 Passwords

Passwords are not stored in plain text on the servers, instead they are passed into
the scrypt key derivation function [5] with the parameters N = 214, r = 8, p = 1
and a random salt s ∈R [0, 2256− 1]. The resulting hashes are stored along with
the salt and the parameters in the form log2 N‖r‖p‖base64(s)‖base64(hash).

3.1.4 Further data

The following additional data is stored by the servers:

• Locale: An IETF language tag representing the user’s preferred language.

• Accent Color: A numeric constant.

• Picture: Metadata about a previously uploaded public profile picture,
including a unique ID, dimensions and a tag.

• Cookie Label: A label to associate with the user token that is returned as
an HTTP cookie upon successful registration.

3.2 Client registration

Client registration (figure 3.3) is required in order to participate in the exchange
of end-to-end encrypted content. The concept of user accounts is less relevant,
as encrypted content is exchanged between two clients.

A user can register up to 8 client applications (usually different devices) in total:
7 are permanent 1 is temporary. Attempts to register more than 7 permanent

4

Client Server

CType ∈ {Perm,Temp}

k(enc,sig) ∈R [0, 2256 − 1]

k(mac,sig) ∈R [0, 2256 − 1]

n prekeys

last resort prekey (klr)

(CType, k(enc,sig), k(mac,sig), prekeys, klr)

Cid = hash(klr)
Cid

Figure 3.3: Client Registration

clients will result in an error and require permanent client to be removed. Reg-
istering a new temporary client will replace the old one.

These restrictions limit the amount of computation clients need to perform when
sending encrypted messages, as messages are encrypted individually between
clients.

The signaling keys (k(enc,sig), k(mac,sig)) are symmetric keys shared between
server and client and are used to encrypt push notifications over external trans-
port chanel in order to minimise metadata exposure. Details on push notifica-
tions can be found in section 5.4 on page 11.

The prekeys are used by other clients to initiate cryptographic sessions with the
newly registered client and are defined in section 5.1.1 on page 9.

Upon successful client registration the server returns a client ID (Cid) which is
unique per user ID.

3.2.1 Further data

The following data will also be collected during client registration:

• Class: The device class: Mobile, Tablet or Desktop.

• Model: The device model, e.g. iPhone 4s.

• Label: A human-readable label for the user to distinguish devices of the
same class and model.

• Cookie label: A cookie label links the client to authentication cookies (cf.
section 4 on the next page). When such a client is later removed from the
account, i.e. when a device is lost, the server will revoke any authentication
cookies with a matching cookie label. Once set, cookie labels can never
be changed.

• Password: If the user has a password, client registration requires re-
authentication with this password, with the exception of the first reg-

5

Client Server Amazon SNS

(UUID, Token, Cidopt.)

(UUID, Token)

Figure 3.4: Push token registration

istered client of an account. Similarly, removing a registered client also
requires the password to be entered.

3.2.2 Metadata

The server collects the following metadata for every newly registered client and
makes it available it to the user:

• Timestamp: The UTC timestamp when the client was registered.

• Location: The geo-location of the IP address used to register the client.

This information is only collected to make notifications about new registrations
more meaningful.

3.2.3 Notifications

When a new client is registered with an account, all existing clients of the same
account are notified of that event. Additionaly, the user will be notified via e-
mail and/or SMS. These notifications help the user to identify suspicious clients
registered with their account, e.g. when login credentials are stolen.

3.3 Push token registration

As a final registration step a client can register push tokens in order to receive
push notifications over GCM or APNs when the device is offline (when there is
no open websocket connection). Details about push notifications can be found
in section 5.4 on page 11.

4 Authentication

4.1 Tokens

API authentication is based on a combination of short-lived bearer tokens, re-
ferred to as access tokens, as well as long-lived user tokens. Access tokens are

6

Client Server

(Cookie, Access Tokenopt.)

verify
(Access Token, Cookieopt.)

Figure 4.1: Token Refresh

used to authenticate requests to protected API resources and user tokens are
used to continuously obtain new access tokens.

User tokens are sent as HTTP cookies. All tokens are strings signed1 by the
server and include the user ID (UUID v4) and the expiration time as a Unix
timestamp. The full format of user tokens and access tokens is specified in
appendix A on page 13.

The scope of user tokens, and thus cookies, can be persistent or session-based,
with the same semantics as those specified by the HTTP protocol. A client
chooses the scope of the cookie during login. The HTTP cookie attributes
restrict their use to the domain of the backend server, to the path of the token
refresh endpoint as well as to the HTTPS protocol. Persistent cookies are stored
in permanent, secure storage on the client, whereas session cookies are kept in
ephemeral storage only (e.g. a browser session). Persistent cookies expire after
1 year and session cookies expire after 1 week.

Access tokens are comparatively short-lived (15 minutes). To refresh an expired
access token a client uses a cookie to refresh the access token. If the cookie
is valid, a new access token is generated and returned. When an access token
is refreshed the server may additionally issue a new cookie, thus continuously
prolonging the expiration date (figure 4.1). Such a cookie renewal typically
occurs approx. every 3 months.

A user may have a maximum of 32 persistent cookies and 32 session cookies,
both of which are replaced transparently from least recent to most recent.

After the initial registration, only a user login can generate a new long-lived
user token and an access token.

Wire supports two different types of logins described below.

4.2 Login

Users who have added a password to their account or have verified a phone
number can login. Logins are classified as session or persistent logins, which
corresponds to the desired scope of the resulting cookie. Clients can choose the
type of login.

1A cryptographic Ed25519 signature attached to the string.

7

Client Server

(E-Mail | Phone | UUID, Password)

verify scrypt(Password) = Passwordstored
(Cookie, Access Token)

Figure 4.2: Login with password

4.2.1 Password login

To login with a password a client provides a user ID, e-mail address or phone
number and a the password, which are transmitted over TLS. The server verifies
the password using scrypt [5] and issues a new user token as an HTTP cookie
and a new access token as shown in figure 4.2.

4.2.2 SMS login

Users who registered with a verified phone number can login via SMS. The pro-
cedure is the same as during registration and is subject to the same restrictions,
however an SMS login code already expires after 10 minutes.

4.3 Password Reset

Wire provides a self-service password reset [6] for any registered user with a
password and a verified e-mail address or phone number.

The procedure for a password reset via a verified phone number or e-mail address
is similar to the initial verification (cf. figure 3.1 and 3.2), with the following
differences:

• There can be only 1 pending password reset for an account at any time. A
new password reset cannot be initiated before the timeout window expires.

• The password reset codes are valid for 10 minutes.

5 Messaging

Messaging refers exchanging text messages and assets (section 5.3). All messag-
ing in Wire is subject to end-to-end encryption to provide users with a strong
degree of privacy and security.

8

5.1 End-to-end encryption

End-to-end encryption (E2EE) takes place between two clients (cf. 3.2). Axolotl
[9] is the main cryptographic protocol. It is derived from the Off-the-Record
protocol, using a different ratchet[10].

Furthermore Wire uses the concept of prekeys [7] to use the protocol in an
asynchronous environment. It is not necessary for two parties to be online at
the same time to initiate an encrypted conversation.

The actual Axolotl implementation used in Wire is Proteus [8]. It uses the
following cryptographic primitives (provided by libsodium [15]):

• ChaCha20 stream cipher [16]

• HMAC-SHA256 as MAC [17]

• Elliptic curve Diffie-Hellman key exchange (Curve25519 [18])

Key derivation is done using HKDF [19].

5.1.1 Prekeys

Every client initially generates some key material which is stored locally:

• Identity keypair: (a, ga) ∈R Zp × Curve25519 where g ∈ Curve25519

• A set of prekeys [7]: (k(a,i), gk(a,i)) ∈R Zp × Curve25519 where
0 ≤ i ≤ 65535.

During client registration (section 3.2) a client uploads prekeys (gk(a,0) , ..., gk(a,j))
bundled with its public identity key ga. These are eventually used by other
clients to asynchronously initiate an end-to-end encrypted conversation, i.e.
given a recipient’s prekey gk(a,i) and identity key ga the sender can derive n
initial encryption key even if the recipient is offline.

The prekey with ID 65535 is the so-called “last resort” prekey. Every prekey
is intended to be used only once, which means that the server removes every
requested prekey immediately. In order to not run out of prekeys the last resort
prekey is never removed and clients should regularly upload fresh prekeys.

For further details on the remaining protocol flow and its security properties
please refer to references [9], [10], [11] and [14].

5.2 Message exchange and client discovery

To send an encrypted message the sending client needs to have a cryptographic
session with every client it wants to send the message to (usually all clients of all
participants of a particular conversation). It will encrypt the plain text message
for every recipient and send the batch to the server. The server checks if every
client of every user who is a participant of the conversation is part of the batch.
If a client is missing, the server will reject the request and inform the sender of

9

Client Server

m : Plaintext

Cmis : Missed clients

Cred : Redundant clients

Cdel : Deleted clients
M = Encx(m), for each client x

compute Cmis, Cred, Cdel

if Cmis = ∅ then forward M
(Cmis, Cred, Cdel)

Figure 5.1: Client Discovery (Sender)

missing clients.2 The sender can then fetch prekeys for the missing clients and
prepare the remaining messages before attempting to resend the entire batch.

By the same mechanism clients are also informed about redundant clients, i.e.
clients they have prepared an encrypted message for, but which are no longer
part of the conversation. This includes deleted clients, i.e. clients which are
redundant and known to have been deleted. The sender can use this informa-
tion to update its own list of clients participating in a conversation and the
corresponding cryptographic sessions.

Client discovery for the sender of a message is depicted in figure 5.1.

Conversely, when a client receives an encrypted message from another client with
whom no prior cryptographic session exists, it initializes a new cryptographic
session from the encrypted message.

To rule out man-in-the-middle attacks users need to compare identity key fin-
gerprints out-of-band.

5.3 Assets

Assets are larger binary entities sent between users, such as pictures.

Profile pictures are uploaded as plaintext assets with technical metadata (e.g.
width, height, file type) and are shared through a user’s profile.

Any other assets shared in conversations are end-to-end encrypted. Compared to
regular text messages, the encryption of assets applies an optimization proposed
in [12] to reduce the required computational overhead and network bandwidth
for the sender. On Wire, the sending client does the following:

1. It generates a random symmetric key k for use with AES-256.

2. It encrypts the asset data with k using CBC mode with PKCS#5/7
padding and computes the SHA-256 hash of the resulting ciphertext.

2Clients do have the ability to override this behaviour, but are always informed about
missing clients.

10

3. It encrypts the key k together with the hash and other asset metadata for
each recipient via the Axolotl protocol.

4. It sends the encrypted asset data as well as the encrypted metadata pay-
load for each recipient to the server.

The receiving client of an asset metadata message then does the following:

1. It decrypts the asset metadata using the Axolotl protocol, thus obtaining
the symmetric key k as well as the SHA-256 hash of the asset ciphertext.

2. It downloads the asset ciphertext, computes the SHA-256 hash and com-
pares it to the received hash to verify the integrity of the asset data.

3. It decrypts the asset data using the key k.

As with regular text messages, only clients in the same conversation can receive
asset metadata messages from one another and are authorized to download the
corresponding asset ciphertext.

Assets are persistently stored on the server without a predefined timeout. This
means that a client can repeatedly download and decrypt the same asset to con-
serve disk space on the device, since the client persistently stores the decrypted
symmetric key k together with the SHA-256 hash. These credentials have the
same sensitivity as the plaintext asset itself. Forward secrecy is not affected
since the decryption key k is sent using the Axolotl protocol.

5.4 Notifications

Messages are delivered by the server to recipients via notifications. Notifications
are delivered by Wire over 3 different channels.

Websocket connections: Every authenticated client can establish a websocket
connection over HTTPS. A client with an established websocket connection is
considered online.

External push providers: Wire currently supports GCM and APNs as exter-
nal push providers. This channel is used if a client is offline but has registered a
valid GCM or APNs push token with the server. The content is encrypted and
not visible to the external push providers.

Notification queues: Every message sent by a user, as well as most metadata
messages are enqueued in a per-client notification queue that can be queried
(and filtered) by every registered, authenticated client of a user. The notification
queue allows clients to retrieve messages they may have missed. The retention
period of notifications is 4 weeks.

Notifications for end-to-end encrypted messages that are sent to external push
providers are additionally encrypted using the signaling keys (cf. section 3.2)
in order to protect sender information and other metadata accompanying the
encrypted message. For that purpose the following cryptographic primitives are
used in an encrypt-then-MAC scheme:

• HMAC-SHA256 [17]

11

• AES256 [20] in CBC mode with PKCS#5/7 padding. The IV consists of
16 random bytes (the block length) and is prepended to the ciphertext.

6 Calling

Wire users can call each other in 1:1 or group conversations. Calls are initiated
to all participants of a conversation and users who are not a participant of that
conversation do not have access to the call. Group calls are currently limited to
5 active participants, and are offered only in conversations with no more than
10 participants. These limits may change over time.

The codec used for streaming audio is Opus.

Setting up a call involves three aspects: signaling, media transport and encryp-
tion. These are described in detail next.

Known limitation: Currently calling doesn’t use the same cryptographic iden-
tity as text messages and assets. This limitation will be addressed in future
releases.

6.1 Call signaling

Call signaling establishes a connection between clients and negotiates their com-
mon capabilities by exchanging SDP messages. During this phase, the clients
communicate through a server component via HTTPS requests on the uplink
and websockets on the downlink.

During the call, clients also send messages at regular intervals to the server
component, to inform that the call is still ongoing.

6.2 Media transport

Once connected, endpoints determine a transport path for the media between
them. Whenever possible the endpoints allow direct media flow between them,
however some networks may have firewalls or NATs preventing direct streaming
and instead require the media to be relayed through a TURN server. ICE
identifies the most suitable transport path.

6.3 Encryption

Call media is exchanged between endpoints in an SRTP-encrypted media ses-
sion. To initiate the session the SRTP encryption algorithm, keys, and parame-
ters are negotiated through a DTLS handshake. The authenticity of the clients
is also verified during the handshake.

In a group call, every participant connects to every other participant as if they
were in a 1:1 call. Therefore, all legs of the group call are individually encrypted
and encryption keys are not shared among participants.

12

6.4 WebRTC

Wire is fully compliant with WebRTC and existing IETF standards. As a result,
Wire native endpoints can also securely exchange media with any WebRTC
compliant web-browser such as Google Chrome or Mozilla Firefox.

These are the main IETF standards used by Wire:

• UDP (RFC 768[21])

• RTP (RFC 3550[22])

• ICE (RFC 5245[23])

• STUN (RFC 7350[24])

• TURN (RFC 5766[25])

• SDP (RFC 4566[26])

• SRTP (RFC 3711[27])

• DTLS (RFC 4347[28])

• DTLS-SRTP (RFC 5764[29])

• Opus (RFC 6716[30]).

Appendices

A Cookie and access token format

〈token〉 ::= 〈signature〉
‘.v=’ 〈version〉
‘.k=’ 〈key-index 〉
‘.d=’ 〈timestamp〉
‘.t=’ 〈type〉
‘.l=’ 〈tag〉
‘.’ 〈type-specific-data〉

〈version〉 ::= 〈Integer〉

〈key-index 〉 ::= 〈Integer〉

〈timestamp〉 ::= 〈Integer〉

〈type〉 ::= ‘a’ | ‘u’

〈tag〉 ::= ‘s’ | ‘’

〈type-specific-data〉 ::= ‘a=’ 〈access-data〉 | ‘u=’ 〈user-data〉

〈access-data〉 ::= 〈UUID〉 ‘.c=’ 〈Word64 〉

〈user-data〉 ::= 〈UUID〉 ‘.r=’ 〈Word32 〉

13

References

[1] http://electron.atom.io

[2] https://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security

[3] https://developers.google.com/cloud-messaging/

[4] https://developer.apple.com/library/ios/documentation/
NetworkingInternet/Conceptual/RemoteNotificationsPG/
Chapters/ApplePushService.html

[5] http://www.tarsnap.com/scrypt.html

[6] https://en.wikipedia.org/wiki/Self-service_password_reset

[7] https://whispersystems.org/blog/asynchronous-security/

[8] https://github.com/wireapp/proteus

[9] https://github.com/trevp/axolotl/wiki

[10] https://whispersystems.org/blog/advanced-ratcheting/

[11] https://whispersystems.org/blog/simplifying-otr-deniability/

[12] https://whispersystems.org/blog/private-groups/

[13] https://github.com/WhisperSystems/Signal-Android

[14] https://eprint.iacr.org/2014/904.pdf

[15] https://github.com/jedisct1/libsodium

[16] https://en.wikipedia.org/wiki/Salsa20#ChaCha_variant

[17] https://en.wikipedia.org/wiki/Hash-based_message_authentication_code

[18] https://en.wikipedia.org/wiki/Curve25519

[19] https://tools.ietf.org/html/rfc5869

[20] https://en.wikipedia.org/wiki/Advanced_Encryption_Standard

[21] http://tools.ietf.org/html/rfc768

[22] http://tools.ietf.org/html/rfc3550

[23] https://tools.ietf.org/html/rfc5245

[24] https://tools.ietf.org/html/rfc5389

[25] https://tools.ietf.org/html/rfc5766

[26] https://tools.ietf.org/html/rfc4566

[27] https://tools.ietf.org/html/rfc3711

[28] https://tools.ietf.org/html/rfc4347

[29] http://tools.ietf.org/html/rfc5764

[30] https://tools.ietf.org/html/rfc6716

14

