
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Gibson, Dunn &
Crutcher LLP

THEODORE J. BOUTROUS JR., SBN 132099
tboutrous@gibsondunn.com

NICOLA T. HANNA, SBN 130694
nhanna@gibsondunn.com

ERIC D. VANDEVELDE, SBN 240699
evandevelde@gibsondunn.com

GIBSON, DUNN & CRUTCHER LLP
333 South Grand Avenue
Los Angeles, CA 90071-3197
Telephone: 213.229.7000
Facsimile: 213.229.7520

THEODORE B. OLSON, SBN 38137
 tolson@gibsondunn.com
1050 Connecticut Avenue, N.W.
Washington, DC 20036-5306
Telephone: 202.955.8500
Facsimile: 202.467.0539

MARC J. ZWILLINGER*
 marc@zwillgen.com
JEFFREY G. LANDIS*
 jeff@zwillgen.com
ZWILLGEN PLLC
1900 M Street N.W., Suite 250
Washington, D.C. 20036
Telephone: 202.706.5202
Facsimile: 202.706.5298
*Admitted Pro Hac Vice

UNITED STATES DISTRICT COURT

CENTRAL DISTRICT OF CALIFORNIA

EASTERN DIVISION

IN THE MATTER OF THE SEARCH
OF AN APPLE IPHONE SEIZED
DURING THE EXECUTION OF A
SEARCH WARRANT ON A BLACK
LEXUS IS300, CALIFORNIA
LICENSE PLATE 35KGD203

ED No. CM 16-10 (SP)

SUPPLEMENTAL DECLARATION
OF ERIK NEUENSCHWANDER IN
SUPPORT OF APPLE INC.’S REPLY
IN SUPPORT OF MOTION TO
VACATE ORDER COMPELLING
APPLE INC. TO ASSIST AGENTS IN
SEARCH

Hearing:
Date: March 22, 2016
Time: 1:00 p.m.
Place: Courtroom 3 or 4
Judge: Hon. Sheri Pym

I, Erik Neuenschwander, declare:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

 2

Gibson, Dunn &
Crutcher LLP

1. I have personal knowledge of the facts set forth below. If called as a

witness, I would and could testify to the statements and facts contained herein, all of

which are true and accurate to the best of my knowledge and belief.

2. I have reviewed the Government’s Reply in Support of Motion to Compel

and Opposition to Apple Inc.’s Motion to Vacate Order, as well as the Declaration of

Stacey Perino (“Perino Declaration”) and Supplemental Declaration of Christopher

Pluhar (“Supplemental Pluhar Declaration”) submitted therewith.

3. In this declaration I offer responses to certain statements and assertions

made in those materials.

4. Paragraphs 13 through 17 of the Perino Declaration purport to describe

Apple’s use of key encryption on its devices, relying primarily on language from

Apple’s iOS Security White Paper. This includes Apple’s “Chain of Trust,” a process

Apple uses to make sure that when a device is powered on, each step of the boot

process is checked for any changes that could indicate that the device was tampered

with.

5. Mr. Perino notes that as part of this “Chain of Trust” process Apple has

created its own certificate authority and public/private key pair used on its devices, and

that because only Apple possesses the private key, only Apple can sign system

software that can be loaded on its devices during the secure boot process.

6. The fundamental basis of the process Mr. Perino describes is a well-

accepted security best-practice. It is sometimes referred to as “Root of Trusts,” or

“RoTs.” The National Institute of Standards and Technology (“NIST”) endorsed RoTs

as a best practice in its October 2012 Guidelines on Hardware Rooted Security in

Mobile Devices, NIST SP 800-164 (Draft) (the “October 2012 NIST Report”). NIST

is the entity responsible for developing information security standards and guidelines,

including minimum requirements for Federal information systems.

7. The October 2012 NIST Report defined RoTs as “security components”

that “provide a set of trusted, security-critical functions,” and identified them as “the

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

 3

Gibson, Dunn &
Crutcher LLP

foundation of assurance of the trustworthiness of a mobile device.” NIST further

noted that it “expect[ed] mobile operating systems to utilize the capabilities provided

by the RoTs to create and protect device integrity reports, verify and measure firmware

and software, and protected locally stored cryptographic keys, authentication

credentials, and other sensitive data.”

8. The October 2012 NIST Report also cautioned that “[m]any mobile

devices are not capable of providing strong security assurances” because they “lack the

hardware-based roots of trust that are increasingly built into laptops and other types of

hosts.”

9. Similarly, the SANS Institute, a major provider of information security

and cybersecurity training, noted in its June 2013 Whitepaper “Implementing

Hardware Roots of Trust: The Trusted Platform Module Comes of Age,” that this

hardware-based process better “protect[s] secrets and data that are worth money to

cybercriminals (for example, intellectual property and personal financial

information),” compared to software-based security, which “is regularly defeated.”

SANS also wrote in its 2013 Whitepaper that the use of Trusted Platform Modules was

“indicative of a strong push coming from defense and intelligence agencies.”

10. Many other companies have followed these best practices and

recommendations and rely on “chains of trust,” “roots of trust,” or similar hardware-

based programs to provide enhanced security on their devices. Apple is by no means

unique in that regard.

11. For example, the organization that develops the Trusted Platform Module

(“TPM”)—a specific type of hardware-based RoTs—has noted that there are more

than a billion PCs, servers, embedded systems, network devices and other devices with

TPM or similar functionality embedded in them. (“Trusted Platform Module: A

Delayed Reaction?” SC Magazine, Feb. 20, 2013, http://www.scmagazineuk.com/

trusted-platform-module-a-delayed-reaction/article/281085/.) Neil Kittelson of the

National Security Agency (which has invested heavily in using TPM on its high-

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

 4

Gibson, Dunn &
Crutcher LLP

assurance platform), stated that “TPM capabilities represent a shift against today's

attackers who are embedding rootkits beneath the notice of software-based security

solutions.” (Id.)

12. Similarly, Microsoft is now including a TPM chip in all of its handheld

devices. (“Secure is the New Black: The Evolution of Secure Mobile Technology for

Government Agencies,” Federal Technology Insider, Jun. 5, 2014,

http://www.federaltechnologyinsider.com/secure-new-black-evolution-secure-mobile-

technology-government-agencies/.) Even aerospace and defense contractor Boeing has

announced an Android-based, high-security mobile device specifically for government

agencies, which incorporates “trusted computing architecture,” “a TPM chip for

securely storing encryption keys,” “Secure Boot to maintain the device image

integrity,” “Hardware Root of Trust [to] ensure[] software authenticity,” and a

“Hardware Crypto Engine to protect both stored and transmitted data.” (Id.) While

Apple does not use TPM specifically, the Apple security measures discussed in the

Perino Declaration provide similar functionality as TPM.

13. The current Protection Profile for Mobile Device Fundamentals

(“MDFPP”)—a set of security requirements for mobile devices published by the US

National Information Assurance Partnership (“NIAP”) with the involvement of

multiple U.S. government agencies, industry participants, and other organizations as

part of the Common Criteria certification program—also encourages hardware secure

key storage for a device’s Root Encryption Key (“REK”), and protecting sensitive data

using a key derived from the REK and a passcode. (See “Protection Profile for Mobile

Device Fundamentals” at 55, 57, NIAP, Sept. 17, 2014, https://www.niap-ccevs.org

/pp/pp_md_v2.0.pdf.) Both of these have been implemented for iOS devices, resulting

in certification of iOS 9.2 as MDFPP-compliant. (See “Compliant Product – Apple

iOS 9,” NIAP, https://www.niap-ccevs.org/Product/Compliant.cfm?pid=10695.)

14. Digitally signed software, another key component of Apple’s iOS chain of

trust anchored by the RoTs described by NIST, are similarly common. As a recent

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

 5

Gibson, Dunn &
Crutcher LLP

example, car manufacturer Tesla said that when building a secure connected car, “[t]he

first precaution is to ensure that any software updates to the vehicle are authorized by

the manufacturer. This can be achieved by using industry standard cryptography

technology called ‘signing’. Tesla employs this technology. This technology ensures

that only Tesla authorized software is applied to the vehicles, even if someone is trying

to tamper with the software inappropriately as the software signal transits the

network.” (See “Tesla Motors 4-Point Plan to Build Secure Connected Cars,”

Evannex, Nov. 19, 2015, http://evannex.com/blogs/news/68988613-tesla-motors-4-

point-plan-to-build-secure-connected-cars?rfsn=3664.9c8.)

15. The same practice is common among software developers generally. For

instance, Microsoft notes that software “downloaded from the Internet to users’

computers can contain programs such as viruses and Trojan horses that are designed to

cause malicious damage or provide clandestine network access to intruders,” and thus

advises Windows software developers to “counter this growing threat” by “digitally

sign[ing] the software that you distribute on your intranets or the Internet to ensure its

integrity and to assure others that the software can be trusted.” (Microsoft TechNet:

Digitally Signed Software, https://technet.microsoft.com/en-us/library/cc962053.aspx).

Digital signature-based authentication also has a long legacy. For instance, code

signing capability for software written in the Java language was added to the official

JDK development platform in early 1997. See Gary McGraw & Edward W. Felten,

Securing Java (2d ed., 1999) (available at http://www.securingjava.com/chapter-

three/).

16. Paragraphs 18 through 24 of the Perino Declaration purport to describe

the process by which Apple signs its operating systems. In describing that process,

Mr. Perino claims that Apple creates operating systems that “will work only on one

specific Apple device.” Mr. Perino’s inference appears to be that creating GovtOS

(which Mr. Perino refers to as the “SIF”) would therefore not pose any security risk

because it can only be used on the subject device.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

 6

Gibson, Dunn &
Crutcher LLP

17. Mr. Perino’s characterization of Apple’s process, however, is inaccurate.

Apple does not create hundreds of millions of operating systems each tailored to an

individual device. Each time Apple releases a new operating system, that operating

system is the same for every device of a given model. The operating system then gets

a personalized signature specific to each device. This personalization occurs as part of

the installation process after the iOS is created.

18. Once GovtOS is created, personalizing it to a new device becomes a

simple process. If Apple were forced to create GovtOS for installation on the device at

issue in this case, it would likely take only minutes for Apple, or a malicious actor with

sufficient access, to perform the necessary engineering work to install it on another

device of the same model.

19. Thus, as noted in my initial declaration (ECF No. 16-33), the initial

creation of GovtOS itself creates serious ongoing burdens and risks. This includes the

risk that if the ability to install GovtOS got into the wrong hands, it would open a

significant new avenue of attack, undermining the security protections that Apple has

spent years developing to protect its customers.

20. There would also be a burden on the Apple employees responsible for

designing and implementing GovtOS. Those employees, if identified, could

themselves become targets of retaliation, coercion, or similar threats by bad actors

seeking to obtain and use GovtOS for nefarious purposes. I understand that such risks

are why intelligence agencies often classify the names and employment of individuals

with access to highly sensitive data and information, like GovtOS. The government’s

dismissive view of the burdens on Apple and its employees seems to ignore these and

other practical implications of creating GovtOS.

21. Paragraphs 25 through 28 of the Perino Declaration describe supposedly

already existing software that Mr. Perino suggests Apple use as a starting point to

create GovtOS. For example, Mr. Perino points to a security exploit that supposedly

allowed an iPhone to load a minimal operating system in RAM that had not been

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

 7

Gibson, Dunn &
Crutcher LLP

signed by Apple, which is what the government is requesting here. Similarly, Mr.

Perino points to a hacking tool the FBI created that supposedly allowed it to brute

force the device passcode on older iPhones.

22. These descriptions show that the FBI, along with its partners, currently

have, and have had in the past, the capability to develop the types of code that Apple is

being asked to create.

23. Mr. Perino is incorrect, however, in his suggestion that Apple can use

these third-party items, add Apple’s signature, and load the finished product on to the

subject device to accomplish the result that the government seeks with less effort than

what I described in my initial declaration.

24. Using the allegedly already existing software code that Mr. Perino

identifies would not be an appropriate way to accomplish what the government wants.

Setting aside the legal question of whether Apple can incorporate a software tool

created by some other party (such as the Cellebrite UFED tool Mr. Perino identifies)

for this purpose, Apple would not save time and effort by incorporating unfamiliar

third-party code that has never been used and deployed by Apple before, and it would

introduce a host of new issues and potential risks that would need to be addressed.

25. Before Apple utilized any unknown third-party created code, Apple would

need to fully audit and inspect that code to understand how it functions (including to

ensure it is not malware), how it would need to be modified, and how it would need to

interact with the Apple-created code necessary to accomplish the task. Apple would

also need to modify each separate component piece of software to combine it into a

single operating system (the new GovtOS).

26. Once the operating system is created it would still need to go through

Apple’s quality assurance and security testing process as described in paragraphs 30-

34 of my initial declaration. Indeed, this process would be even more critical if Apple

were relying on software created by third parties that Apple had never deployed on its

devices. Once the new GovtOS is quality assured and security tested, it will then need

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

 8

Gibson, Dunn &
Crutcher LLP

to be deployed on the subject device as described in paragraphs 35-38 of my initial

declaration. This endeavor would save neither time nor effort, even if possible.

27. The engineering efforts involved in these development, quality assurance

and security testing processes can only be performed by a limited set of Apple

employees with the appropriate expertise, who will necessarily be diverted from

contributing to their normal work of developing and securing iOS. The overwhelming

majority of Apple’s employees could not perform this task.

28. More importantly, the historical security vulnerabilities and jailbreak

incidents Mr. Perino identifies underscore the constant battle Apple is engaged in to

identify and close off security vulnerabilities. I believe that Apple’s iOS platform is

the most-attacked software platform in existence. Each time Apple closes one

vulnerability, attackers work to find another. This is a constant and never-ending

battle. Mr. Perino’s description of third-party efforts to circumvent Apple’s security

demonstrates this point. And the protections that the government now asks Apple to

compromise are the most security-critical software component of the iPhone—any

vulnerability or back door, whether introduced intentionally or unintentionally, can

represent a risk to all users of Apple devices simultaneously.

29. This evolution of attack technology described in Mr. Perino’s declaration

is a vivid illustration of why Apple is always striving to increase the security of its

devices. Mr. Perino makes clear that third parties have already come close to

developing a tool that would defeat part of iOS’s present security capabilities.

30. Mr. Perino also asserts in Paragraph 28(d) of his declaration that recent

publicly available jailbreaks of Apple phones have been applied from within the

iPhone user interface, after a device has been unlocked. Mr. Perino’s inference is that

an iPhone cannot be jail broken from the lock screen. However, particularly given the

past exploits that have bypassed the lock screen and the present-day reality of

innumerable security firms, malicious actors, cybercriminals and potential adversaries

of the United States constantly seeking vulnerabilities to exploit in a dominant

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

 9

Gibson, Dunn &
Crutcher LLP

software platform, it is not reasonable to draw such a conclusion based solely on

publicly revealed exploits. Additionally, new jailbreaks for iOS versions after 9.0.2

continue to be created. (See “Pangu Releases a Jailbreak for iOS 9.1,” 9To5Mac, Mar.

11, 2016, http://9to5mac.com/2016/03/11/pangu-ios-9-1-jailbreak-released/.)

31. Paragraphs 30 through 35 of the Perino Declaration discuss the role that

the Unique ID (“UID”) plays in the data protection process. Mr. Perino calls the UID

“unknowable” and because of this concludes that any encrypted data on the subject

device must be decrypted on the subject device itself (as opposed to being extracted in

encrypted form and decrypted elsewhere). I would not characterize the UID as

“unknowable.” While it is designed not to be known, it is certainly not impossible for

someone to determine the UID.

32. Paragraphs 37 through 39 of the Perino Declaration discuss the potential

for the government to have obtained more recent data from the subject device through

an iCloud backup had the FBI not instructed the San Bernardino County Public Health

Department (“SBCPHD”) to change the iCloud password associated with the account.

Mr. Perino asserts that even if the device did perform an iCloud backup “the user data

would still be encrypted with the encryption key formed from the 256 bit UID and the

user’s passcode.”

33. The statement that even if the device did perform an iCloud backup “the

user data would still be encrypted with the encryption key formed from the 256 bit

UID and the user’s passcode” is incorrect. Data backed up to iCloud is not encrypted

with a user’s passcode.

34. As noted above, I also reviewed the Supplemental Pluhar Declaration. I

believe that declaration contains several mistakes. For example, in paragraph 10(a),

Agent Pluhar claims that the device’s keyboard cache would not backup to iCloud and

that such keyboard cache “contains a list of keystrokes typed by the user on the

touchscreen.” This is false. The keyboard cache in iOS 9 does not contain a list of

keystrokes typed by the user, or anything similar.

