

# Stage 1: Environmental Conditions Problem Definition

JACKFISH BAY



NORTH SHORE
OF LAKE SUPERIOR
REMEDIAL ACTION PLANS

#### **JACKFISH BAY**



September 12, 1991

To Whom It May Concern:

After two years of studying the present and past conditions of Jackfish Bay and the associated Moberly Bay and Blackbird Creek system, we as a Public Advisory Committee (PAC) feel that we have fully outlined our assessment of the conditions in Jackfish Bay and informed the lead agencies in the RAP program of our concerns.

We feel that the Jackfish Bay Stage One document addresses the impaired uses as summarized in our Water Use Goals and that it is a summation of the accumulated details of the conditions existing in the Jackfish Bay Area Of Concern.

The Jackfish Bay Stage One document gives the PAC a sense of accomplishment and encourages us to continue towards the completion and implementation of Stage Two.

Yours sincerely,

Jon Ferguson

Chair

Jackfish Bay

Public Advisory Committee

Jon Derguson

Remedial Action Plan Plan d'Assainissement

| The same of the contract that |                   |
|-------------------------------|-------------------|
|                               |                   |
|                               |                   |
|                               |                   |
|                               |                   |
|                               |                   |
|                               |                   |
|                               |                   |
|                               |                   |
|                               |                   |
|                               |                   |
|                               |                   |
|                               |                   |
|                               |                   |
|                               |                   |
|                               |                   |
|                               |                   |
|                               |                   |
|                               |                   |
|                               |                   |
|                               |                   |
|                               |                   |
|                               |                   |
|                               |                   |
|                               |                   |
|                               |                   |
|                               |                   |
|                               | 그 말이 한 화가 하다 가 살다 |
|                               |                   |
|                               |                   |
|                               |                   |
|                               |                   |
|                               |                   |
|                               |                   |
|                               |                   |
|                               |                   |
|                               |                   |
|                               |                   |
|                               |                   |
|                               |                   |
|                               |                   |
|                               |                   |
|                               |                   |
|                               |                   |
|                               |                   |
|                               |                   |
|                               |                   |
|                               |                   |
|                               |                   |
|                               |                   |
|                               |                   |
|                               |                   |
|                               |                   |
|                               |                   |
|                               |                   |
|                               |                   |
|                               |                   |
|                               |                   |
|                               |                   |
|                               |                   |
|                               |                   |
|                               |                   |
|                               |                   |

### Jackfish Bay Area of Concern

# **Environmental Conditions**and **Problem Definition**

Remedial Action Plan Stage 1

Jackfish Bay RAP Team

September 1991

Ontario Ministry of the Environment, Environment Canada, Ontario Ministry of Natural Resources Department of Fisheries and Oceans

North Shore of Lake Superior Remedial Action Plans, 435 James Street S., Box 5000, Thunder Bay, Ontario, P7C 5G6

> Remedial Action Plan Plan d'Assainissement

> > Canada Ontario®

ISBN: 0-7729-9034-4

| 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |  |                                         |           |                                                  |                                          |   |         | 5. A. A     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|-----------------------------------------|-----------|--------------------------------------------------|------------------------------------------|---|---------|-------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  | . • · · · · · · · · · · · · · · · · · · |           |                                                  |                                          |   |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |                                         | 4. 1 1 V. |                                                  |                                          |   |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |                                         |           |                                                  |                                          |   |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  | Santa Carlos                            |           |                                                  |                                          |   |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |                                         |           |                                                  |                                          |   |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |                                         |           |                                                  |                                          |   |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |                                         |           |                                                  |                                          |   |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |                                         |           |                                                  |                                          |   |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |                                         |           |                                                  |                                          |   |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |                                         |           |                                                  |                                          |   |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |                                         |           |                                                  |                                          |   |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |                                         |           |                                                  |                                          |   |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |                                         |           |                                                  |                                          |   |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |                                         |           |                                                  |                                          |   |         | era (j. d.) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |                                         |           |                                                  |                                          |   |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |                                         |           |                                                  |                                          |   |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |                                         |           |                                                  |                                          |   |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |                                         |           |                                                  |                                          |   |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |                                         |           |                                                  |                                          | * |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |                                         |           |                                                  | Partie Car                               |   |         |             |
| The state of the s |   |  |                                         |           |                                                  |                                          |   |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |                                         |           |                                                  | er e                                     |   |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |                                         |           |                                                  |                                          |   |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |                                         |           |                                                  |                                          |   |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |                                         |           |                                                  |                                          |   |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |                                         |           |                                                  |                                          |   |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |                                         |           |                                                  |                                          |   |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |                                         |           |                                                  |                                          |   |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |                                         |           |                                                  |                                          |   |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |                                         |           |                                                  |                                          |   |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |                                         |           |                                                  |                                          |   |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |                                         |           |                                                  |                                          |   |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |                                         |           |                                                  |                                          |   |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |                                         |           |                                                  |                                          |   |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |                                         |           |                                                  |                                          |   |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |                                         |           |                                                  |                                          |   |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |                                         |           |                                                  |                                          |   |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |                                         |           |                                                  |                                          |   |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |                                         |           |                                                  |                                          |   |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |                                         |           |                                                  |                                          |   |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |                                         |           |                                                  |                                          |   |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |                                         |           |                                                  |                                          |   |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |                                         |           |                                                  | e provincia (1966).<br>Osnova se esterno |   |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |                                         |           |                                                  |                                          |   |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |                                         |           |                                                  |                                          |   |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |                                         |           |                                                  |                                          |   |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |                                         |           |                                                  |                                          |   |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |                                         |           |                                                  |                                          |   |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |                                         |           |                                                  |                                          |   |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |                                         |           |                                                  |                                          |   |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |                                         |           |                                                  |                                          | • |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |                                         |           | an s                                             |                                          |   |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |                                         |           |                                                  |                                          |   |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |                                         |           |                                                  |                                          |   |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |                                         |           |                                                  |                                          |   |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |                                         |           | $\{a_{n,j}, \dots, a_{n,j}\}_{n \in \mathbb{N}}$ |                                          |   |         | 1.577       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |                                         |           |                                                  |                                          |   |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • |  |                                         |           |                                                  |                                          |   | 1 12 14 |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  | eran 🎢 😁                                |           |                                                  |                                          |   |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |                                         |           |                                                  |                                          |   |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |                                         |           |                                                  |                                          |   |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |                                         |           |                                                  |                                          |   |         |             |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |  |                                         |           |                                                  |                                          |   |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |                                         |           |                                                  |                                          |   |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |                                         |           | and the second                                   |                                          |   |         |             |

#### **FORWARD**

This document provides a summary of the environmental conditions in the Jackfish Bay Area of Concern in Lake Superior, Ontario, Canada, and identifies specific environmental problems. The report contains a technical summary for use in the public consultation process which was initiated in 1988. This report represents the Stage 1 submission of the Jackfish Bay Remedial Action Plan, in accordance with the Canada-U.S. Great Lakes Water Quality Agreement and the Canada-Ontario Agreement respecting Great Lakes Water Quality.

Several impairments to beneficial uses are identified and described in Tables E and 5.1 of this document based on water, sediment and biota surveys which were carried-out primarily between 1969 and 1988. In October of 1989, the Kimberly-Clark Canada Inc. pulp mill, which is the only point source discharger to the Jackfish Bay Area of Concern, added a secondary effluent treatment system. This resulted in significant reductions in BOD<sub>5</sub>, phenolics, and resin and fatty acids. Although some ambient water and biota data as well as effluent data for the period following start-up of secondary treatment are discussed in this Stage 1 document, potential improvements in the ambient environmental quality since 1988 have not been fully assessed.

In order to further assess and update Jackfish Bay environmental quality, the following activities are scheduled for 1990/91:

- an assessment of rehabilitation options for the Blackbird Creek system;
- fish contaminant survey in Jackfish Bay;
- · fish reproduction and mixed-function oxidase activity study,
- sediment sampling and analysis; and
- water quality study.

The results of these investigations will be reported in an update to Stage 1, which will be included upon submission of the Stage 2 document.

It is expected that by April 1992 a description of remedial options for Jackfish Bay will be complete. Selection of preferred options will have been completed by July 1992, after extensive review by the public through openhouses, mailouts, etc. A draft Stage Two document should be available by September 1992.

#### **ACKNOWLEDGEMENTS**

The Stage 1 Report for the Jackfish Bay Remedial Action Plan was prepared by the Jackfish Bay RAP Writing Team:

Jim Murphy Environment Ontario, Co-ordinator, Jackfish Bay RAP

John Kelso Department of Fisheries and Oceans

Ken Flood Environment Ontario

Ken Cullis Ontario Ministry of Natural Resources
Linda Melnyk-Ferguson Ontario Ministry of Natural Resources

Keith Sherman Environment Ontario, Water Resources Branch Ian Smith Environment Ontario, Water Resources Branch

This report was prepared under the guidance of the Provincial-Federal Remedial Action Plan Steering Committee.

Past members of the Jackfish Bay Writing Team, and individuals who contributed to scientific investigations and reporting for this document, are acknowledged as follows:

Cindy Jardine Environment Ontario, Water Resources Branch

Nellie de Geus Environment Canada
Laurie Sarazin Environment Canada
Helmut Pfeiffer RAP Biologist
Ljubica Pelletier RAP Facilitator

Mary Sean Burgham
Ruth Berzel
Ray Boivin
Jim Schmidt
Daryl Cowell
RAP Assistant
RAP Technical Writer
RAP Technical Assistant
Wastewater Technology Centre
Geomatics International Inc.

The RAP Team also acknowledges comments and suggestions received from the Public Advisory Committee during the course of the RAP Stage 1 development. The PAC members and their affiliations are:

Chris Joubert Past Chair, Township of Terrace Bay

Bob Baxter Kimberly-Clark Canada Inc.
Audrey Ferguson Jackfish Lake Cottagers

Jon Ferguson Chair Public
Gerald Landriault Ducks Unlimited

Ryan LeBlanc Save Ontario's Shipwrecks
Jim Bryson Charter Boat Services
Dave Daniels U.P.I.U. Local 665

Bob Langford Public Jack Moore Public Rod Mercure Public

Ron Martel Minnova Mines

Lance Stewart Public

The Writing Team also wishes to acknowledge the large group of scientists, environmental officers and concerned individuals whose contributions and assistance have been invaluable.

# TABLE OF CONTENTS

| FORWARD                                                       |             |
|---------------------------------------------------------------|-------------|
| ACKNOWLEDGEMENTS                                              |             |
| LIST OF TABLES                                                |             |
| LIST OF FIGURES                                               |             |
| EXECUTIVE SUMMARY                                             | xi          |
| 1 INTRODUCTION                                                | xiii        |
| 2 THE RAP PROCESS                                             | xiv         |
| 3 DESCRIPTION OF THE STUDY AREA                               |             |
| 4 LAND USE                                                    | xvii        |
| 5 WATER RESOURCE USE                                          | xvii        |
| 6 ENVIRONMENTAL CONDITIONS                                    | . xviii     |
| 6.1 Water Quality                                             |             |
| 6.2 Bottom Sediment Quality                                   | xix         |
| 6.3 Biota Quality                                             | xxiii       |
| 7 SOURCES                                                     |             |
| 8 ENVIRONMENTAL CONCERNS/USE IMPAIRMENTS                      |             |
| 8.1a Restrictions on Fish Consumption                         |             |
| 8.1b Restrictions on Wildlife Consumption                     | xxix        |
| 8.2 Tainting of Fish and Wildlife Flavour                     |             |
| 8.3a Dynamics of Fish populations                             |             |
| 8.3b Body Burdens of Fish                                     |             |
| 8.3c Dynamics of Wildlife Populations                         |             |
| 8.30 Dynamics of wilding reputations                          | . xxxiii    |
| 8.3d Body Burdens of Wildlife                                 | . xxxiii    |
| 8.4 Fish Tumours or Other Deformities                         | . XXXIII    |
| 8.5 Bird or Animal Deformities or Reproduction Problems       |             |
| 8.6a Dynamics of Benthic Populations                          |             |
| 8.6b Body Burdens of Benthic Organisms                        | . xxxiv     |
| 8.7 Restrictions on Dredging Activities                       | . xxxiv     |
| 8.8 Eutrophication or Undesirable Algae                       |             |
| 8.9 Consumption, Taste and Odour Problems                     |             |
| 8.10 Beach Closings                                           |             |
| 8.11 Degradation of Aesthetics                                |             |
| 8.12 Added Cost to Agriculture or Industry                    |             |
| 8.13 Degradation of Phytoplankton and Zooplankton Populations |             |
| 8.14 Loss of Fish and Wildlife Habitat                        | xxxv        |
|                                                               |             |
| 1.0 INTRODUCTION                                              | 1           |
|                                                               |             |
| 2.0 DESCRIPTION OF THE STUDY AREA                             | 7           |
| 2.1 LOCATION AND EXTENT                                       | 9           |
| 2.2 CLIMATIC CONDITIONS                                       | 9           |
| 2.3 PHYSIOGRAPHY, GEOMORPHOLOGY and GEOLOGY                   | 10          |
| 2.4 SOILS                                                     | 10          |
| 2.5 TERRESTRIAL VEGETATION                                    |             |
| 2.6 LAND USE                                                  |             |
| 2.7 RECREATION                                                |             |
| 2.8 WILDLIFE                                                  |             |
| 2.9 AGRICULTURE                                               |             |
| 2.10 WATER USES                                               |             |
| · /· · · · · · · · · · · · · · · · · ·                        | <del></del> |

|                |                                                            | r<br>T |
|----------------|------------------------------------------------------------|--------|
|                | 어느 그는데 가는 밥사람들을 다음한 손가를 다니다. 뭐느렇다                          |        |
| 2.10 WATE      |                                                            | 12     |
|                | .1 Water Supply                                            |        |
|                | 2 Wastewater Discharges                                    |        |
| 2.10.          | 3 Fish Habitat                                             | 13     |
| 2.10.          | 4 Commercial Fishing                                       | 13     |
|                | 5 Sport Fishing                                            |        |
| 2.10.          | 6 Recreation                                               | 19     |
| 3.0 ENVIRONMEN | TAL CONDITIONS                                             | 21     |
| 3.1 WATER      |                                                            | 23     |
| 3.1.1          | Currents and Plume Characteristics                         | 23     |
|                | Conventional Water Quality Parameters                      | 27     |
|                | 3.1.2.1 Water Colour and Aesthetics                        | 27     |
|                | 3.1.2.2 Turbidity                                          | 31     |
|                | 3.1.2.3 Dissolved Oxygen, BOD <sub>5</sub> and Temperature | 33     |
|                | 3.1.2.4 Major Ions, pH and Alkalinity                      | 36     |
|                | 3.1.2.5 Nutrients                                          | 40     |
|                | 3.1.2.6 Bacteria                                           | 42     |
| 313            | Metals                                                     | 45     |
|                | Organic Contaminants                                       | 47     |
| <b>J.1.</b> J  | 3.1.5.1 Phenolics                                          | 47     |
|                | 3.1.5.2 Resin and Fatty Acids                              | 50     |
|                | 3.1.5.3 Volatile Organohalides                             | 50     |
|                | 3.1.5.4 Other Organic Chemicals                            | 53     |
| 316            | Water Quality Summary                                      | 53     |
|                | ENT QUALITY                                                | 53     |
|                | Physical Description                                       | 58     |
|                | Oil and Grease Contamination                               | 58     |
|                | Nutrients                                                  | 58     |
|                | Metals                                                     | 63     |
| J              | Organics                                                   | 76     |
| J.L.J.         |                                                            |        |
|                |                                                            | 76     |
|                |                                                            | 78     |
|                | 3.2.5.3 Dioxins and Furans                                 | 78     |
| 226            |                                                            | 81     |
|                |                                                            | 81     |
|                |                                                            | 90     |
| 3.3 BIOTA      |                                                            | 90     |
| 3.3.1          |                                                            | 90     |
|                |                                                            | 91     |
|                |                                                            | 91     |
|                |                                                            | 94     |
| 3.3.2          |                                                            | 98     |
|                |                                                            | 98     |
|                |                                                            | 98     |
|                |                                                            | 100    |
|                |                                                            | 01     |
|                |                                                            | 01     |
|                |                                                            | 05     |
|                |                                                            | 06     |
| 342            | 3.4.2 Sediment Quality.                                    |        |

| 4.0 SOURCES                                                                  | 117  |
|------------------------------------------------------------------------------|------|
| 4.1 POINT SOURCES                                                            |      |
| 4.1.1 Mill History and Effluent Treatment Systems                            |      |
| 4.1.2 Effluent Quality                                                       |      |
| 4.1.2.1 Regulated Parameters                                                 | 122  |
| 4.1.2.2 Effluent Characterization Studies                                    | 123  |
| 4.1.2.3 Summary                                                              | 127  |
| 4.2 NONPOINT SOURCES                                                         | 130  |
| 4.2.1 Atmospheric Deposition                                                 | 130  |
| 4.2.2 Contaminated Sediments                                                 |      |
| 4.2.3 Spills                                                                 | 132  |
|                                                                              | 105  |
| 5.0 ENVIRONMENTAL CONCERNS/USE IMPAIRMENT                                    |      |
| 5.1 INTRODUCTION                                                             | 137  |
| 5.2 USE IMPAIRMENTS                                                          |      |
| 5.2.1 Restrictions on Fish and Wildlife Consumption                          |      |
| 5.2.1.1 Restrictions on Fish Consumption                                     |      |
| 5.2.1.2 Restrictions on Wildlife Consumption                                 |      |
| 5.2.2 Tainting of Fish and Wildlife Flavour                                  |      |
| 5.2.3 Degradation of Fish and Wildlife Populations                           |      |
| 5.2.3.1 Dynamics of Fish populations                                         |      |
| 5.2.3.2 Body Burdens of Fish                                                 |      |
| 5.2.3.3 Dynamics of Wildlife Populations                                     | 141  |
| 5.2.3.4 Body Burdens of Wildlife                                             | 142  |
| 5.2.4 Fish Tumours or Other Deformities                                      |      |
| 5.2.5 Bird or Animal Deformities or Reproduction Problems                    |      |
| 5.2.6 Degradation of Benthos                                                 | 142  |
| 5.2.6.1 Dynamics of Benthic Populations                                      |      |
| 5.2.6.2 Body Burdens of Benthic Organisms                                    |      |
| 5.2.7 Restrictions on Dredging Activities                                    |      |
| 5.2.8 Eutrophication or Undesirable Algae                                    | 143  |
| 5.2.9 Restrictions on Drinking Water Consumption or Taste and Odour Problems | 144  |
| 5.2.10 Beach Closings                                                        | 144  |
| 5.2.11 Degradation of Aesthetics                                             | 144  |
| 5.2.12 Added Cost to Agriculture or Industry                                 | 144  |
| 5.2.13 Degradation of Phytoplankton and Zooplankton Populations              |      |
| 5.2.14 Loss of Fish and Wildlife Habitat                                     | 144  |
| 6.0 PUBLIC INVOLVEMENT                                                       | 1.47 |
| 6.1 ACTIVITIES TO DATE                                                       | 147  |
| 6.1 ACTIVITIES TO DATE                                                       | 149  |
| 7.0 REFERENCES                                                               | 151  |
| GLOSSARY, ACRONYMS AND UNITS OF MEASURE                                      |      |
| APPENDIX 3.1 COMPLETE DATA FROM THE 1970, 1981 AND 1987/88 OMOE SURVEYS      |      |
| APPENDIX 6.1 NEWSPAPER ADVERTISEMENTS AND BROCHURE                           |      |
| APPENDIX 6.2 CHRONOLOGICAL DEVELOPMENT OF PUBLIC INVOLVEMENT                 |      |
| APPENDIX 6.3 PAC TERMS OF REFERENCE                                          |      |
| ADDENING A LACKEICH RAY WATED-LISE COALS                                     |      |

# LIST OF TABLES

| Table A    | Contaminant inventory summary in ambient water from the Jackfish Bay Area of Concern (1987/88) with comparisons to the Provincial Water Quality Objectives (PWQO) and the Great Lakes Water Quality Agreement (GLWQA) objectives (Sherman 1991).                                      |                  |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Table B    | Contaminant inventory summary for surficial sediment in the Jackfish Bay Area of Concern (1987/88) with comparison to the open water dredged material disposal guidelines (OWDG) and the Provincial sediments quality guidelines (PSQG)                                               | xx<br>. xxii     |
| Table C    | Frequency of detection and concentrations ( $\mu$ g/g) of contaminants in lake trout, white suckers, introduced mussels ( <i>Ellipio complanata</i> ), opossum shrimp ( <i>Mysis relicta</i> ), and young-of-the-year spottail shiners collected in 1987 to 1988 from                 |                  |
| Table D    | Jackfish Bay.  Average annual effluent loadings of monitored pollutants in Kimberly-Clark Canada Inc. effluent and number of monthly exceedences                                                                                                                                      | . xxiv<br>xxviii |
| Table E    | Summary of impairments to Great Lakes Water Quality Agreement beneficial uses within the Jackfish Bay Area of Concern.                                                                                                                                                                | . xxx            |
| Table 2.1  | Lake Superior Management Zone 18 commercial catch (round weight in kilograms) (OMNR Data Files).                                                                                                                                                                                      | 17               |
| Table 3.1  | Jackfish Bay measured wind speed and direction, Summer 1984 (IEC Beak, 1984).                                                                                                                                                                                                         | 28               |
| Table 3.2  | Dissolved oxygen levels at the fish exposure sites in Jackfish Bay, July 10-14, 1983 and July 26-30, 1990 (Flood 1990).                                                                                                                                                               | 39               |
| Table 3.3  | Bacteriological quality at selected stations in the Jackfish Bay AOC during July and August 1987 (Sherman 1991). See Figure 3.3 for station locations.                                                                                                                                | 45               |
| Table 3.4  | Concentrations (mg/L) of metals in whole water at station 701 in Jackfish Bay, 1981 (Kirby, 1986).                                                                                                                                                                                    | 46               |
| Table 3.5  | Ranges in station means and percent exceedence by station means of PWQO and GLWQA Specific Objectives (for most stringent objective) for metals analyzed in Moberly Bay (MB), Jackfish Bay (JB) and Tunnel Bay (TB) during 1987 and 1988 (Sherman 1991). All values are in $\mu$ g/L. | 48               |
| Table 3.6  | Concentrations ( $\mu$ g/L) of phenolic compounds detected in Moberly Bay (MB), Tunnel Bay (TB) and Jackfish Bay (JB) in 1981 (Kirby, 1986). Station locations are                                                                                                                    |                  |
| Table 3.7  | shown in Figure 3.2).  Oil and grease and nutrient concentrations in bottom sediments of Jackfish Bay in                                                                                                                                                                              | 49               |
| Table 3.8  | 1981 (Kirby 1986). Station locations are shown in Figure 3.14                                                                                                                                                                                                                         | 62               |
| Table 3.9  | Station locations are shown in Figure 3.14.  Mean values ( $\mu$ g/g=ppm) of heavy metals in three deposition basins in Jackfish                                                                                                                                                      | 64               |
| Table 3.10 | Bay surficial sediment, 1987 (Sherman, 1991).  Frequency of detection and maximum concentration of organochlorine compounds in surficial sediments in the three depositional areas of the Jackfish Bay AOC                                                                            | 65               |
| Table 3.11 | during 1987/88 (Sherman 1991).  Frequency of detection and maximum concentrations ( $\mu$ g/g) of resin and fatty acids in surficial sediments in the three depositional areas of the Jackfish Bay AOC                                                                                |                  |
| Table 3.12 | during 1987/88 (Sherman 1991).  Octachlorodibenzo-p-dioxins (8CDD) and tetrachlorodibenzofurans (4CDF) (pg/g d.w.) found in surficial sediment samples from Jackfish Bay and suspended solids from the effluent and Blackbird Creek during 1987/88 (Sherman et al. 1990).             | . 79             |
|            | Station locations are shown in Figure 3.15)                                                                                                                                                                                                                                           | . 80             |

| Table 3.13  | Frequency of detection and maximum concentration (ng/g) of organochlorine compounds in surficial sediments in the three depositional areas of the Jackfish Bay AOC during 1987/88 (Sherman 1991). | . 84    |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Table 3.14  | Frequency of detection and maximum concentration ( $\mu g/g$ ) of polynuclear aromatic hydrocarbons in surficial sediments in the three depositional areas of the Jackfish                        |         |
|             | Bay AOC during 1987/88 (Sherman 1991)                                                                                                                                                             | . 85    |
| Table 3.15  | Concentrations of dioxins and furans (pg/g wet wt.) found in opposum shrimp                                                                                                                       |         |
|             | (Mysis relicta) at the mouth of Moberly Bay and introduced caged mussels and                                                                                                                      |         |
|             | white sucker (in Moberly Bay) from the Jackfish Bay AOC (Sherman et al. 1990)                                                                                                                     | . 97    |
| Table 3.16  | Fish species occurring within the Jackfish Bay AOC.                                                                                                                                               | . 99    |
| Table 3.19a | Concentrations of conventional parameters, nutrients and metals in Kimberly-Clark                                                                                                                 |         |
| 14010 51174 | (Station 20) effluent samples in 1987 and 1988 (Sherman 1991). All units in mg/L                                                                                                                  |         |
|             | unless otherwise noted.                                                                                                                                                                           | 107     |
| Table 3.19b | Concentration of conventional parameters, nutrients and metals in Blackbird Creek                                                                                                                 |         |
|             | (Station 5) water samples in 1987 and 1988 (Sherman 1991)                                                                                                                                         | 108     |
| Table 3.20a | Concentration of organochlorine pesticide levels in Kimberly-Clark (Station 20)                                                                                                                   |         |
|             | effluent samples in 1987 and 1988 (Sherman 1991). Concentrations are in ng/L                                                                                                                      | 110     |
| Table 3.20b | Concentration of organochlorine pesticide levels in Blackbird Creek (Station 5)                                                                                                                   |         |
|             | water samples in 1987 and 1988 (Sherman 1991). All units in ng/L                                                                                                                                  | 111     |
| Table 3.21  | Comparison of resin, aromatic and fatty acid levels in effluent samples and water                                                                                                                 |         |
|             | samples collected from Kimberly-Clark (Station 20) and Blackbird Creek (Station                                                                                                                   |         |
|             | 5) in 1987 and 1988 (Sherman 1991). All units are in $\mu$ g/L                                                                                                                                    | 112     |
| Table 3.22a | Concentrations of polychlorinated phenols in effluent samples in Kimberly-Clark                                                                                                                   |         |
| 7           | (Station 20) in 1987 and 1988 (Sherman 1991). All units are in ng/L                                                                                                                               | 113     |
| Table 3.22b | Concentrations of polychlorinated phenols in Blackbird Creek (Station 5) water                                                                                                                    |         |
|             | samples collected in 1987 and 1988 (Sherman 1991). All units are in ng/L                                                                                                                          | 113     |
| Table 3.23a | Bacterial densities in effluent samples in Kimberly-Clark (Station 20) in 1987 and                                                                                                                |         |
|             | 1988 (Sherman 1991). All units are count per 100 mL                                                                                                                                               | 114     |
| Table 3.23b | Bacterial Densities in Blackbird Creek (Station 5) water samples in 1987 and 1988                                                                                                                 |         |
|             | (Sherman 1991). All units are count per 100 mL                                                                                                                                                    | 114     |
| Table 4.1   | Chronological development and abatement history of the Kimberly-Clark Canada                                                                                                                      |         |
|             | Inc. pulp mill, Terrace Bay, Ontario.                                                                                                                                                             | 121     |
| Table 4.2   | Average annual effluent loadings of monitored pollutants in Kimberly-Clark Canada                                                                                                                 |         |
|             | Inc. effluent and number of monthly exceedences (in brackets for 1986 to 1989                                                                                                                     |         |
|             | only)*. All loadings in kg/day unless otherwise noted                                                                                                                                             | 122     |
| Table 4.3   | Loadings of effluent at Station 20 in Jackfish Bay 1987/88. All loadings are in                                                                                                                   | 1.      |
|             | kg/d                                                                                                                                                                                              | 124     |
| Table 4.4   | Summary of priority pollutants from the pulp and paper mills located on the north                                                                                                                 |         |
|             | shore of Lake Superior. Results are shown as mean values taken from January 1 to                                                                                                                  |         |
|             | June 30, 1990 as part of the Municipal-Industrial Strategy for Abatement (MISA)                                                                                                                   |         |
|             | for process effluent monitoring of the pulp and paper sector.                                                                                                                                     | 125     |
| Table 4.5   | Mean and range of concentrations for dioxins and furans in final process effluents                                                                                                                |         |
|             | from ten pulp and paper mills in northwestern Ontario. Data was collected from                                                                                                                    | e Maria |
|             | January 1 to June 30, 1990 as part of the MISA monitoring program (OMOE 1991c                                                                                                                     |         |
|             | and Smith, OMOE unpublished data)                                                                                                                                                                 | 126     |
| Table 4.6   | Ranges and means of priority pollutants detected in process effluent at Kimberly-                                                                                                                 |         |
|             | Clark Canada Inc., Terrace Bay (OMOE 1991c).                                                                                                                                                      | 128     |
| Table 4.7   | Chemical analysis of final effluent, 1990/91 (Beak Consultants 1991)                                                                                                                              | 129     |
| Table 4.8   | PCB and lead loadings to the Great Lakes and the percentage of total loadings                                                                                                                     |         |
|             | attributed to atmospheric pathways (Strachan and Eisenreich 1988)                                                                                                                                 | 130     |
|             |                                                                                                                                                                                                   |         |

| Table 4.9 | Spills and effluent bypasses at the Kimberly-Clark Canada Inc. mill during 1989, | ġ |
|-----------|----------------------------------------------------------------------------------|---|
|           | 1990 and 1991 (OMOE data files)                                                  | 3 |
| Table 5.1 | Summary of impairments to Great Lakes Water Quality Agreement beneficial uses    |   |
|           | within the Jackfish Bay Area of Concern                                          | 8 |

# LIST OF FIGURES

| Figure 1    | Location map of the Jackfish Bay Area of Concern.                                      | XV    |
|-------------|----------------------------------------------------------------------------------------|-------|
| Figure 1.1  | The Jackfish Bay AOC and vicinity (Sherman 1991)                                       | . 4   |
| Figure 2.1  | Water depth (metres) in Jackfish Bay (based on sonar survey of McQuest Marine          |       |
|             | Research Ltd., conducted October 19-30, 1987) (Sherman 1991)                           | 14    |
| Figure 2.2  | Spawning grounds for lake trout (Salvelinus namaycush) at Jackfish Bay                 |       |
|             | (Goodier 1981)                                                                         | 15    |
| Figure 2.3  | Spawning grounds of lake whitefish (Coregonus clupea formis) Michipicoten Island to    |       |
|             | Schreiber (Goodier 1982).                                                              | 16    |
| Figure 2.4  | Lake Superior commercial fishing management zones (OMOE Data Files)                    | 18    |
| Figure 3.1  | Locations of water sampling stations in Jackfish and Moberly Bays during the           |       |
|             | August 1970 water quality survey (OMOE 1972)                                           | 24    |
| Figure 3.2  | Locations of water sampling stations in Jackfish Bay - 1981 (Kirby                     |       |
|             | 1986)                                                                                  | 25    |
| Figure 3.3  | Locations of water sampling stations in Jackfish Bay for the 1987/1988 surveys         | ٠.    |
|             | (Sherman 1991)                                                                         | 26    |
| Figure 3.4  | Dilution of the effluent plume from Blackbird Creek based on the rate of reduction     |       |
|             | of conductivity measured in the plume in July 1987 and 1988 (unitless values)          |       |
|             | (Sherman 1991)                                                                         | . 30  |
| Figure 3.5  | Colour values (HCU) for 1988 (Sherman 1991)                                            | 32    |
| Figure 3.6  | Suspended solids concentrations (mg/L) for 1987 and 1988 (Sherman 1991)                | 34    |
| Figure 3.7  | BOD <sub>5</sub> concentrations (mg/L) for 1987 and 1988 (Sherman 1991)                | 35    |
| Figure 3.8  | Vertical profiles for Oxygen levels (mg/L) at stations located in Moberly Bay (701),   |       |
|             | Jackfish Bay (716), and Tunnel Bay (713) (Sherman 1991)                                | 37    |
| Figure 3.9  | Vertical profiles for water temperature (C) at stations located in Moberly Bay         |       |
|             | (701), Jackfish Bay (716), and Tunnel Bay (713) (Sherman 1991)                         | 38    |
| Figure 3.10 | Phosphorus concentrations (µg/L) for 1987 and 1988 (Sherman 1991)                      | . 41  |
| Figure 3.11 | Total coliform densities for individual surveys in 1987 and 1988 (Sherman 1991)        | . 44  |
| Figure 3.12 | Concentration of dehydroabietic acid (µg/L) for individual surveys in 1987 and 1988    |       |
|             | (Sherman 1991)                                                                         | 51    |
| Figure 3.13 | Chloroform concentrations (µg/L) for individual surveys in 1987 and 1988               |       |
|             | (Sherman 1991)                                                                         | 52    |
| Figure 3.14 | Sampling station locations for the 1981 water and sediment survey (Kirby 1986)         | 54    |
| Figure 3.15 | Sediment sampling stations for the 1987 sediment survey (Sherman 1991)                 | 55    |
| Figure 3.16 | Lake bottom lithology of Jackfish Bay as determined by sonar survey October 19-        | ٠.    |
|             | 30, 1987 (Sherman 1991)                                                                | 57    |
| Figure 3.17 | Eh values for Jackfish Bay bottom sediment interstitial waters, 1987 (Sherman          |       |
|             | 1991). Station locations are shown in Figure 3.15. Negative values indicate            | -,    |
|             | reducing conditions and positive values indicate oxidizing conditions                  | 59    |
| Figure 3.18 | Station mean concentrations of oil and grease (solvent extractables) in effluent       |       |
|             | (suspended solids) and in the three depositional basins (surficial sediment) for the   |       |
|             | Jackfish Bay AOC during 1987/88 (Sherman 1991). Station locations shown in             |       |
|             | Figure 3.15                                                                            | 60    |
| Figure 3.19 | Station mean concentrations of total organic carbon (TOC) in effluent (suspended       | • • • |
|             | solids) and in the three depositional basins (surficial sediment) for the Jackfish Bay | <br>W |
|             | AOC during 1987/88 (Sherman 1991). Station locations shown in Figure 3.15              | 61    |
| Figure 3.20 | Station mean concentrations of arsenic in effluent (suspended solids) and in the       |       |
|             | three depositional basins (surficial sediment) for the Jackfish Bay AOC during         |       |
|             | 1987/88 (Sherman 1991). Station locations shown in Figure 3.15                         | 66    |

| Figure 3.21    | Station mean concentrations of cadmium in effluent (suspended solids) and in the three depositional basins (surficial sediment) for the Jackfish Bay AOC during |            |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Figure 3.22    | 1987/88 (Sherman 1991). Station locations shown in Figure 3.15 Station mean concentrations of chromium in effluent (suspended solids) and in the                | . 67       |
|                | three depositional basins (surficial sediment) for the Jackfish Bay AOC during                                                                                  | <b>6</b> 0 |
| Figure 3.23    | 1987/88 (Sherman 1991). Station locations shown in Figure 3.15.                                                                                                 | . 68       |
| rigure 3.23    | Station mean concentrations of copper in effluent (suspended solids) and in the three depositional basins (surficial sediment) for the Jackfish Bay AOC during  | 1.0        |
|                | 1987/88 (Sherman 1991). Station locations shown in Figure 3.15                                                                                                  | . 69       |
| Figure 3.24    | Station mean concentrations of iron in effluent (suspended solids) and in the three                                                                             | . 03       |
| rigule 3.24    | depositional basins (surficial sediment) for the Jackfish Bay AOC during 1987/88                                                                                |            |
|                | (Sherman 1991). Station locations shown in Figure 3.15.                                                                                                         | . 70       |
| Figure 3.25    | Station mean concentrations of lead in effluent (suspended solids) and in the three                                                                             | . /0       |
| Figure 3.23    |                                                                                                                                                                 |            |
|                | depositional basins (surficial sediment) for the Jackfish Bay AOC during 1987/88                                                                                | 71         |
| Firms 2.26     | (Sherman 1991). Station locations shown in Figure 3.15                                                                                                          | . 71       |
| Figure 3.26    | Station mean concentrations of manganese in effluent (suspended solids) and in the                                                                              |            |
|                | three depositional basins (surficial sediment) for the Jackfish Bay AOC during                                                                                  | 77         |
| E: 2 27        | 1987/88 (Sherman 1991). Station locations shown in Figure 3.15                                                                                                  | . 72       |
| Figure 3.27    | Station mean concentrations of mercury in effluent (suspended solids) and in the                                                                                |            |
|                | three depositional basins (surficial sediment) for the Jackfish Bay AOC during                                                                                  | 70         |
| <b>-</b> 000   | 1987/88 (Sherman 1991). Station locations shown in Figure 3.15                                                                                                  | . 73       |
| Figure 3.28    | Station mean concentrations of nickel in effluent (suspended solids) and in the                                                                                 | 400        |
|                | three depositional basins (surficial sediment) for the Jackfish Bay AOC during                                                                                  |            |
|                | 1987/88 (Sherman 1991). Station locations shown in Figure 3.15                                                                                                  | . 74       |
| Figure 3.29    | Station mean concentrations of zinc in effluent (suspended solids) and in the three                                                                             |            |
|                | depositional basins (surficial sediment) for the Jackfish Bay AOC during 1987/88                                                                                | 4          |
|                | (Sherman 1991). Station locations shown in Figure 3.15                                                                                                          | 75         |
| Figure 3.30    | Sediment core profile of dioxin and furan congeners at Station 704 in Moberly Bay                                                                               |            |
|                | collected during 1988 (Sherman 1991). Station location shown in Figure 3.15                                                                                     | 82         |
| Figure 3.31    | Station mean concentrations of total PCBs (ng/g) in effluent (suspended solids) and                                                                             |            |
|                | in the three depositional basins (surficial sediment) for the Jackfish Bay AOC                                                                                  |            |
|                | during 1987/88 (Sherman 1991). Station locations shown in Figure 3.15. Detection                                                                                |            |
|                | limit is 20 ng/g                                                                                                                                                | 83         |
| Figure 3.32    | Concentration pattern of tetrachlorodibenzofurans (4CDF) and octachlorodibenzo-                                                                                 |            |
|                | p-dioxins (8CDD) in a sediment core collected in 1988 at Station 704 in Moberly                                                                                 |            |
|                | Bay (Sherman et al. 1990). Station location is shown in Figure 3.15                                                                                             | 87         |
| Figure 3.33    | Concentrations of mercury, lead, zinc and cadmium in a sediment core collected in                                                                               |            |
|                | 1988 at Station 704 in Moberly Bay (Sherman 1991). Station location is shown in                                                                                 | 7          |
|                | Figure 3.15                                                                                                                                                     | 88         |
| Figure 3.34    | Concentrations of manganese, copper, fibre (loss on ignition) and total organic                                                                                 |            |
|                | carbon in a sediment core collected in 1988 at Station 704 in Moberly Bay                                                                                       |            |
|                | (Sherman 1991). Station location is shown in Figure 3.15                                                                                                        | 89         |
| Figure 3.35    | Distribution of Pontoporeia hoy in the Jackfish Bay AOC in 1987 (Beak                                                                                           |            |
|                | Consultants 1988)                                                                                                                                               | 92         |
| Figure 3.36    | Density zones of tubificids in the Jackfish Bay AOC during 1987 (Beak Consultants                                                                               |            |
|                | 1988)                                                                                                                                                           | 93         |
| Figure 3.37    | Benthic community clusters during 1969 (Beak Consultants 1988)                                                                                                  | 95         |
| Figure 3.38    | Benthic community clusters during 1987 (Beak Consultants 1988)                                                                                                  |            |
| . <del>.</del> |                                                                                                                                                                 |            |

**EXECUTIVE SUMMARY** 



#### **EXECUTIVE SUMMARY**

#### 1 INTRODUCTION

Jackfish Bay was identified in 1985 by the International Joint Commission (IJC) as one of 42 Areas of Concern (AOC) in the Great Lakes Basin. There are currently 43 AOC. Areas of Concern were identified based on known impairments of beneficial uses. Jackfish Bay was originally listed as an AOC based on problems related to conventional pollutants, heavy metals, toxic organics, contaminated sediments, fish consumption advisories and impacted biota due to industrial point sources (pulp mill) and in-place pollutants (contaminated sediments).

Jackfish Bay is one of four Areas of Concern on the Canadian shore of Lake Superior. The other three AOCs are Peninsula Harbour, Nipigon Bay and Thunder Bay and have been grouped together as the "North Shore of Lake Superior Remedial Action Plans" even though each is being developed separately.

The first step in the Remedial Action Plan (RAP) process was the formation of a RAP team, comprised of representatives from the Ontario Ministry of the Environment, Environment Canada, Ontario Ministry of Natural Resources and the Department of Fisheries and Oceans. The RAP team has been charged with the development of a Remedial Action Plan for Jackfish Bay which is a staged process. This document is the first of three stages. Stage I is being prepared in order to define the problem, addressing the following requirements:

- detail existing environmental conditions in order that environmental problems in Jackfish Bay may be defined and described;
- identify beneficial uses that are impaired, the degree of impairment and the geographical extent of impairment within the Area of Concern; and
- define the causes of impairment, providing an assessment of all known sources of pollutants and a description of other potential sources.

In addition to the technical document to address the above, an extensive public participation program has been developed in order to inform the public, improve the plan by gaining information and advice from the public, gain support for plan implementation, and provide a mechanism for accountability to the public.

A number of initiatives were undertaken to raise the profile of the RAP process among the general public through outreach activities. A public consultation program resulted in the formation of a Public Advisory Committee (PAC) consisting of 13 members. Representation from the community includes the Township of Terrace Bay, Kimberly-Clark Canada Inc., community and environmental groups, labour and the general public. The purpose of the PAC is as follows:

- act as a focal point for public consultation and allow effective dissemination of information on the RAP process and environmental concerns;
- provide an additional level of review for RAP documents and remedial options;
- provide an efficient and effective means of ensuring stakeholder input as the RAP is being developed; and

provide a basis for broad community support for RAP implementation.

The ultimate goal of the public consultation program is to ensure that each RAP addresses local environmental concerns and reflects future water use goals for the community.

#### 2 THE RAP PROCESS

The mechanisms for the development of the Remedial Action Plan for Jackfish Bay have been established through the development of the Great Lakes Water Quality Agreement (GLWQA). This agreement, first signed by Canadian and U.S. governments in 1972, was revised in 1978 and subsequently amended in 1987. The amending protocol in 1987 included an annex which required Canadian and U.S. governments to develop and implement remedial action plans for each of the Great Lakes Areas of Concern. As outlined in the 1987 GLWQA, an Area of Concern is defined as "a geographic area that fails to meet the General or Specific Objectives of the Agreement where such failure has caused or is likely to cause impairment of beneficial use or the area's ability to support aquatic life". Fourteen use impairments are specified in the GLWQA:

| <b>i.</b> | Restrictions on fish and wildlife consumption;           |
|-----------|----------------------------------------------------------|
| ii.       | Tainting of fish and wildlife flavour;                   |
| iii.      | Degradation of fish and wildlife populations;            |
| iv.       | Fish tumours or other deformities;                       |
| <b>v.</b> | Bird or animal deformities or reproductive problems;     |
| vi.       | Degradation of benthos;                                  |
| vii.      | Restrictions on dredging activities;                     |
| viii.     | Eutrophication or undesirable algae;                     |
| ix.       | Restrictions on drinking water consumption, or taste and |
|           | odour problems;                                          |
| <b>x.</b> | Beach closings;                                          |
| xi.       | Degradation of aesthetics;                               |
| xii.      | Added cost to agriculture or industry;                   |
| xiii.     | Degradation of phytoplankton and zooplankton             |
|           | populations; and                                         |
| xiv.      | Loss of fish and wildlife habitat.                       |

The impairment of any one of these beneficial uses could be sufficient to list an area as an Area of Concern. Using this list as a basis, the IJC has solicited input in the development and refinement of Listing/Delisting Criteria for Great Lakes AOC. In some cases, even with specific criteria outlined, it is difficult to definitively establish whether a beneficial use is impaired. As a consequence, the RAP Team has been required to exercise prudence and extensive consultation with both technical experts within and outside the RAP Team, as well as with the PAC. The Jackfish Bay Remedial Action Plan has used available environmental quality data to compare with the IJC Listing Criteria, in order to determine the impairment status of beneficial uses in Blackbird Creek, Moberly Bay, Jackfish Bay and Tunnel Bay. In addition, violations of existing water quality criteria or effluent requirements have been highlighted even though a direct relationship with an impairment of beneficial uses may not be demonstrated. The public (both individuals and organizations) and various levels and types of government agencies were included throughout the Stage 1 RAP development process in an attempt to reach consensus on the problems in Jackfish Bay.

Annex 2 of the 1987 protocol amending the GLWQA specifies that the RAP should be submitted to the IJC for review and comment at 3 stages. This document represents a completed Stage 1 outlining the definition and description of environmental problems, causes of these use impairments, a description of all known sources of pollutants involved, and an evaluation of other possible sources.

Stage 2 will define the specific goals for the Area of Concern and will describe the remedial and regulatory measures selected to restore beneficial water uses. The Stage 2 RAP will include:

- 1. an evaluation of remedial measures in place;
- an evaluation of alternative additional measures to restore beneficial uses and associated costs:
- 3. selection of additional remedial measures required to restore beneficial uses and a schedule for their implementation; and
- 4. an identification of the persons, agencies, or organizations responsible for implementation of the selected remedial measures.

Stage 3 of the Jackfish Bay RAP will be submitted when monitoring indicates that identified beneficial uses are restored. This stage of the RAP will include:

- 1. a process for evaluating the remedial measures implementation and effectiveness; and
- a description of surveillance and monitoring programs designed to track the effectiveness of remedial measures, and the eventual confirmation of the restoration of the uses.

#### 3 DESCRIPTION OF THE STUDY AREA

The Jackfish Bay AOC is located on the north shore of Lake Superior, approximately 250 km northeast of Thunder Bay. The AOC consists of the reach of Blackbird Creek between the Kimberly-Clark Canada Inc. pulp mill and Jackfish Bay including Lake 'A' and Moberly Lake as well as Jackfish Bay (Figure 1). The Town of Terrace Bay is the closest community to the Jackfish Bay AOC. It has a population of approximately 2,700 and lies to the west of Jackfish Bay outside of the AOC.

Blackbird Creek carries the wastewater discharge from Kimberly-Clark Canada Inc. The Blackbird Creek watershed drains an area of 62 km<sup>2</sup>. The creek rises near the town of Terrace Bay and flows in a south-easterly direction for 14 km into the northern tip of Moberly Bay. Historically, Blackbird Creek passed through two shallow lakes referred to as Lake 'A' and Moberly Lake. Lake A originally covered a surface area of 19 ha with depths up to 6.1 m. Moberly Lake is 28 ha in size with a maximum depth of 6.4 m. Lake A was bypassed in the early 1980s because wood fibre had substantially filled it in. Moberly Lake was 0.8 m deep (as of 1982) and has also experienced significant in-filling.

Jackfish Bay contains two inner arms, Moberly Bay on the west, into which Blackbird Creek drains, and Tunnel Bay on the east (Figure 1). A man-made tunnel connects Jackfish Lake with Tunnel Bay. Jackfish Lake receives runoff from a small drainage basin which extends to the north of the lake. The total surface area of Jackfish Bay is 6.4 km<sup>2</sup>. The largest islands are Cody Island, which is located in the extreme southwest of Moberly Bay; Bennett Island, located in southeastern Moberly Bay; and St. Patrick Island, which is located near the eastern shore of Jackfish Bay.

Mean daily temperatures in the region are -13.3 °C in January and 15 °C in July. Mean daily maxima and minima are -7.8 °C and -18.9 °C in January and 21.1 °C and 10.0 °C in July. Recorded mean annual rainfall



Figure 1

Location map of the Jackfish Bay Area of Concern

is 787.4 mm with a mean annual snowfall of 243.8 cm. Precipitation is relatively low in winter and high in summer.

The area lies within the Abitibi Upland Unit of the James Physiographic Region. This unit is described as having a broad rolling surface and consisting of crystalline Archean rocks of the Canadian Shield. The bedrock geology of the northern and western shores of Jackfish Bay is dominated by massive crystalline igneous rocks consisting of granodiorite to granite. The southeastern shore of Jackfish Bay consists of mafic to intermediate metavolcanic rocks. Minor metasedimentary rocks (metamorphosed sedimentary strata) also occur within this complex. Glacial deposits consist mostly of a shallow sandy till ground moraine which overlies the lower portions of bedrock outcrops. Localized deposits of sandy glacial outwash and glaciolacustrine deltaic sediments also occur.

The Jackfish Bay AOC lies within the Superior Forest Section of the Boreal Forest Region. Forests of white spruce (*Picea glauca*), balsam fir (*Abies balsamea*), white birch (*Betula papyrifera*) and trembling aspen (*Populus tremuloides*) are found in the valleys. The same species, but with birch more prominent and some black spruce (*Picea mariana*), is found on the thin till slopes and tops of low hills. Jack pine (*Pinus banksiana*), white birch and poor quality black spruce, are characteristic of higher rocky elevations and coarser valley soils. Lowland areas support high quality stands of black spruce along with tamarack (*Larix laricina*) and eastern white cedar (*Thuja occidentalis*).

Wildlife found in the area of Jackfish Bay are species well adapted to the harsh climatic conditions found there. Common species include: moose, deer, timber wolf, fox, lynx, black bear, mink, fisher, martin, muskrat, beaver, porcupine, skunk, snowshoe hare and red squirrel. Shrew, mice and vole populations are also found in the District, as well as a variety of upland game birds and songbirds.

#### 4 LAND USE

There are no industrial, commercial, residential or agricultural land uses within the watershed of the Jackfish Bay AOC. Cottages have been constructed along the east shore of Jackfish Bay at the former town of Jackfish. The Kimberly-Clark Canada Inc. pulp mill lies to the northwest of the Town of Terrace Bay which is located west of Jackfish Bay. There are no industrial or municipal landfills within the AOC. The only landfill is a small site operated by the Ontario Ministry of Natural Resources located near the cottage community of Jackfish. It receives only domestic refuse and is not considered a potential hazard to the AOC.

#### 5 WATER RESOURCE USE

Process water for the pulp mill and domestic water for the Town of Terrace Bay is obtained from a common intake located in open Lake Superior, approximately 10 km west of Jackfish Bay. The combined intake currently approaches 143,850 m<sup>3</sup>/day. Hays Lake, located northwest of the Town of Terrace Bay, provides an alternate water supply.

Process water from the Kimberly-Clark Canada Inc. pulp mill is discharged into Blackbird Creek which flows over a distance of 14 km to Moberly Bay in Jackfish Bay. During 1990 the average effluent flow from the mill was 94,000 m<sup>3</sup>/day. This represents the only point source discharge within the Jackfish Bay AOC.

Municipal wastes from the Township of Terrace Bay are treated in part by a small extended aeration facility and polished through an exfiltration lagoon, and in part by passing through two septic tanks followed by an exfiltration lagoon. Both lagoons lie adjacent to Lake Superior, immediately south of the townsite and removed from Jackfish Bay. Their is no direct discharge from the lagoons.

Water depth in Jackfish Bay generally increases abruptly from the rugged shorelines to depths of 10 to 50 m. Littoral areas are limited in extent, forming extremely narrow bands along the shoreline and, as a result, wetlands are not present in Jackfish Bay. Nearshore fish spawning and nursery habitat is restricted to isolated pockets, primarily located in Tunnel Bay and around Cody and Bennett Islands. Jackfish Lake is connected to the northern tip of Tunnel Bay by a channel approximately 15 m in length. The lake provides spawning and nursery habitat for a number of resident warmwater species in addition to migrants from Jackfish Bay. Jackfish Bay species which spawn in Jackfish Lake or its tributaries include walleye (Sizostedion vitreum), northern pike (Esox lucius), rainbow trout (Oncorhynchus mykiss), pink salmon (O. gorbuscha) and suckers (Catostomus sp.). Major lake trout (Salvelinus namaycush) spawning grounds were historically located in Moberly Bay and along the shore of Lake Superior adjacent to Jackfish Bay. Lake Whitefish (Coregonus clupea formis) spawning grounds occur along Lake Superior's shore immediately east and west of Jackfish Bay. Blackbird Creek was noted as a brook trout (Salvelinus fontinalis) stream prior to the start-up of the mill in 1948.

Commercial fishermen first settled in Jackfish Bay during the 1870s and the commercial fishery industry was well established by the mid 1880s. Jackfish Bay was noted as an excellent port, but, fishing was never extensive in the area as the adjacent shoreline was rugged and storms could be severe. The fishery was characterized as a rowboat fishery with an annual catch of approximately 14,500 kg of lake trout and 6,000 kg of whitefish between 1895 and 1898. Commercial fishing activity peaked during the early 1900s, when approximately 40 families were permanent residents of the former Town of Jackfish (Figure 1). However, since the early 1950s, water pollution, sea lamprey predation, and heavy exploitation depleted fisheries stocks in Lake Superior. Although there is no commercial fishery located within Jackfish Bay, two licensed commercial fishing operations utilize offshore areas in Lake Superior beyond the Slate Islands. The total commercial harvest in 1985 amounted to 5,082 kg which was valued at \$5,727. Lake trout, lake whitefish, chub (Coregonus sp.) and lake herring (Coregonus artedii) are the four prime commercial species.

Sport fishing in Jackfish Bay declined dramatically during the 1950s and has remained depressed under current conditions. Lake trout spawning shoals appear to have been adversely affected by organic material in the discharge from the Kimberly-Clark Canada Inc. mill. Electrofishing surveys found few species and low numbers of fish in Moberly Bay as well as increasing numbers and species diversity with increasing distance from the mill outfall.

The Jackfish Bay AOC is an attractive location for recreational use. However, Lake Superior's inherent cold water conditions, poor aesthetics related to the effluent from Blackbird Creek, and limited access restrict traditional water activities. Water based recreational activities are restricted to scuba diving by local residents. The wreck of the Rappahannock, a 94 m bulk freighter which sank in 1911 in Tunnel Bay, is a popular local dive site.

#### 6 ENVIRONMENTAL CONDITIONS

#### 6.1 Water Quality

Water quality surveys undertaken during 1970, 1981 and 1987/88 indicated a plume of contamination in Jackfish Bay resulting from the discharge of effluent from the Kimberly-Clark pulp mill via Blackbird Creek. Surface waters, situated above the hypolimnion layer, are most affected in terms of higher concentrations and more frequent exceedences of PWQOs and GLWQA Specific Objectives than bottom waters. Although the extent and impact of the plume varies depending on wind and current direction, the most heavily impacted zone includes Blackbird Creek, all of Moberly Bay and the northern and western portions of Jackfish Bay. Nearshore waters of Lake Superior to the west of Jackfish Bay are also affected by the plume as shown by stations located offshore of Cape Victoria and by bacterial surveys. Elevated densities of several bacterial species occurred in densities exceeding PWQOs or IJC recommended levels as far west as Pumphouse Bay

south of the Town of Terrace Bay. Although Tunnel Bay is mostly outside the plume, guideline exceedences (particularly metals and bacteria) occur occasionally due to individual wind events moving the surface plume to the northeast.

Table A provides a summary of ambient water data for the Jackfish Bay AOC. Data ranges are for open water stations in Moberly, Jackfish and Tunnel Bays only. Data for Blackbird Creek are provided separately in Section 3.4. Table A also indicates where exceedences of objectives have occurred based on the most recent water quality surveys which were undertaken during July and August 1987 and July 1988.

These surveys identified concentrations of contaminants resulting in exceedences of PWQOs and/or GLWQA Specific Objectives in Moberly, Jackfish or Tunnel Bays for turbidity (secchi disc), dissolved oxygen, pH, total phosphorus, total coliform bacteria, fecal coliform bacteria, aluminum, beryllium, cadmium, chromium, copper, iron, mercury, nickel, lead, zinc and dehydroabietic acid. The dissolved oxygen objective was also violated during 1990 studies. The IJC recommended guideline for *Pseudomonas aeruginosa* was also exceeded in Moberly and Jackfish Bays. Total phenolics and pentachlorophenol were exceeded during the 1981 surveys in Moberly Bay. Most exceedences occur in the upper half of Moberly Bay, however, exceedences occur regularly for some metals and bacteria in much of Jackfish Bay and occasionally in Tunnel Bay.

The environmental condition of Blackbird Creek has been severely degraded. During low flow conditions, up to 90 percent of the flow in the creek represents effluent from the Kimberly-Clark Canada Inc. pulp mill. Ambient objectives were also exceeded in Blackbird Creek for many of the same parameters as noted for Moberly and Jackfish Bays (Table A) as well as 2,3,4,5-tetrachlorophenol, 2,4,6-trichlorophenol, pentachlorophenol,  $\tau$ -chlordane, endrin, endosulphan I, endosulphan II, heptachlor, o,p-DDT, p,p-DDD, p,p-DDE, p,p-DDT and Escherichia coli.

#### 6.2 Bottom Sediment Quality

The results of geophysical investigations of sediments from the Jackfish AOC during 1987 and 1988 identified the presence of three depositional basins in which fine-grained (mud) sediments dominated. These basins correspond to Moberly, Jackfish and Tunnel Bays. The sediments of Moberly Bay have the highest percentage of organic material and consequently the most reducing conditions. The presence of the organic material is attributed primarily to the mill effluent which enters via Blackbird Creek. The sediments of the three basins are variously contaminated due to a variation in sources and to processes which affect their accumulation and availability.

Table B provides a summary of the most commonly detected contaminants in surficial sediments collected at stations in Moberly, Jackfish and Tunnel Bays. The locations where station means exceeded guidelines are also indicated. Contaminants which exceeded either the Open Water Dredged Material Disposal Guidelines and/or the Lowest Effect Level of the Provincial Sediment Quality Guidelines, based on surveys undertaken during 1987 and 1988 include: oil and grease, total organic carbon, total phosphorus, arsenic, cadmium, chromium, copper, iron, lead, manganese, mercury, nickel, zinc, hexachlorobenzene and total PCBs. TKN measured in 1981 also exceeded guidelines. In addition, high concentrations of certain phenolic compounds, resin and fatty acids, and dioxins and furans, for which no guidelines are available, contaminate sediments within the AOC.

Contaminants which are attributed to the Kimberly-Clark effluent based on their temporal or spatial distribution patterns, either currently or historically, include total organic carbon, TKN, mercury, zinc, total PCBs, hexachlorobenzene, phenolic compounds, resin and fatty acids and tetrachlorodibenzofurans. The most likely sources for the higher chlorinated dibenzo-p-dioxins and furans, and certain metals (cadmium and copper) are diffuse and point sources remote from the AOC and contributed via atmospheric deposition.

Table A Contaminant inventory summary in ambient water from the Jackfish Bay Area of Concern (1987/88) with comparisons to the Provincial Water Quality Objectives (PWQO) and the Great Lakes Water Quality Agreement (GLWQA) objectives (Sherman 1991).

| Parameter               | Objective/Gui              | deline | Detection Limit (DL) | R                                  | Location         |                   |
|-------------------------|----------------------------|--------|----------------------|------------------------------------|------------------|-------------------|
|                         | PWQO                       | GLWQA  | (DL)                 | /# > DL<br>/# Samples <sup>†</sup> | Range of Values* | Exceedence        |
| Physical Parameters:    |                            |        |                      |                                    |                  |                   |
| Tubidity (FTU)          | <10% secchi depth decrease | _      |                      | 452/452                            | 0.20 - 460.0     | MB                |
| рН                      | 6.5 - 8.5                  | -      |                      | 452/452                            | 5.40 - 8.00      | MB                |
| Total Alkalinity (mg/L) | 25% change                 | =      |                      | 452/452                            | 4.0 - 220.0      | -                 |
| Nutrients and Metals (  | mg/L):                     |        |                      |                                    |                  |                   |
| Total Phosphorus (µg/L) | 20                         | =      | 2                    | 432/454                            | 1 - 770          | MB JB BC          |
| Aluminum                | 0.075                      | -      | <0.003 - <0.1        | 195/297                            | <0.003 - 2.10    | MB JB BC          |
| Arsenic                 | 0.1                        | 50     | <0.001               | 28/314                             | <0.001 - 0.018   | <b>↓</b>          |
| Beryllium               | 0.010                      | -      | <0.0005 - <0.05      | 1/309                              | <0.001 - 0.05    | MB                |
| Cadmium                 | 0.0002                     | 0.0002 | <0.0002 - <0.015     | 21/309                             | <0.0002 - 0.040  | мв јв             |
| Chromium                | 0.10                       | 0.050  | <0.005 - <0.10       | 120/309                            | <0.001 - 0.13    | MB                |
| Copper                  | 0.005                      | 0.005  | <0.0005 - <0.10      | 111/309                            | <0.001 - 0.41    | MB JB TB          |
| Iron                    | 0.300                      | 0.300  | <0.001 - <0.10       | 174/309                            | <0.001 - 2.60    | MB BC             |
| Lead                    | 0.020                      | 0.020  | <0.005 - <0.15       | 38/309                             | <0.003 - 0.22    | MB JB TB          |
| Mercury (µg/L)          | 0.2                        | 0.2    | 0.01                 | 94/319                             | <0.01 - 0.07     | MB JB             |
| Manganese               |                            | -      | <0.0005 - <0.01      | 264/309                            | <0.001 - 0.59    | elevated<br>in MB |
| Nickel                  | 0.025                      | 0.025  | <0.001 - <0.10       | 22/309                             | <0.001 - 0.1     | MB                |
| Zinc                    | 0.030                      | 0.030  | <0.0005 - <0.10      | 134/309                            | <0.001 - 0.38    | MB JB BC          |
| Bacteria (cnt/100 mL)   | Geometric Mean:            |        |                      |                                    |                  |                   |
| Total Coliform          | 1000                       | _      | <4 - <10             | 356/377                            | <4 - 4,600,000   | MB JB BC          |
| Escherichia coli        | -                          | 23*    | <3                   | 48/81                              | <3 - 1100        | BC                |
| Pseudomonas aeruginos   |                            | 11     | <1 - <100            | 23/63                              | <1 - 2800        | MB JB BC          |

Table A (Cont'd)

| Parameter                     | Objective/Gui    | deline | Detection Limit | R                                           | Location         |                  |
|-------------------------------|------------------|--------|-----------------|---------------------------------------------|------------------|------------------|
|                               | PWQO             | GLWQA  | (DL)            | <pre># &gt; DL /# Samples<sup>†</sup></pre> | Range of Values* | of<br>Exceedence |
| Polychlorinated Phenols       | (ng/L):          |        |                 |                                             | •                |                  |
| 2,3,4,5-<br>tetrachlorophenol | 1,000            | _      | <1000 - <50000  | 0/161                                       | ND               | ВС               |
| 2,4,6-trichlorophenol         | 18,000           | _      | <1000 - <50000  | 24/161                                      | ND-75,000        | BC               |
| Pentachlorophenol             | 500              | _      | <1000 - <50000  | 0/160                                       | / ND             | BC               |
| Resin and Fatty Acids (       | ıg/L):           |        |                 |                                             |                  |                  |
| Dehydroabietic Acid           | 12.0<br>(pH=7.5) |        | 10              | 1/36                                        | 10 - 30          | MB               |
| Pesticides (ng/L):            |                  |        |                 |                                             |                  |                  |
| τ-Chlordane                   | 60.0             | _      | <2.0 - <20.0    | 2/265                                       | ND-100.0         | BC               |
| Endrin                        | 2.0              | _      | <4.0 - <40.0    | 6/265                                       | ND-30.0          | ВС               |
| Endosulphan II                | 3.0              | _      | <4.0 - <40.0    | 2/265                                       | ND-30.0          | ВС               |
| Heptachlor                    | 1.0              | -      | <1.0 - <10.0    | 1/265                                       | ND-15.0          | BC               |
| OP-DDT                        | 3.0              |        | <5.0 - <50.0    | 2/265                                       | ND-80.0          | ВС               |
| PP-DDD                        | 1.0              | _      | <5.0 - <50.0    | 10/265                                      | ND-80.0          | ВС               |
| PP-DDE                        | 1.0              | -      | <1.0 - <10.0    | 6/265                                       | ND-14.0          | ВС               |
| PP-DDT                        | 1.0              | _      | <5.0 - <50.0    | 4/265                                       | ND-55.0          | BC               |

Minimal Recordable Amount (Detection Limit)
Moberly Bay
Jackfish Bay
Tunnel Bay
Blackbird Creek

MB JB BC

Data Set Range - Ranges provided for open water stations in JB/MB/TB. Blackbird Creek data reported separately in Section 3.4. Number of samples are above the maximum detection limit. IJC Recommended Guideline

Table B Contaminant inventory summary for surficial sediment in the Jackfish Bay Area of Concern (1987/88) with comparison to the open water dredged material disposal guidelines (OWDG) and the Provincial sediment quality guidelines (PSQG).

| _                                     | OWDG     | PSQG   | (μg/g)  | Detection                |                                 | Rap Data     |                             |
|---------------------------------------|----------|--------|---------|--------------------------|---------------------------------|--------------|-----------------------------|
| Parameter                             | (μg/g)   | LEL    | SEL     | Limit (DL)<br>(µg/g dry) | <pre># &gt; DL /# samples</pre> | Range (μg/g) | Location of<br>Exceedences* |
| Metals:                               |          |        |         |                          |                                 |              |                             |
| Mercury                               | 0.30     | 0.2    | 2       | 0.01                     | 96/102                          | 0.01-9.1     | MB                          |
| Aluminum                              | -        | _      | _       | TBP                      | 102/102                         | 4,300-18,000 | _                           |
| Cadmium                               | 1.0      | 0.6    | 10      | 0.1                      | 102/102                         | 0.2-2.1      | MB JB TB                    |
| Arsenic                               | 8        | 6      | 33      | TBP                      | 102/102                         | 0.55-14.0    | TB                          |
| Chromium                              | 25       | 26     | 110     | 1.0                      | 102/102                         | 2.0-81.0     | MB JB TB                    |
| Copper                                | 25       | 16     | 110     | 1.0                      | 102/102                         | 4.3-68       | MB JB TB                    |
| Iron                                  | 10,000   | 20,000 | 40,000  | 1.0                      | 102/102                         | 7,900-31,000 | MB JB TB                    |
| Manganese                             | <u>-</u> | 460    | 1,100   | ТВР                      | 102/102                         | 29-260       | TB                          |
| Nickel                                | 25       | 16     | 75      | TBP                      | 102/102                         | 7.0-31.0     | MB JB TB                    |
| Lead                                  | 50       | 31     | 250     | 2.0                      | 102/102                         | 2.9-50.0     | TB                          |
| Zinc                                  | 100      | 120    | 820     | TBP                      | 102/102                         | 29-260       | MB                          |
| Nutrients and Organics                |          |        |         |                          |                                 |              |                             |
| Total Phosphorus                      | 1,000    |        | •       | TBP                      | 102/102                         | 300-1,580    | MB                          |
| Total Kjeldahl<br>Nitrogen            | 2,000    | 550    | 4,800   | TBP                      | TBP                             | 200-7,000    | MB JB <sup>†</sup> TB ML    |
| Pheno1                                | _        | _      | _       | 0.01-0.05                | 16/93                           | ND-0.30      | -                           |
| Solvent Extractables (Oil and Grease) | 1,500    | _      | -       | TBP                      | 97/97                           | 21-58,300    | MB JB TB                    |
| TOC                                   | -        | 10,000 | 100,000 | TBP                      | 102/102                         | 5,000-25,000 | MB JB TB                    |
| Chlorinated Organics:                 |          |        |         |                          |                                 |              |                             |
| Total PCBs                            | 0.05     | 0.07   |         | 0.02                     | 4/97                            | ND-0.28      | MB                          |
| Hexachlorobenzene                     | -        | 0.01   |         | .001                     | 43/100                          | ND-0.040     | MB                          |
| Resin and Fatty Acids:                | }        |        |         |                          |                                 |              |                             |
| Dehydroabietic Acid                   | - ,,,    |        | -       | 0.005                    | 53/77                           | ND-4.305     | elevated<br>MB TB           |

Note Where values were recorded as being "less than" the minimum amount measurable, half the "less than" value was used for calculation of the mean.

<sup>\*</sup> Exceedences based on mean concentrations at stations in Moberly Bay (MB), Jackfish Bay (JB) and Tunnel Bay (TB) and idividual samples (TKN only) for Moberly Lake (ML).

<sup>† 1981</sup> Data.

Dependant on TOC concentration of sediment.

TPB To Be Provided

Cadmium and copper concentrations may also reflect local geochemical conditions along with chromium, iron, nickel and manganese. The distribution patterns of total phosphorus, arsenic and lead do not clearly identify likely sources.

The presence of PCBs in sediment within Moberly Bay may be due to their former use in electrical equipment at the Kimberley-Clark mill. Detectable concentrations of organochlorine pesticides were found only in Moberly Bay sediments. PAHs were distributed throughout the study area which likely indicates atmospheric sources to the AOC.

Although the data are not sufficient to identify statistically significant trends over time, a comparison of data collected in 1981 with data collected in 1987/88 and the historical record identified in sediment cores from Moberly Bay suggest certain trends. Generally, concentrations of oil and grease, total phosphorus, and manganese appear to be fairly constant over time. Total organic carbon, cadmium, copper and zinc appear to be increasing in concentration whereas mercury and total PCBs are decreasing.

#### 6.3 Biota Quality

The biota within the Jackfish Bay AOC, including benthic macroinvertebrates and sport fish, have been impacted as a result of the mill effluent discharged through Blackbird Creek. Densities of benthic macroinvertebrates tend to be lowest along the western portion of Moberly and Jackfish Bays due to the influence of the effluent plume from Blackbird Creek. Between 1969 and 1987, maximum densities of pollution tolerant organisms (tubificids) increased by more than six times while densities of pollution intolerant organisms (Pontoporeia hoyi) decreased dramatically. During this period the extent of tubificids also increased in concert with a decrease in the extent of P. hoyi. Whereas in 1969 only the central portion of Moberly Bay and the northwestern portions of Jackfish Bay were affected, by 1987 the density of P. hoyi had decreased in Tunnel Bay as well as the eastern and central portions of Jackfish Bay.

The extent of benthic communities identified as impaired also increased between 1969 and 1975. Between 1975 and 1987 the extent increased further and an additional impaired community was identified. Impaired communities were found to occur in sediments which had the highest mean concentrations of cadmium, copper, lead, zinc and TKN as well as high levels of fibre (loss on ignition). The impact to benthic macroinvertebrates in the Jackfish Bay AOC have been attributed to the Kimberly-Clark mill effluent.

Changes to the structure of the fish community have been mostly related to causes such as harvesting, the sea lamprey and the introduction of exotic species. However, recent studies of lake whitefish, longnose sucker and white sucker from Jackfish Bay have revealed several effects which researchers have attributed to the mill effluent. These include slower growth, smaller gonads, lower fecundity with age, absence of secondary sex characteristics in males, failure of females to show increase in egg size with age, decreased estradiol and testosterone levels and increased mixed oxidase function activities in comparison to noncontaminated reference fish. The increased MFO activity can be attributed to the presence of organic contaminants and has been associated with dioxins, furans and resin acids present in the mill effluent. The addition of secondary treatment in October 1989 reduced the toxicity of the effluent, but, has not resulted in a reduction of MFO activity in white suckers from Jackfish Bay.

Table C summarizes the contaminant data for fish and other biota in the Jackfish Bay AOC based on collections from 1987 to 1989. The body burdens of native benthos (Mysis relicta), introduced mussels (Ellipio complanata) and white suckers from Jackfish Bay indicate a pattern of dioxin and furan bioaccumulation which suggests the mill effluent as the major source. This includes the bioaccumulation of tetrachlorodibenzo-p-dioxins (including the highly toxic 2,3,7,8-TCDD congener) and tetrachlorodibenzofurans, contributed mostly by the effluent, in greater concentrations than the higher chlorinated dioxins, contributed by effluent and atmospheric deposition. The higher chlorinated compounds

Table C Frequency of detection and concentrations ( $\mu_g/g$ ) of contaminants in lake trout, white suckers, introduced mussels (*Elliptio complanata*), opossum shrimp (*Mysis relicta*), and young-of-the-year spottail shiners collected in 1987 to 1988 from Jackfish Bay.

| Parameter           | Great Lakes Water<br>Quality Agreement<br>Specific Objective | National Health<br>& Welfare<br>Regulatory Limit | Detection<br>Limit (DL) | # > DL<br>/# Samples | Range               |
|---------------------|--------------------------------------------------------------|--------------------------------------------------|-------------------------|----------------------|---------------------|
|                     |                                                              | Lake Trout (198                                  | 9)*                     |                      |                     |
| Mercury#            | 0.51                                                         | 0.5                                              | 0.01                    | 20/20                | 0.6-0.38            |
| Total PCBs          | 0.1*                                                         | 2.0                                              | 0.02                    | 20/20                | 0.04-0.44           |
| Mirex               | Substantially<br>absent                                      | 0.1                                              | 0.005                   | 0/20                 | ND                  |
| Hexachlorobenzene   |                                                              | 0.1                                              | 0.001                   | 16/20                | ND-0.004            |
| pp-DDE              |                                                              |                                                  | 0.001                   | 19/20                | ND-0.117            |
| α BHC               |                                                              |                                                  | 0.001                   | 18/20                | ND-0.009            |
| <b>ү</b> -ВНС       |                                                              |                                                  | 0.001                   | 8/20                 | ND-0.001            |
| α-chlordane         |                                                              |                                                  | 0.002                   | 20/20                | 0.002-0.017         |
| γ-chlordane         |                                                              | -                                                | 0.002                   | 19/20                | ND-0.007            |
| pp-DDD              |                                                              | <b>-</b>                                         | 0.002                   | 5/20                 | ND-0.001            |
| Toxaphene           | -                                                            | -                                                | 0.2                     | 18/20                | ND-1.47             |
| 2,3,7,8-TCDD        |                                                              | 0.000020                                         | 0.000002                | 5/5                  | 0.0000029-0.0000113 |
| 1,2,3,7,8-5PCDD     |                                                              | <u> </u>                                         |                         | 5/5                  | 0.0000036-0.0000055 |
| 1,2,3,4,7,8-6HCDD   |                                                              |                                                  |                         | 0/5                  | ND                  |
| 1,2,3,6,7,8-6HCDD   |                                                              |                                                  | **                      | 0/5                  | ND                  |
| 1,2,3,7,8,9-6HCDD   |                                                              |                                                  | 0.000002                | 0/5                  | ND                  |
| 1,2,3,4,6,7,8-7HCDD |                                                              |                                                  |                         | 1/5                  | ND-0.0000011        |

Table C (cont'd)

| Parameter           | Great Lakes Water<br>Quality Agreement<br>Specific Objective | National Health<br>& Welfare<br>Regulatory Limit | Detection<br>Limit (DL) | # > DL<br>/# Samples | Range               |
|---------------------|--------------------------------------------------------------|--------------------------------------------------|-------------------------|----------------------|---------------------|
| 80CDD               | -                                                            |                                                  | 11                      | 5/5                  | 0.0000016-0.0000035 |
| 2,3,7,8-TCDF        |                                                              |                                                  | <b>n</b>                | 5/5                  | 0.000020-0.000058   |
| 1,2,3,7,8-5PCDF     | <u>-</u>                                                     | <u>_</u>                                         | •                       | 5/5                  | 0.0000023-0.0000080 |
| 2,3,4,7,8-5PCDF     |                                                              |                                                  | 11                      | 5/5                  | 0.0000015-0.0000036 |
| 1,2,3,4,7,8-6HCDF   | -                                                            |                                                  |                         | 0/5                  | ND                  |
| 1,2,3,6,7,8-6HCDF   |                                                              |                                                  | •                       | 0/5                  | ND                  |
| 1,2,3,7,8,9-6HCDF   |                                                              | _                                                | •                       | 0/5                  | ND                  |
| 2,3,4,6,7,8-6HCDF   | <b>-</b>                                                     | - ·                                              | <b>1</b>                | 0/5                  | ND                  |
| 1,2,3,4,6,7,8-7HCDF | =                                                            | <b>_</b>                                         | •                       | 1/5                  | ND-0.0000022        |
| 1,2,3,4,7,8,9-7HCDF | -                                                            |                                                  | •                       | 0/5                  | ND                  |
| 80CDF               | -                                                            | _ ;                                              |                         | 0/5                  | ND                  |
|                     |                                                              | White Suckers (19                                | 88) <sup>§</sup>        |                      |                     |
| 2,3,7,8-TCDD        | - i                                                          | 0.000020                                         | 0.000002                | 4/4                  | 0.0000027-0.0000120 |
| 2,3,7,8-TCDF        | -                                                            |                                                  | 0.000002                | 4/4                  | 0.0000210-0.0000650 |
|                     | E                                                            | liptio complanata                                | (1988)                  |                      |                     |
| 2,3,7,8-TCDD        |                                                              | 0.000020                                         | 0.000002                | 1/4                  | ND-0.0000016        |
| 2,3,7,8-TCDF        | -                                                            |                                                  | 0.000002                | 4/4                  | 0.0000095-0.0000140 |
|                     |                                                              | Mysis relicta (19                                | 87)                     |                      |                     |
| 2,3,7,8-TCDD        | -                                                            | 0.000020                                         | 0.000002                | 2/2                  | 0.0000080-0.0000090 |
| 2,3,7,8-TCDF        |                                                              |                                                  | 0.000002                | 2/2                  | 0.0000460-0.0000490 |

Table C (cont'd)

| Parameter         | Great Lakes Water<br>Quality Agreement<br>Specific Objective | National Health<br>& Welfare<br>Regulatory Limit | Detection<br>Limit (DL) | # > DL<br>/# Samples | Range |
|-------------------|--------------------------------------------------------------|--------------------------------------------------|-------------------------|----------------------|-------|
|                   | S                                                            | pottail Shiners (1                               | 988)**                  |                      |       |
| Total PCBs        | 0.1                                                          | 2.0                                              | 0.02                    | 0/3                  | ND    |
| DDT               | 1.0‡                                                         | 5.0                                              | 0.002                   | 0/3                  | ND ND |
| Mirex             | substantially                                                | 0.1                                              | 0.005                   | 0/3                  | ND    |
|                   | absent                                                       |                                                  |                         |                      |       |
| chlordane         | <b>.</b>                                                     | -                                                | 0.002                   | 0/3                  | ND    |
| внс               |                                                              |                                                  | 0.001                   | 0/3                  | ND    |
| Hexachlorobenzene |                                                              | 0.1                                              | 0.001                   | 0/3                  | ND    |
| Octachlorostyrene |                                                              |                                                  | 0.001                   | 0/3                  | ND    |

ND not detected.

data courtesy of the OMOE/OMNR Sportfish Consumption Program.

Ontario guideline for protection of human consumers of fish (skinless filet).

protection of birds and animals which consume fish (whole fish).

data from Sherman et al. (1990).

no consumption is recommended if the level for mercury exceeds 1.5 ppm.

\*\* data from Suns et al. (1991).

occur in sediment at concentrations comparable or higher than the tetrachlorodibenzo-p-dioxins and the tetrachlorodibenzofurans, however, the latter appear to be preferentially accumulated by biota.

Although fish consumption advisories were previously in effect due to mercury and PCB concentrations, these restrictions have been removed. The removal is based on collections during 1989 which indicated that all contaminants were below the Ontario consumption guidelines. However, consumption of lake trout greater than 55 cm is tentatively recommended for restricted consumption due to the sum of dioxins and furans expressed as toxic equivalents of 2,3,7,8-tetrachlorodibenzo-p-dioxin. The only guideline exceedence in either sport fish or young-of-the-year spottail shiners collected in 1989 and 1988, respectively, is the GLWQA Specific Objective for the protection of piscivorous wildlife from PCBs. This objective was exceeded by up to four times by the maximum concentration measured in lake trout collected during 1989 (Table C).

#### 7 SOURCES

The sources of chemicals which impact on water, sediment and biota quality within the Jackfish Bay AOC include one point source and several nonpoint sources. The only point source is the effluent from the Kimberly-Clark Canada Inc. pulp mill located in Terrace Bay. There are no other industrial or municipal dischargers to the AOC.

Nonpoint sources include atmospheric, in-place sediment contamination (from natural sources as well as Kimberly-Clark effluent) and spills. Other potential nonpoint sources such as urban and agricultural runoff, groundwater contamination from waste sites or shipping do not occur in the Jackfish Bay AOC.

Table D summarizes loadings data and monthly exceedences of Control Order limits for various years between 1973 and 1990. Kimberly-Clark Canada Inc. is currently meeting its Control Order requirements for BOD<sub>5</sub>, suspended solids, adsorbable organic halides (AOX), total phosphorus and effluent toxicity. The addition of the secondary treatment facility in October 1989 appeared to be particularly efficient with regard to biological oxygen demanding substances, phenolics, and resin and fatty acids. Lower effluent concentrations of resin and fatty acids has reduced the toxicity of the effluent (not acutely lethal in 1990) and resulted in lower concentrations of these acids in surface waters of Moberly Bay (1990 survey). The PWQO for dehydroabietic acid was exceeded in Moberly Bay during 1987/88. However, in 1990, this acid was not detected.

Although significant reductions have been achieved in the loadings of BOD<sub>5</sub> from the Kimberly-Clark effluent, the occurrence of PWQO violations for dissolved oxygen as recently as 1990 (Section 3.1) suggests that further reductions may be required. Alternatively, there may be ongoing contributions of biological oxygen demanding substances, due to historical deposition in the Blackbird Creek System and/or Moberly Bay.

Most of the water, sediment and biota quality data were collected prior to the secondary treatment facility becoming operational and, hence, it is not known if there has been any improvement with regard to ambient guideline exceedences other than dissolved oxygen. Mean effluent concentrations of aluminum, copper and mercury appear to have declined since 1988. However, the mill effluent is likely the main source of most conventional parameters, bacteria, nutrients, metals, organochlorine pesticides and phenolic compounds which have been found to exceed ambient guidelines.

The source of bacteria, particularly *Escherichia coli* and *Pseudomonas aeruginosa*, is of concern especially as these organisms have exceeded recommended health guidelines in Moberly and Jackfish Bays (Section 3.1). They may originate from domestic sewage within the mill.

Table D Average annual effluent loadings of monitored pollutants in Kimberly-Clark Canada Inc. effluent and number of monthly exceedences (in brackets for 1986 to 1989 only)\*. All loadings in kg/day unless otherwise noted.

|                               | 1973    | 1981    | 1986      | 1987       | 1988      | 1989      | 1990 <sup>†</sup> |
|-------------------------------|---------|---------|-----------|------------|-----------|-----------|-------------------|
| Flow (m <sup>3</sup> /d)      | 202,600 | 113,800 | 110,333   | 115,000    | 117,100   | 109,344   | 94,900            |
| BOD <sub>5</sub> (t/d)        | 30,100  | 30,600  | 29,550(0) | 24,833(NA) | 26,225(5) | 17,633(0) | 1,400             |
| Total Phosphorus              | NA      | NA      | 76.35(1)* | 64.63(0)   | 62 (0)    | NA        | NA                |
| Suspended Solids              | 6,700   | 5,400   | 5,345(0)  | 5,568(2)   | 4,863(0)  | 3,878(0)  | 4,100             |
| Toxicity(LC <sub>50</sub> )** | NA      | 10.0    | 12.5-45.6 | 15.1-42.8  | 11.8-41.4 | 25.3-51.0 | non-<br>lethal    |

- data taken from OMOE annual Reports on the Industrial Direct Discharges in Ontario (OMOE 1987, 1988, 1989, 1991b).
- <sup>†</sup> Post-secondary treatment, data from OMOE files.
- \* exceedence considered an anomaly as measurement is not consistent with typical mill levels.
- % effluent required to kill 50% of the test fish.

#### NA Not available

The origin of organochlorine pesticides in the mill effluent is not known. These chemicals may be derived from logs which are processed in the mill. Contamination of the logs may reflect atmospheric sources including aerial spraying.

Additional sources of certain contaminants to the Jackfish Bay AOC include atmospheric sources and natural geological sources. Atmospheric pathways are believed to contribute loadings of PCBs, PAHs, higher chlorinated dioxins and furans (particularly octachlorodibenzo-p-dioxins and octachlorodibenzofurans), cadmium, lead, mercury and vanadium to the AOC. Studies of atmospheric precipitation in the Great Lakes Basin suggest that the upper lakes, such as Lake Superior, receive the greatest proportion of their loadings of lead and PCBs from the atmosphere. This is due to their large surface areas and lack of local industrial and urban sources. However, it is not known precisely what proportion of these contaminants may be contributed to the Jackfish Bay AOC from local sources. Limited data for local atmospheric emissions indicate that aromatic compounds, primarily 1-isopropyl-4-methylbenzene are contributed from the Kimberly-Clark pulp mill.

Bottom sediments in Lake Superior, outside the zone of impact by the Kimberly-Clark Canada Inc. pulp mill effluent, have been found to have concentrations of chromium, copper, iron and nickel which exceed the Lowest Effect Level of the Provincial Sediment Quality Guidelines. Manganese concentrations exceeded the No Effect Level. Hence, it is likely that natural sediment geochemistry is responsible for a large proportion of the conentrations of these parameters in bottom sediments of the Jackfish Bay AOC.

The availability and impact of chemicals in sediments with regard to water and biota in this area has not been thoroughly investigated. Sediments from Moberly Lake were lethal to both *Hyallela* (LC34) and chironomid larvae (LC42). Body burdens of dioxin and furan congeners in benthic fauna (mussels and opossum shrimp) of Moberly Bay suggest that sediment concentrations, particularly of tetrachlorodibenzo-p-dioxins and tetrachlorodibenzofurans, may be impacting the benthos. In addition, the draft Provincial

Sediment Quality Guideline Lowest and Severe Effect Levels are biologically based and, hence, exceedences of these levels results in impairment to the majority of benthic species.

There are no spills within the Jackfish Bay AOC as there are no industrial or other developments within the watershed. Spills are confined to the area of the Kimberly-Clark Canada Inc. mill site and only impact the AOC if they reach the effluent canal which drains to Blackbird Creek. In this regard, flows in the acid and alkaline sewers, on occasion, bypass the treatment system resulting in untreated effluent reaching Blackbird Creek. As of September 8, there were 12 bypass events during 1991. These events were primarily due to equipment failures (O-Rings, seized valves) and power outages which shut down the pumping equipment. Because the volume of effluent which bypasses the system is not known, it is not possible to determine the impact of these events on the AOC. However, it is expected that these events contribute to contamination of Jackfish Bay and, hence, their occurrence should be minimized.

#### 8 ENVIRONMENTAL CONCERNS/USE IMPAIRMENTS

Table E summarizes information on each use impairment category for the Jackfish Bay AOC. The status of each use impairment category is identified as impaired, not impaired or requiring further assessment.

#### 8.1a Restrictions on Fish Consumption

Consumption of lake trout up to 65 cm in length is currently unrestricted with regard to mercury and PCB concentrations. The consumption of whitefish, cisco and white sucker to 45 cm in length is also unrestricted. However, the guide indicates that consumption of lake trout greater than 55 cm could be restricted due to concentrations of dioxins and furans expressed as toxic equivalents of 2,3,7,8-tetrachlorodibenzo-p-dioxin.

#### 8.1b Restrictions on Wildlife Consumption

There are currently no restrictions for the consumption of wildlife form the Jackfish Bay AOC.

#### 8.2 Tainting of Fish and Wildlife Flavour

No reports of tainted fish or wildlife by the public or the fisheries/wildlife personnel.

#### 8.3a Dynamics of Fish populations

Blackbird Creek fish populations have been totally eliminated as a result of the pulp mill effluent. Similarly, fish populations in Moberly Bay, in the vicinity of Blackbird Creek, have been severely reduced. Prior to installation of secondary effluent treatment by the mill (October 1989), toxicity tests on surface waters up to 1.5 km from the creek mouth resulted in 100 percent fish mortality. Results from toxicity testing since this time indicated that mill effluent is no longer acutely lethal.

Degraded water quality, harvesting, the sea lamprey and introduction of exotic fish species have directly depressed fisheries production in Jackfish Bay. Species diversity and densities in the northern portion of Moberly Bay are among the lowest found in Lake Superior. The zone of influence, which radiates south from the mouth of Blackbird Creek, has diminished fisheries potential in the entire Jackfish Bay area, although the degree of impact has not been determined.

Table E Summary of impairments to Great Lakes Water Quality Agreement beneficial uses within the Jackfish Bay Area of Concern. Impairment status is defined as impaired (I), not impaired (NI) or requires further assessment (A) and is based on data collected during from 1987 to 1990.

| GLWQA Impairment of Beneficial<br>Use                                                                   | Status of<br>Impairment | Conditions In Jackfish Bay                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Restrictions on Fish and Wildlife Consumption Restrictions on Fish Consumption  Consumption of Wildlife | A<br>NI                 | The 1991 "Guide to Eating Ontario Sport Fish" notes that the consumption of lake trout greater than 55 cm in size may need to be restricted due to concentrations of dioxins and furans expressed as toxic equivalents to 2,3,7,8-tetrachlorodibenzo-p-dioxin.  No restrictions exist                                                                                                                                                                         |
| Tainting of Fish and Wildlife Flavour                                                                   | MI                      | There have been no reports of tainting by the public or by fisheries/wildlife personnel                                                                                                                                                                                                                                                                                                                                                                       |
| Degradation of Fish and Wildlife Populations Dynamics of Fish Populations                               |                         | Lake trout populations have declined since the mid 1950s for a number of reasons including the accidental introduction of sea lamprey, the start-up of the Kimberly-Clark mill, over-harvesting and the introduction of exotic fish species. Blackbird Creek fish populations have been totally eliminated as a result of the pulp mill effluent. Similarly, fish populations in Moberly Bay, in the vicinity of Blackbird Creek, have been severely reduced. |
| Body burdens of Fish                                                                                    |                         | White suckers have bioaccumulated TCDDs and TCDFs from water and sediment contaminated by the mill effluent. Lake trout have low concentrations of mercury, hexachlorobenzene and several chlorinated pesticides. The GLWQA Specific Objective for the protection of piscivorous wildlife from PCBs was exceeded in lake trout collected in 1989.                                                                                                             |
| Dynamics of Wildlife Populations                                                                        | <b>^</b>                | Blackbird Creek may attract wildlife during the spring months as the moderating influence of warm creek water tends to accelerate greening of creek side vegetation. Moose activity in particular appears to be abnormally high along Blackbird Creek during the spring. There are no data on possible impacts to wildlife populations due to contaminants within the AOC.                                                                                    |
| Body burdens of Wildlife                                                                                | <b>A</b>                | Bioaccumulation of contaminants in wildlife may be occurring in portions of Jackfish Bay and the Blackbird Creek system, however, there are no data on contaminant burdens in wildlife. CWS plans a survey of gull populations for completion in 1993.                                                                                                                                                                                                        |

Table E (Cont'd)

| GLWQA Impairment of Beneficial Use                        | Status of<br>Impairment | Conditions In Jackfish Bay                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fish Tumours and Other Deformities                        | 1                       | Although incidences of external fish tumours or other deformities have not been reported, white suckers collected from Jackfish Bay in the summer of 1988, prior to secondary treatment, had an abnormal incidence of liver neoplasms (cancers). Also, greater than 20 percent of lake whitefish had unexplainable external lesions which may be associated with pollutants contributed from mill effluent. A study of tumours in white suckers was conducted by OMOE in 1988 and results are pending. |
| Bird and Animal Deformities or Reproductive<br>Problems   | <b>A</b>                | Incidents of bird or animal deformities have not been reported in the AOC. However, indications of reproductive dysfunction in white sucker, longnose sucker and lake whitefish populations in the Jackfish Bay AOC have been reported. CWS plans a survey of gull populations for completion in 1993.                                                                                                                                                                                                 |
| Degradation of Benthos<br>Dynamics of Benthic Populations |                         | The benthic fauna have been impacted in Moberly, Jackfish and Tunnel Bays as shown by the presence of impaired communities which have increased in number and extent between 1969 and 1987. During this period, pollution intolerant species ( <u>Pontoporea hoyi</u> ) have decreased in density and extent whereas pollution tolerant species (tubificids) have increased in density and extent. Sediments in Moberly Lake are acutely toxic to benthic fauna.                                       |
| Body burdens of Benthic Organisms                         | 1                       | Opposum shrimp (Mysis relicta) and introduced caged mussels (Elliptio complanata) collected in Moberly Bay had a dioxin and furan congener pattern similar to that of the mill effluent. 2,3,7,8-tetrachlorodibenzofuran was the dominant isomer in the shrimp with traces of other congeners including 2,3,7,8-tetrachlorodibenzo-p-dioxin.                                                                                                                                                           |
| Restrictions on Dredging Activities                       | 1                       | Sediments in the Jackfish Bay AOC, particularly within Moberly and Jackfish Bays contain concentrations of several contaminants which exceeded OMOE Open Water Dredged Material Disposal Guidelines and/or Provincial Sediment Quality Guidelines as of 1987/88. These include oil and grease, total organic carbon, TKN (1990), total phosphorus, arsenic, cadmium, chromium, copper, iron, lead, manganese, mercury, nickel, zinc, hexachlorobenzene and total PCBs.                                 |
| Eutrophication or Undesirable Algae                       | NI                      | No nuisance algal growths have not been reported.                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

Table E (Cont'd)

| GLWQA Impairment of Beneficial<br>Use                                                                              | Status of<br>Impairment | Conditions In Jackfish Bay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Restrictions on Drinking Water Consumption or<br>Taste and Odour Problems<br>Consumption, Taste and Odour Problems | NI                      | Drinking water for the Town of Terrace Bay is obtained from Lake Superior west of Jackfish Bay. There have been no consumption restrictions or reported taste and odour problems for treated drinking water. However, cottages are located in the old community of Jackfish, on Jackfish Bay. On occasion, the effluent drifts in this direction, making nontreated water unsuitable for consumption.                                                                                                                           |
| Beach Closings                                                                                                     | NI                      | Bacterial densities have periodically been elevated in the vicinity of the Terrace Bay Beach as a result of the mill discharge, however, this condition has not led to beach closings. There are no other public beaches within the Jackfish Bay AOC.                                                                                                                                                                                                                                                                           |
| Degradation of Aesthetics                                                                                          |                         | Conditions have improved since the early 1970s, however, concerns continue to be expressed regarding the presence of foam and dark colour in Blackbird Creek and Moberly Bay.                                                                                                                                                                                                                                                                                                                                                   |
| Added Cost to Agriculture and Industry                                                                             | NE                      | There are no agricultural or industrial activities which utilize water from the Jackfish Bay AOC.                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Degradation of Phytoplankton and Zooplankton<br>Populations                                                        | NI                      | There are no widespread effects within the AOC although community structures are likely altered in the immediate area of the discharge. No detailed information exists.                                                                                                                                                                                                                                                                                                                                                         |
| Loss of Fish and Wildlife Habitat                                                                                  |                         | Major lake trout spawning grounds were located in Moberly Bay and along the shore of Lake Superior adjacent to Jackfish Bay and were impaired due to physical alteration (deposition of organic matter) and chemical contamination of sediments. Lake whitefish spawning grounds were identified along Lake Superior's shore immediately east and west of Jackfish Bay. The quality and use of these shoals has not been assessed. Blackbird Creek was noted as a brook trout stream prior to the start-up of the mill in 1948. |

## 8.3b Body Burdens of Fish

Lake trout collected in 1989 had low concentrations of mercury, hexachlorobenzene, p,p-DDE,  $\alpha$ -BHC,  $\tau$ -BHC,  $\alpha$ -chlordane,  $\tau$ -hlordane, p,p-DDD, toxaphene, 2,3,7,8-TCDD (0.000029-0.0000113  $\mu$ g/g) and 2,3,7,8-TCDF (0.000020-0.000058  $\mu$ g/g). White suckers collected during 1988 also had low concentrations of 2,3,7,8-TCDD and 2,3,7,8-TCDF. The GLWQA Specific Objective for the protection of piscivorous wildlife was exceeded by maximum concentrations of total PCBs (0.44  $\mu$ g/g).

## 8.3c Dynamics of Wildlife Populations

Blackbird Creek may attract wildlife during the spring months as the moderating influence of warm creek water tends to accelerate greening of creek side vegetation. Moose activity in particular appears to be high along Blackbird Creek during the spring. There are no data on possible impacts to wildlife populations due to contaminants within the AOC.

# 8.3d Body Burdens of Wildlife

Bioaccumulation of contaminants in wildlife may be occurring in portions of Jackfish Bay and the Blackbird Creek system, but, there are no data on contaminant burdens in wildlife. CWS plans a survey of gull populations for completion in 1993.

### 8.4 Fish Tumours or Other Deformities

Incidents of external fish tumours or other deformities have not been reported. However, the induction of MFO activity in white suckers collected from Jackfish Bay in the summer of 1988, prior to secondary treatment, was correlated with an "abnormal incidence of liver neoplasms (cancers)". Also, greater than 20 percent of lake whitefish caught in Jackfish Bay during August 1989 and August/September 1990 had unexplainable external lesions which did not appear to be related to predatory attack or infection. The presence of these lesions in an isolated, unpopulated bay which has received large volumes of pulp mill effluent, as well as the absence of reports of similar wounding in other lake whitefish, suggested to the author that there may be an association between the lesions and the discharge of bleached kraft mill effluent.

Research is continuing on the sublethal effects of mill effluent on fish, as well as the cause of the skin lesions on lake whitefish. A study of tumours in white suckers was undertaken in 1988 by the Water Resources Branch of OMOE. Results are pending.

## 8.5 Bird or Animal Deformities or Reproduction Problems

Bird or animal deformities have not been found in the Jackfish Bay AOC, nor have reproduction problems been specifically reported. However, reproductive dysfunction in white sucker, longnose sucker and lake whitefish populations in the Jackfish Bay AOC have been reported. Results from research into the sublethal effects of the pulp mill effluent indicated that these fish grow more slowly than reference fish, have smaller gonads, lower fecundity with age, an absence of secondary sex characteristics in males, failure of females to show an increase in egg size with age, reduced serum estradiol and testosterone concentrations, and greater hepatic mixed-function oxidase (MFO) activity.

A study to determine whether or not herring gulls in the Jackfish Bay AOC have deformities or experience reproductive problems is currently underway by the Canadian Wildlife Service. Results from this study will need to be evaluated when available (1993).

## 8.6a Dynamics of Benthic Populations

Between 1969 and 1987, maximum densities of pollution tolerant organisms (tubificids) increased by more than six times while densities of pollution intolerant organisms (*Pontoporeia hoyi*) decreased dramatically. During this period the extent of tubificids also increased in concert with a decrease in the extent of *P. hoyi*. Whereas in 1969 only the central portion of Moberly Bay and the northwestern portions of Jackfish Bay were affected, by 1987 the density of *P. hoyi* had decreased in Tunnel Bay as well as the eastern and central portions of Jackfish Bay.

The extent of communities identified as impaired also increased between 1969 and 1975. Between 1975 and 1987 the extent increased further and an additional impaired community was identified. Impaired communities were found to occur in sediments which had the highest mean concentrations of cadmium, copper, lead, zinc and TKN as well as high levels of fibre (loss on ignition). The impact to benthic macroinvertebrates in the Jackfish Bay AOC have been attributed to the Kimberly-Clark mill effluent.

Although there have been no benthic surveys of Blackbird Creek, the toxicity of sediments in Moberly Lake indicates that the sediment is acutely lethal to certain benthic species and is likely severely impaired.

## 8.6b Body Burdens of Benthic Organisms

The body burdens of native benthos (Mysis relicta) and introduced mussels (Elliptio complanata) from Jackfish Bay indicate a pattern of dioxin and furan bioaccumulation which suggests the mill effluent as the major source. This includes the bioaccumulation of tetrachlorodibenzo-p-dioxins and tetrachlorodibenzofurans. Concentrations of the highly toxic 2,3,7,8-tetrachlorodibenzo-p-dioxin congener in M. relicta were 0.000009  $\mu$ g/g. Concentrations of tetrachlorodibenzofurans ranged from 0.000034  $\mu$ g/g in introduced mussels to 0.000048  $\mu$ g/g in M. relicta.

# 8.7 Restrictions on Dredging Activities

Dredging operations have not been undertaken in the Jackfish Bay AOC. However, the sediments of Jackfish Bay, especially Moberly Bay, contain levels of oil and grease, total organic carbon, total phosphorus, arsenic, cadmium, chromium, copper, iron, lead, manganese, mercury, nickel, zinc, hexachlorobenzene and total PCBs which exceeded the OMOE Open Water Dredged Material Disposal Guidelines and/or the Provincial Sediment Quality Guidelines Lowest Effect Levels in 1987/88. TKN measured in Moberly Lake sediments during 1990 also exceeded the PSQG Lowest Effect Level.

# 8.8 Eutrophication or Undesirable Algae

There are no records or observations of nuisance algal growths in Jackfish Bay.

## 8.9 Consumption, Taste and Odour Problems

The Town of Terrace Bay acquires its drinking water from Pumphouse Bay on the north shore of Lake Superior. There have been no consumption restrictions, or taste and odour problems reported with the treated drinking water. Cottages are located in the old community of Jackfish, on Jackfish Bay. On occasion, the effluent plume drifts in this direction, making nontreated water unsuitable for consumption.

# 8.10 Beach Closings

Bacteria levels have periodically been elevated in the vicinity of the Terrace Bay beach as a result of the mill discharge, but, this condition has not resulted in beach closings. There are no other public beaches within the Jackfish Bay AOC. However, exceedences of the fecal and total coliform PWQO have occurred as recently as 1987/88 and the IJC recommended guidelines for *Pseudomonas aeruginosa* and *Escherichia coli* were exceeded within Moberly and Jackfish Bays.

### 8.11 Degradation of Aesthetics

Mill effluent flow in Blackbird Creek and into Jackfish Bay has deteriorated the aesthetic value of the entire system. Re-routing the effluent away from the highway during the early 1970s has improved the situation but concerns are still expressed. Although the area's scenic beauty, sheltered waters and the wreck of the Rappahanock represent an attraction for boaters and divers, the area receives limited recreational use due to the mill discharge and, to a lesser extent, limited access.

## 8.12 Added Cost to Agriculture or Industry

When additional costs are required to treat water prior to use for agricultural or industrial purposes, this use category is considered to be impaired. There are no agricultural or industrial activities which utilize water from the Jackfish Bay AOC.

### 8.13 Degradation of Phytoplankton and Zooplankton Populations

There are no widespread effects within the AOC although community structures are likely altered in the immediate vicinity of the discharge. No detailed information exists.

#### 8.14 Loss of Fish and Wildlife Habitat

Fish habitat in Jackfish Bay has not been fully described or mapped, nor has the relationship of various habitat types to fish production been evaluated. However, it is known that industrial pollutants have destroyed or significantly altered fisheries habitat in portions of Jackfish Bay.

Blackbird Creek no longer provides suitable habitat for most aquatic life and may affect the surrounding terrestrial habitat. The mill discharge into Jackfish Bay has degraded bottom sediments, fish habitat and potential spawning grounds. Organic sludge deposits cover most of the natural sediments in Moberly Bay. There are no data regarding the possible loss of wildlife habitat, particularly along the Blackbird Creek System.

|   | "真"的大声,"我们就是我们的,我们就是一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个                                                     |          |      |
|---|----------------------------------------------------------------------------------------------------------------|----------|------|
|   | 생활성 보고 그렇게 가는 회사에게 하는 것 같아. 하는 것들이 되는 것도 되는 것은 사람들이야 되었다. 그는 그는 그는 그를 모을 하는 것 같아.                              |          |      |
|   | 그렇게 회사는 사람들은 그런 그래도 살아왔다. 그를 하고 있는 그렇게 하면 보는 사람들이 가지 않는 것이 되었다. 그런 그리고 없는 사람들은 사람들이 되었다.                       |          |      |
|   |                                                                                                                |          | į    |
|   |                                                                                                                |          |      |
|   | 를 가고 있다는 일본의 문항 가는 가장 들면 가장 하는 것이 되었다. 이 사람들은 사람들은 사람들은 사람들은 사람들은 사람들이 되었다.                                    |          |      |
|   | 불리 하는 이렇지만 하는 이 모양을 하는 생활이 되었습니다. 그 나는 그 회에는 생생들은 생물이 하는 사람들은 사람들이                                             |          | 14   |
|   |                                                                                                                |          |      |
|   |                                                                                                                |          | 4    |
|   | 불발원 등 하는 사람들은 사람은 사람들은 사람들이 되면 하는 사람들이 가득하는 사람들이 되는 사람들이 되었다. 그는 사람들이 되었다.                                     |          |      |
|   | 그렇게 하는 그는 모양을 가는 것이 가장 하는 것이 되었다. 그는 그래 그는 사람들은 사람들이 가는 것이 되는 것이 없는 것이 없는 것이 없는 것이다.                           |          |      |
|   |                                                                                                                |          | 1:   |
|   | 불러 되고, 말하는데 말 맛있는 다른 사람들은 경우에는 전환 이 경우를 되고 있다면 하나는 사람들 모든 것이다. 다른 다                                            |          | •    |
|   | 를 보고 있다. 그는 그는 사람들은 사람들의 모든 그 가는 것이 되는 것이 되는 것이 되는 것이 되었다. 그는 사람들이 없는 것이 없는 것이 없었다.                            |          |      |
|   | 마음에 많아 그 사람들이 얼마는 아내는 아내는 아내는 아내는 아내는 아내는 이번 아내는 이 아내는                     |          | 1.0  |
|   | 그렇게 되는 점점 하는 것이 없는 그 그 전에 가장 있다. 그는 그는 일 그림에 되는 그를 모르고 있다. 그를 모르고 있다는 그를 모르고 있다.                               |          |      |
|   | 를 가고 살았는데 되었다. 작가 그런데요 있는 목 생활병 되고 되는데 하지만 사물과 회사가 되는데 가지 않는 문법을 가격하는데 하는데.                                    |          |      |
| • | 基本하는 하늘에 지수는 하면, 하는데요                                                                                          | - to 100 | 41.5 |
|   | 建炼金色 化光谱 网络阿克特 医海绵 医多种皮肤 医乳腺管 医电影的 医电影的 医电影 医电影 医乳腺病 医二苯基氏病 医牙囊                                                |          | 1.7  |
|   | 그는 모든 사람들은 사람들은 생각 사람들은 회사에 가장하는 생활한 생각을 가장하는 사람들이 살아 가장 하는 것이다. 그렇게 나는 사람들이 살아 없는데 살아 없었다.                    |          | 4.3  |
|   | 를 보험하는 방향을 하는 것이 가득하는 것들이 하는 전에 가려고 있는 하고 가득한 것이 되게 되었다. 그 되자는 프로플로 모든 사람들 바탕을 수                               |          |      |
|   | 를 가려고 있는 사람들이 가는 경기를 가장 함께 가장 하는 것이 되는 것이 되었다. 그 사람들이 되었다. 그 사람들이 가장 하는 것이 없다.                                 |          |      |
|   | · 불교 등 전에 교통되는 회사들이 되고 되었다. 그리고 되었다는 하는 것이 되고 있다는 그리고 되었다. 그리고 되었다.                                            |          |      |
|   | 그들은 학생들에게 하여 한글로 그 모양에는 그렇게 하고 하는 사람이 들어 되는 것이 하는 것이 하는 것을 하는 것이 되었다.                                          |          |      |
|   | 네트리는 사고장에서 아내가 아니는 아내는 아내는 아래에 되는 아래의 아내는 그는 것이 나를 하는 것이 되었다. 그 모양이                                            |          |      |
|   | 를 보고 있으면 10년 1명 NG 10년 1일                                                  |          | y+,. |
|   | 를 하는데 보고 그렇게 되어 되고 있는데 회사를 들어 있어 하셨다고 있습니다. 그는 그를 하는 것은 그런데 이 가지를 먹는 것이 되었다.                                   |          | 13   |
|   | 불러되고 싶어서 가는 이 그는 어느로 보이면 사람들은 사람들은 사람들이 가는 함께 가는 사람들이 가는 사람들이 되었다. 하는 사람들이 살아 되었다.                             |          | 3    |
|   |                                                                                                                |          |      |
|   |                                                                                                                |          |      |
|   | 마이 가 있는 그를 살고 있는 것 같아. 한 점 없는데 된 일반이 되는 것 같아. 그는 그 그 그 가는데 그는 작용이다는 전에 되는 것 같아.                                |          |      |
|   | 그 사람들은 하다 하는 사람들이 되었다. 이 사람들은 사람들이 되었다면 하는 사람들이 가장 하는 것이 되었다면 하는 것이 없는 것이다.                                    |          |      |
|   |                                                                                                                |          |      |
|   |                                                                                                                |          | ř.   |
|   | 불통 회사는 이번 살면서, 기계환경 집의 이 지난 일 시작으로 되어 있는 다른 그리고 하는 그는 하게 되어 하는 그는 말하는 것 같아. 그                                  |          |      |
|   |                                                                                                                |          |      |
|   |                                                                                                                |          |      |
|   | 그는 하고 있는데 그들도 하고 한 것이 가득하셨습니다. 하는데 그들 때문에 가장 하는 것이 되는데 그렇게 하는데 그는데 하는데 그를 하는데 하는데 그렇게 하는데 그렇게 하는데 그렇게 되었다.     |          |      |
|   | 事的,这是这个人,是被我们没有的对对,他的一点的一点,就是是这些人的,也是不是我的人,只是这一些一点,这一点,                                                        |          | 4.4  |
|   | 그는 일이 되어 있는데 그렇게 되었다. 이 사람들은 아무리는 그 사람들은 그렇게 그 학생들은 중심을 하는 것이다. 내가 되었다면 되었다. 중요에 학생                            |          |      |
|   |                                                                                                                |          |      |
|   |                                                                                                                |          |      |
|   |                                                                                                                |          | 4 5  |
|   | 네트리는 학생님들은 이 문문을 하다면서 문학 공장 가는 그는 이렇게 하는 형은 모양하는 수 이익을 가는 것 같습니다.                                              |          |      |
|   |                                                                                                                |          |      |
|   | 建二氯甲基甲基磺胺 医克里特氏 医二氏病 医神经病 医二氯化二甲基酚 医二氏试验 医二甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基                              |          | 1.1  |
|   | 事 大人 ちゅう 発化 スプラー しょうだいか はまみた ちょうしゅう カール・フェンジ かんしょうしょ ちょうしょ ちょうしょん ガラ                                           |          | 100  |
|   | [hanks Review of Parks Review Rev |          |      |
|   |                                                                                                                |          |      |
|   |                                                                                                                |          |      |
|   |                                                                                                                |          |      |
|   |                                                                                                                |          |      |
|   |                                                                                                                |          |      |
|   |                                                                                                                |          |      |
| ż |                                                                                                                |          |      |
|   |                                                                                                                |          |      |
|   |                                                                                                                |          |      |
|   |                                                                                                                |          |      |
|   |                                                                                                                |          |      |
|   |                                                                                                                |          |      |
|   |                                                                                                                |          |      |
|   |                                                                                                                |          |      |
|   |                                                                                                                |          |      |
|   |                                                                                                                |          |      |
|   |                                                                                                                |          |      |
|   |                                                                                                                |          |      |
|   |                                                                                                                |          |      |
|   |                                                                                                                |          |      |
|   |                                                                                                                |          |      |
|   |                                                                                                                |          |      |
|   |                                                                                                                |          |      |
|   |                                                                                                                |          |      |
|   |                                                                                                                |          |      |
|   |                                                                                                                |          |      |
|   |                                                                                                                |          |      |

| 1.0 | IN | TR   | ODU | CTI | ON |
|-----|----|------|-----|-----|----|
| ,   |    | -7-5 |     |     |    |
|     |    |      |     |     |    |



### 1.0 INTRODUCTION

The International Joint Commission (IJC) was established by Canada and the United States under the authority of the Boundary Waters Treaty of 1909. Responsibilities of the IJC included collecting, analyzing and disseminating data as well as making specific recommendations to the Canadian and U.S. governments regarding water quality problems in the boundary waters.

Since 1973 the Water Quality Board of the International Joint Commission (IJC) has identified specific areas in the Great Lakes Basin where serious water quality problems occurred. Originally referred to as 'Problem Areas', they were renamed 'Areas of Concern' (AOC) in 1981. The name change reflected a broader approach based on environmental quality considerations of the entire aquatic ecosystem (sediment, biota and water) rather than just water quality issues. The IJC, in conjunction with the Canadian and U.S. federal, provincial and state governments, has identified 43 Areas of Concern (AOCs) in the Great Lakes Basin of which 17 Canadian and Binational AOCs occur in Ontario.

An Area of Concern is a "geographic area that fails to meet the General or Specific Objectives of the Great Lakes Water Quality Agreement between Canada and the U.S., where such failure has caused or is likely to cause impairment of beneficial use or of the area's ability to support aquatic life" (Annex 2, Great Lakes Water Quality Agreement of 1978, revised 1987). Fourteen use impairments are listed in the GLWQA and the existence of any one is sufficient to list an area as an AOC. The fourteen impaired use categories are:

| (i)    | restrictions on fish and wildlife populations;                          |
|--------|-------------------------------------------------------------------------|
| (ii)   | tainting of fish and wildlife flavour;                                  |
| (iii)  | degradation of fish and wildlife populations;                           |
| (iv)   | fish tumours or other deformities;                                      |
| (v)    | bird or animal deformities or reproductive problems;                    |
| (vi)   | degradation of benthos;                                                 |
| (vií)  | restrictions on dredging activities;                                    |
| (viii) | eutrophication or undesirable algae;                                    |
| (ix)   | restrictions on drinking water consumption or taste and odour problems; |
| (x)    | beach closings;                                                         |
| (xi)   | degradation of aesthetics;                                              |
| (xii)  | added costs to agriculture or industry;                                 |
| (xiii) | degradation of phytoplankton and zooplankton populations; and           |
| (xiv)  | loss of fish and wildlife habitat.                                      |

The revised Great Lakes Water Quality Agreement of 1978 calls for the development of Remedial Action Plans (RAPs) for all AOCs. These RAPs are to take an ecosystem approach to restoring and protecting beneficial uses in AOCs. Through amendments to the Canada-Ontario Agreement Respecting Great Lakes Water Quality, effective April 1, 1985, Canada and Ontario agreed to identify, assess and report AOCs to the International Joint Commission, and to develop and implement RAPs for each AOC. Jackfish Bay was originally listed as an AOC based on problems related to conventional pollutants, heavy metals, toxic organics, contaminated sediments, fish consumption advisories and impacted biota due to industrial point sources (pulp mill) and in-place pollutants (contaminated sediments).

Moberly Bay, the western arm of Jackfish Bay, receives drainage from Blackbird Creek which conveys wastewater discharges from the Kimberly-Clark Canada Inc. pulp mill located in the Town of Terrace Bay (Figure 1.1). The discharge of effluent from the mill to Blackbird Creek has occurred since the mill's inception in 1948. These discharges have resulted in discoloured and malodorous water, high bacteria levels, fish and sediments contaminated with toxic compounds, and areas not capable of supporting aquatic life.



Figure 1.1

The Jackfish Bay AOC and vicinity (Sherman 1991)

The initial belief that the creek system could provide "treatment" of the mill effluent prior to its entry into Lake Superior has proven false. Low flow rates in the creek and the accumulation of solids has prevented waste assimilation. The effluent discharged through the creek system has severely impacted two lakes (Lake "A" and Moberly Lake, Figure 1.1), as well as Blackbird Creek and Moberly Bay. Although the quality of the mill effluent has significantly improved due to enhanced treatment methods, the aquatic ecosystem of the Blackbird Creek/Moberly Bay System continues to be impacted.

This report comprises Stage 1 of the Remedial Action Plan for Jackfish Bay describing environmental conditions and problems in the Area of Concern. Specific information included within the Stage 1 RAP includes (1) a definition and detailed description of the environmental problem in the AOC, including a definition of the beneficial uses that are impaired, the degree of impairment and the geographical extent of the impairment; and (ii) a definition of the causes of the use impairment, including a description of all known point and nonpoint sources of pollutants involved and an evaluation of other possible sources.

Stage 2 will define the specific goals for the AOC and describe the remedial and regulatory measures selected to meet those goals. Included in Stage 2 will be an evaluation of existing and alternative remedial measures; a schedule for implementation of the recommended remedial measures; and the identification of persons, agencies or organizations responsible for implementation.

Stage 3 is to be submitted following the restoration of beneficial uses and will include a process for evaluating the implementation and effectiveness of remedial measures; as well as a description of surveillance and monitoring processes to track the effectiveness of remedial measures and the eventual confirmation of the restoration of uses.

|  |  | ·Vi - I i i i i i i i j |   |
|--|--|-------------------------|---|
|  |  |                         |   |
|  |  |                         |   |
|  |  |                         | · |
|  |  |                         |   |
|  |  |                         |   |
|  |  |                         |   |
|  |  |                         |   |
|  |  |                         |   |
|  |  |                         |   |
|  |  |                         |   |
|  |  |                         |   |
|  |  |                         |   |
|  |  |                         |   |
|  |  |                         |   |
|  |  |                         |   |
|  |  |                         |   |
|  |  |                         |   |
|  |  |                         |   |
|  |  |                         |   |
|  |  |                         |   |
|  |  |                         |   |
|  |  |                         |   |
|  |  |                         |   |
|  |  |                         |   |
|  |  |                         |   |
|  |  |                         |   |
|  |  |                         |   |
|  |  |                         |   |
|  |  |                         |   |
|  |  |                         |   |
|  |  |                         |   |
|  |  |                         |   |
|  |  |                         |   |
|  |  |                         |   |
|  |  |                         |   |





# 2.0 DESCRIPTION OF THE STUDY AREA

#### 2.1 LOCATION AND EXTENT

The Jackfish Bay AOC is located on the north shore of Lake Superior, approximately 250 km northeast of Thunder Bay. The AOC consists of the 14 km reach of Blackbird Creek between the Kimberly-Clark mill and Jackfish Bay including Lake 'A' and Moberly Lake as well as Jackfish Bay (Figure 1.1). The Town of Terrace Bay is the closest community to the Jackfish Bay AOC. It has a population of approximately 2,700 and lies to the west of Jackfish Bay outside of the AOC.

Blackbird Creek carries the wastewater discharge from Kimberly-Clark Canada Inc. The Blackbird Creek watershed drains an area of 62 km<sup>2</sup> of rough, wooded terrain, swamps and several small lakes. The creek rises near the town of Terrace Bay (elevation 274 m) and flows in a south-easterly direction for approximately 14 km into the northern tip of Moberly Bay (elevation 183 m). The mean natural flow of Blackbird Creek has been estimated to be 0.7 m<sup>3</sup>/sec (24 ft<sup>3</sup>/sec) (German and Pugh, 1969). Historically, Blackbird Creek passed through two shallow lakes referred to as Lake 'A' and Moberly Lake. Lake A originally covered a surface area of 19 ha (47 acres) with depths ranging up to 6.1 m. Moberly Lake was 28 ha (69 acres) in size with a maximum depth of 6.4 m. Lake A was bypassed in the early 1980s because wood fibre had substantially filled it in. Moberly Lake was 0.8 m deep (as of 1982) and has also experienced significant in-filling.

Blackbird Creek was not visible from public lands until 1957, when Highway 17 was constructed east of Terrace Bay and a portion of the creek was re-routed alongside the highway. The creek was routed away from the highway in 1987.

Jackfish Bay contains two inner arms, Moberly Bay on the west into which Blackbird Creek drains and Tunnel Bay on the east (Figure 1.1). A man-made tunnel connects Jackfish Lake with Tunnel Bay. Jackfish Lake receives runoff from a small drainage basin which extends to the north of the lake. The total surface area of Jackfish Bay is 6.4 km<sup>2</sup>. It measures approximately 4.5 km in length from north to south and approximately 3.0 km in width from east to west. There are several islands and shoals of varying size within Jackfish Bay. The largest islands are Cody Island, which is located in the extreme southwest of Moberly Bay; Bennett Island, located in southeastern Moberly Bay; and St. Patrick Island, which is located near the eastern shore of Jackfish Bay.

## 2.2 CLIMATIC CONDITIONS

Terrace Bay is located in the Superior Climatic Region, which is the more southerly of two climatic regions found in the Terrace Bay District (Ontario Ministry of Natural Resources, 1980). It is characterized by a moderate climate with cooler summers and milder winters than the Height of Land Climatic Region which lies to the north of the AOC. Mean daily temperatures in the Superior Region are -13.3 °C in January and 15 °C in July. Mean daily maxima and minima are -7.8 °C and -18.9 °C in January and 21.1 °C and 10.0 °C in July. Recorded mean annual rainfall is 787.4 mm with a mean annual snowfall of 243.8 cm. Precipitation is relatively low in winter and high in summer. Winter brings cold polar air masses resulting in dry, clear weather much of the time. In summer, warm, humid air masses from the south alternate with cool dry air from the north.

The north shore of Lake Superior, in the vicinity of Jackfish Bay, begins to freeze in mid January with a median ice cover (based on the 1972 to 1985 period of record) of ten to sixty percent occurring from January 12 to 18, from 70 to 90 percent from January 26 through March 15 and becoming ice free by April 6 (Minister of Supply and Services Canada 1986). Moberly Bay is not completely ice-covered in the winter due, at least in part, to the warm effluent entering via Blackbird Creek. The exact extent of open water is

not known, but, open reaches likely extend almost as far as Cody Island before ice formation becomes more stable.

## 2.3 PHYSIOGRAPHY, GEOMORPHOLOGY and GEOLOGY

The Jackfish Bay AOC is a bedrock dominated area forming a portion of the north shore of Lake Superior. The area around Jackfish Bay and immediately to the north is characterized by rugged, steep hills and wide river valleys. Drainage is predominantly south and southeasterly with elevations ranging from 305 m in the upper portions of the Blackbird Creek and the Jackfish Lake drainage systems to 183 m at Lake Superior.

The area lies within the Abitibi Upland Unit of the James Physiographic Region as defined by Bostock (1972). This unit is described as having a broad rolling surface and consisting of crystalline Archean rocks of the Canadian Shield.

The Canadian Shield was glaciated at least four times during the Pleistocene Period which began more than 1 million years before present. In the study area, glaciation resulted in a glacially eroded bedrock surface which controls the local topography. Glacial deposits consist mostly of a shallow sandy till ground moraine which overlies the lower portions of bedrock outcrops (Gartner 1980). A small sandy glacial outwash deposit was formed during the final retreat stages of the Wisconsin Glacier at the head of Tunnel Bay and around the southern end of Jackfish Lake. The only other deposit in the area consists of a large glaciolacustrine delta which forms the southeast shore of Jackfish Bay and strikes inland toward the northeast (Gartner 1980). This sand and gravel deposit was formed where a glacial meltwater channel drained into Glacial Lake Algonquin which was the precursor to the present Lake Superior. Erosional shore bluffs of the former glacial lake occur at elevations well above the level of Lake Superior. These bluffs, or terraces, are also common to the west of Jackfish Bay in the vicinity of the Town of Terrace Bay.

The bedrock geology of the northern and western shores of Jackfish Bay is dominated by massive crystalline igneous rocks consisting of granodiorite to granite (Ontario Geological Survey 1991). These rocks are late to middle Archean in age or approximately 2.5 to 3.4 billion years old. They also form the substrate for most of the streams and lakes which drain into Jackfish Bay. The southeastern shore of Jackfish Bay consists of late to middle Archean mafic to intermediate metavolcanic rocks. These highly metamorphosed rocks were formed from volcanic igneous rocks such as basalts, tuffs and breccias. Minor metasedimentary rocks (metamorphosed sedimentary strata) also occur within this complex (Ontario Geological Survey 1991).

#### 2.4 SOILS

Soils are predominantly rockland and brunisols. Rockland soils occur where there is less than 10 cm of till overlying bedrock and exposed bedrock (Ontario Institute of Pedology 1981). Areas of till thicker than 10 cm consist of Orthic Eutric Brunisols in middle and upper elevations and Gleyed Eutric Brunisols to Orthic Humic Gleysols on lower slopes. The till soils are sandy and are not particularly fertile due to low nutrient content (primarily noncalcareous) and high stone content.

Wet depressions and extremely poorly drained areas consist of organic soils including Terric (shallow) and Typic (deeper than 120 cm) Humisols or Mesisols depending on the degree of humification. Soils which have formed on the sandy outwash at the head of Tunnel Bay are predominantly Orthic Humic Gleysols in imperfectly drained areas and Orthic Eutric Brunisols on better drained positions. Soils developed on sand and gravel glaciolacustrine deposits near Terrace Bay and on southeast shore of Jackfish Bay are predominantly Eluviated Eutric Brunisols.

#### 2.5 TERRESTRIAL VEGETATION

The Jackfish Bay AOC lies within the Superior Forest Section of the Boreal Forest Region (Rowe 1972). Forests are variable due to severe climatic conditions and rugged terrain characteristic of the area (Ontario Ministry of Natural Resources 1980). They range from mixed tree species with abundant shrub undergrowth, to single species conifer stands (Rowe 1972).

Forests of white spruce (*Picea glauca*), balsam fir (*Abies balsamea*), white birch (*Betula papyrifera*) and trembling aspen (*Populus tremuloides*) are found in valleys characterized by deep, medium textured soils (Rowe 1972). The same species, but with birch more prominent and some black spruce (*Picea mariana*), is found on the thin till slopes and tops of low hills (Rowe 1972). Jack pine (*Pinus banksiana*), white birch and poor quality black spruce, are characteristic of higher rocky elevations and coarser valley soils (Rowe 1972). Lowland areas support high quality stands of black spruce along with tamarack (*Larix laricina*) and eastern white cedar (*Thuja occidentalis*). Forests in the District of Terrace Bay have been repeatedly burned, resulting in an abundance of trembling aspen, white birch and jack pine. The rough topography and variable soils, in combination with this burning, results in small stands and a patchy appearance (Rowe 1972).

#### 2.6 LAND USE

Land use in the vicinity of Jackfish Bay is limited, for the most part, to the pulp mill and the community of Terrace Bay. Several mining companies have operated inland within the Jackfish Bay watershed, but likely have had little impact. The Empress Mine was located approximately 9.6 km east of Terrace Bay and produced gold between 1885 and 1900, and again in 1936. The Ursa Mine was located 4.8 km north of the Empress and it too produced gold until the early 1900s (Ontario Ministry of Natural Resources 1980).

The Township of Terrace Bay was established in the late 1940s in response to the developing pulp and paper industry. The pulp mill is still the main industry and source of revenue in the area.

The watershed of the AOC consists mostly of second growth forest. The only developed areas include the Highway 17 corridor and cottages at the former townsite of Jackfish on the east side of Jackfish Bay (Figure 1.1). The cottages are accessed by gravel road from the highway. There are no commercial or industrial developments along Highway 17 in this area.

There are three waste disposal sites in the general area, however, two are outside of the AOC watershed. The Town of Terrace Bay shares a municipal landfill with the Town of Schreiber. This landfill is located about 7 km west of Terrace Bay. Kimberly-Clark Canada Inc. utilizes an industrial landfill located about one km north of the mill. The only landfill within the Jackfish Bay AOC is a small site operated by the Ontario Ministry of Natural Resources. It is located two km east of the cottage area at Jackfish and receives only domestic waste from the cottages. This site does not pose any contamination problems for the Jackfish Bay AOC.

#### 2.7 RECREATION

One of the earliest commercial recreation centres was developed in the late 1800s at the former village of Jackfish (Figure 1.1). A hotel was constructed and the tourist trade was almost totally dependent on sport fishing. Consequently, when the lake trout populations declined in the 1940s and 1950s, tourism suffered heavily.

Recreational activity in Jackfish Bay has generally been light due to limited access and the depressed sport fishery. A number of pioneer homes in the historical town site of Jackfish have been converted into summer

cottages, the only ones located in Jackfish Bay. Cottage owners represent the largest user-group for recreational activity in the bay. Jackfish Bay has noteworthy aesthetic value, with its rugged shoreline and archaeological and historical sites.

#### 2.8 WILDLIFE

Wildlife found in the Ministry of Natural Resources' Terrace Bay Administrative District include species well adapted to the harsh climatic conditions found there. Common species include: moose, deer, timber wolf, fox, lynx, black bear, mink, fisher, martin, muskrat, beaver, porcupine, skunk, snowshoe hare and red squirrel. Shrew, mice and vole populations are also found in the District, as well as a variety of upland game birds and songbirds (Ontario Ministry of Natural Resources 1980).

Although located within the Boreal Forest Region, Sub-arctic conditions exist in exposed locations along the shoreline as a result of the influence of Lake Superior. Herds of woodland caribou exist on the Slate Islands, on Pic Island and in Neys Provincial Park. The Slate Islands have been designated as a natural environment park, and have proven popular to tourists and naturalists due to their unique fauna.

Several animal species living in the region are considered rare, threatened or endangered. They include the eastern cougar (many unconfirmed sightings), great blue heron, bald eagle, peregrine falcon, golden eagle, osprey, as well as a variety of songbirds (Ontario Ministry of Natural Resources 1980). The eastern cougar, peregrine falcon, bald eagle and golden eagle are protected under the *Ontario Endangered Species Act* (Ontario Ministry of Natural Resources 1991). In addition, the eastern cougar and peregrine falcon are listed by the Committee on the Status of Endangered Wildlife in Canada as endangered (Burnett et al. 1989).

The Ontario Ministry of Natural Resources has developed wildlife management plans with the broad objective "to provide sustained optimum cultural, social and economic benefits to the people of Ontario" (Ontario Ministry of Natural Resources, 1980). The animals which receive the most management attention due to their importance to hunting include the moose, white-tailed deer and black bear.

## 2.9 AGRICULTURE

There are currently no agricultural activities in the vicinity of the Jackfish Bay AOC. There is also very little potential for agricultural development anywhere in the Terrace Bay Administrative District (Ontario Ministry of Natural Resources 1980). Thin, stony soils with low fertility, rugged terrain and cool climatic conditions are the primary limiting factors.

#### 2.10 WATER USES

# 2.10.1 Water Supply

Process water for the pulp mill and domestic water for the Town of Terrace Bay is obtained from a common intake located in open Lake Superior, approximately 10 km west of Jackfish Bay (Figure 1.1). A 90 cm trunk main, extending from the pumphouse to the pulp mill, provides a 30 cm feeder line to Terrace Bay's distribution system. The combined water intake increased from 102,200 m³/day, before the mill expansion (between 1975 and 1978), to approximately 143,850 m³/day following the expansion of the mill. The pumphouse has the potential to supply 156,960 m³/day from any two of three pumps. Although less than 2 percent of the total supply is used for domestic purposes, all of the water is chlorinated. Hays Lake, located northwest of the Town of Terrace Bay, provides an alternate water supply.

## 2.10.2 Wastewater Discharges

Process water from the Kimberly-Clark Canada Inc. pulp mill is discharged into Blackbird Creek which flows over a distance of 14 km to Moberly Bay in Jackfish Bay. During 1990 the average effluent flow from the mill was 94,000 m<sup>3</sup>/day. The effluent treatment system and effluent quality are discussed in detail in Section 4. This represents the only point source discharge within the Jackfish Bay AOC.

Municipal wastes from the Town of Terrace Bay are treated by two systems. Domestic sewage from one subdivision is treated by a small extended aeration facility and polished through an exfiltration lagoon, while sewage from the remainder of the community is passed through two septic tanks followed by an exfiltration lagoon. Both lagoons lie adjacent to Lake Superior, immediately south of the townsite and removed from Jackfish Bay. Their is no direct discharge from the lagoons (Ontario Ministry of the Environment 1991a).

## 2.10.3 Fish Habitat

Water depth in Jackfish Bay generally increases abruptly from the rugged shorelines to depths of 10 to 50 m. Littoral areas are limited in extent, forming extremely narrow bands along the shoreline. As a result wetlands are not present in Jackfish Bay. Nearshore fish spawning and nursery habitat is restricted to isolated pockets, primarily located in Tunnel Bay, to the west of Cody Island around Bennett Island.

Although the maximum water depth in Jackfish Bay is approximately 50 m, the maximum depth in Moberly Bay is only 20 m (Figure 2.1). The bed of Jackfish Bay slopes more steeply along its western shore with maximum depths occurring west of St. Patrick Island.

Jackfish Lake is connected to the northern tip of Tunnel Bay by a channel approximately 15 m in length. The lake, which is 127 ha in area and has a mean depth of 6.2 m, provides spawning and nursery habitat for a number of resident warmwater species in addition to migrants from Jackfish Bay. Jackfish Bay species which spawn in Jackfish Lake or its tributaries include walleye (Stizostedion vitreum), northern pike (Esox lucius), rainbow trout (Oncomynchus mykiss), pink salmon (O. gorbuscha) and suckers (Catostomus sp.).

Goodier (1981, 1982) documented historical spawning areas (i.e., prior to 1955) for the major commercial species in the Jackfish Bay area. Major lake trout (Salvelinus namaycush) spawning grounds were located in Moberly Bay and along the shore of Lake Superior adjacent to Jackfish Bay (Figure 2.2). Lake Whitefish (Coregonus clupea formis) spawning grounds were identified along Lake Superior's shore immediately east and west of Jackfish Bay (Figure 2.3). The quality and use of these shoals has not been assessed.

Blackbird Creek was noted as a brook trout (Salvelinus fontinalis) stream prior to the start-up of the mill in 1948. As there are no natural barriers restricting movement of fish between the creek mouth and Highway 17 (14 km), it may be presumed that Lake A and Moberly Lake formerly provided seasonal habitat for a number of fish species resident in Blackbird Creek.

### 2.10.4 Commercial Fishing

Commercial fishermen first settled in Jackfish Bay during the 1870s and the commercial fishery industry was well established by the mid-1880s. Jackfish Bay was noted as an excellent port, however, fishing was never extensive in the area as the adjacent shoreline was rugged and storms could be severe. The fishery was characterized as a rowboat fishery with an annual catch of approximately 14,500 kg of lake trout and 6,000 kg of whitefish between 1895 and 1898 (Goodier 1982). Commercial fishing activity peaked during the early 1900s, when approximately 40 families were permanent residents of the former Town of Jackfish (Figure 1.1).



Figure 2.1
Water depth (metres) in Jackfish Bay (based on sonar survey of McQuest Marine Research Ltd., conducted October 19-30, 1987) (Sherman 1991).



Figure 2.2

Spawning grounds for lake trout (Salvelinus namaycush) at Jackfish Bay (Goodier 1981).



Figure 2.3

Spawning grounds of lake whitefish (Coregonus clupeaformis)
Michipicoten Island to Schreiber (Goodier 1982).

The Canadian Pacific Railway converted Jackfish into a two industry town in 1884. Jackfish, due to its deep, sheltered harbour, became a transhipment point for Pennsylvania coal bound for CPR's divisional points of Chapleau and Cartier. The town continued to prosper until the late 1940s and 1950s when the CPR converted from coal to diesel. Concurrently, sea lamprey predation and heavy exploitation depleted fisheries stocks in Lake Superior.

Lakewide estimates of total harvest are available for the major commercial fish species dating back to the late 1800s (Lawrie and Rahrer 1973, Lawrie 1978). Prior to 1948, catch locations were not site specific and the commercial industry was largely unregulated. In 1948 the establishment of mandatory commercial fish harvest reporting according to defined management zones vastly improved commercial harvest statistics. Zone quotas for lake trout were first established in 1962, followed by zone quotas for all major commercial species by the mid 1970s. Individual quota management for all species was finalized in 1984. Quotas are currently set at levels designed to maintain or restore stocks while maximizing harvest. Canadian waters of Lake Superior are divided into 34 management zones. The Jackfish Bay AOC is in Zone 18 (Figure 2.4) which extends offshore into Lake Superior beyond the Slate Islands. Two commercial fishing operations are currently licensed.

The total commercial harvest in 1985 amounted to 5,082 kg (Table 2.1) which was valued at \$5,727. Lake trout, lake whitefish, chub (*Coregonus* sp.) and lake herring (*Coregonus artedii*) have remained the four prime commercial species, although the order of dominance has varied since commercial fishing commenced in Zone 18. Prior to the arrival of sea lamprey in Lake Superior (early 1950s), lake trout was the major commercial species in the Jackfish Bay area. During the period from 1951 to 1953, the average annual commercial catch from Zone 18 was 56,000 kg, of which 52,500 kg were lake trout. In comparison, the lake trout commercial catch during the period 1980 through 1985 in this zone ranged between 771 and 2,307 kg (Table 2.1).

Table 2.1 Lake Superior Management Zone 18 commercial catch (round weight in kilograms) (OMNR Data Files).

| Species      | 1980   | 1981   | 1982   | 1983   | 1984  | 1985  | 1986<br>Quota |
|--------------|--------|--------|--------|--------|-------|-------|---------------|
| L. trout     | 1,021  | 771    | 2,307  | 2,013  | 883   | 1,307 | 1,350         |
| L. Whitefish | 815    | 2,141  | 9,149  | 5,450  | 540   | 450   | 4,300         |
| L. herring   | 35     | 232    | 180    | 498    | 59    | 1,167 | 185           |
| Chubs        | 9,373  | 6,486  | 152    | 3,204  | 361   | 1,992 | 10,375        |
| Yellow perch | 0      | 0      | 0      | 0      | 0     | 0     | 0             |
| Menominee    | 0      | 1      | 10     | 70     | 9     | 0     | unlimited     |
| Smelt        | 0      | 0      | 0      | 0      | Ó     | 0     | unlimited     |
| Mullet       | 374    | 390    | 630    | 371    | 182   | 161   | unlimited     |
| Other        | 200    | 143    | 363    | 252    | 112   | 5     | 155           |
| Total        | 11,818 | 10,164 | 12,791 | 11,858 | 2,146 | 5,082 | 163,365       |

Two commercial fishing licences.



Figure 2.4

Lake Superior Management Zones (MNR data files).

Exploitation and the introduction of exotics had the greatest effect on Lake Superior's commercial fisheries prior to 1960; cultural eutrophication was not considered a major factor in the changing fisheries communities in this lake (Loftus and Regier 1972). Lake trout harvests in the Jackfish Bay area remained relatively stable prior to the sea lamprey invasion in the early 1950s. However, commercial fishing in Jackfish Bay was terminated in 1948 when Kimberly-Clark began discharging wastewater into Moberly Bay. Jackfish Bay remained a fishing port until the early 1960s, at which time commercial fishing in Zone 18 was greatly reduced. The current fishery is predominantly an offshore fishery, as nearshore lake trout stocks have not recovered to substantial levels.

The Slate Islands native lake trout stock is one of the few stocks of 'lean' trout that has persisted in Lake Superior. It is one of two lake trout stocks identified in Ontario as sources for Lake Superior hatchery broodstocks. In 1969 the Ontario Ministry of Natural Resources imposed a one mile closure to commercial fishing surrounding the Slate Islands. These islands lie approximately 14 km south of Jackfish Bay. Lake trout stocking in Zone 18 was intermittent prior to 1983, totalling 50,292 yearlings/fingerlings from 1970 to 1982. Stocking rates, however, averaged 55,000 fish per year from 1983 to 1987. Zone 18 has been assigned "first priority for stocking" under the auspices of the 1986 Lake Trout Rehabilitation Plan for Lake Superior. Accordingly, stocking will continue at the present rate for a minimum of five years. Lake trout, the only species stocked in Zone 18, have never been introduced directly into Jackfish Bay.

# 2.10.5 Sport Fishing

Sport fishing in Jackfish Bay declined dramatically during the 1950s and has remained depressed under current conditions. Lake trout spawning shoals appear to have been adversely affected by organic material in the discharge from the Kimberly-Clark mill. Electrofishing surveys found few species and low numbers of fish in Moberly Bay as well as increasing numbers and species diversity with increasing distance from the mill outfall.

Most recreational fishing occurs offshore around the Slate Islands. Lake trout are the most abundant fish taken in the open lake while there is a limited nearshore fishery for rainbow trout and brook trout.

Rehabilitation measures, in the form of hatchery introductions and sea lamprey control, may have resulted in substantial increases in sport fishing activities during the late 1970s and the 1980s in many inshore areas of Lake Superior. Degraded water, sediment and benthic fauna and, perhaps, low stocking rates in areas adjacent to Jackfish Bay have prevented a similar trend in the AOC. Reliable estimates of sport fish harvest are not available for Jackfish Bay. Prior to the 1950s, angling was popular and Jackfish was the site of an annual fishing derby.

#### 2.10.6 Recreation

The Jackfish Bay AOC is an attractive location for recreational use. However, Lake Superior's inherent cold water conditions, poor aesthetics related to the effluent from Blackbird Creek, and limited access restrict traditional water activities.

Water based recreational activities are restricted to minor sport fishing (Section 2.10.5) and scuba diving by local residents. The wreck of the Rappahannock, a 94 m bulk freighter which sank in 1911 in Tunnel Bay, is a popular local dive site. The only public beach in the area is the Terrace Bay Beach on the north shore of Lake Superior. It is located near the town about 10 km west of Jackfish Bay. There are no beaches within Jackfish Bay and there is no information on the use of the bay by local cottagers.

There are no boat launch sites located on Jackfish Bay. Small craft can access Lake Superior at the Aguasabon River west of Jackfish Bay and through Jackfish Lake. The CPR tunnel in the channel between Jackfish Lake and Tunnel Bay restricts the size of watercraft that can travel between the two water bodies. The launch sites offer the most direct access to the Slate Islands Provincial Park and the offshore lake trout fishery.



### 3.0 ENVIRONMENTAL CONDITIONS

#### 3.1 WATER QUALITY

Various agencies have developed water quality objectives based on different factors. Examples are the Provincial Water Quality Objectives (PWQOs) and the Great Lakes Water Quality Agreement (GLWQA) Specific Objectives. The PWQOs were designed for "the protection of aquatic life and recreation in and on the water" (Ontario Ministry of the Environment 1984) while the GLWQA Specific Objectives are "based on available information on cause/effect relationships between pollutants and receptors to protect the most sensitive use in all waters" (International Joint Commission 1987).

The following water quality summary for Jackfish Bay is based primarily on data collected by the Ontario Ministry of the Environment in 1970 (OMOE 1972), in 1981 (Kirby 1986) and in 1987/88 (Sherman 1991). The sample locations for each survey are provided in Figures 3.1, 3.2 and 3.3. Many of the sample locations are comparable for all three surveys, particularly the 1981 and 1987/88 surveys which utilized the same numbering system. Generally the density of sampling in Jackfish Bay and Lake Superior was highest during the 1981 surveys (Figure 3.2) and the density of sampling in Moberly and Tunnel Bays was highest in the 1987/88 surveys (800 series locations, Figure 3.2). The 1970 survey consisted of one sample collected at each station during the month of August. The 1981 surveys included 2 or 3 samples collected on consecutive days in each of June and September. The discussion of results for this survey are confined to the June samples as the mill was closed for maintenance prior to the September surveys and, hence, these surveys are not considered representative (Kirby 1986). The 1987 surveys consisted of between 2 and 6 consecutive day samples (most stations were sampled 3 times) during July and August and the 1988 surveys consisted of between 2 and 4 consecutive day samples (most sampled twice) during July. Although data from each of the surveys are provided in the text and in tables, the complete data set for each is provided in Appendix 3.1.

Data from these surveys are discussed by parameter and then compared to the PWQO and GLWQA Objectives as a means of assessing water quality in the area. Changes in water quality over the years is also discussed.

#### 3.1.1 Currents and Plume Characteristics

In 1987, Gore and Storrie set up the Rand Model to mimic the warm buoyant effluent discharged by Kimberly-Clark Canada Inc. into Jackfish Bay (Gore and Storrie 1990). The model reproduced the hydrodynamic flow field from July 11 to August 28 and indicated that currents generally move into Jackfish Bay from the east and exit the bay out of its western edge. The model predicted that the effluent plume from Blackbird Creek would flow southward through Moberly Bay following the western edge of Jackfish Bay. These results are consistent with an earlier study (Beak Consultants 1977) which determined that water circulation is in a counter-clockwise pattern, with open lake water moving northward into Jackfish Bay along the eastern side of St. Patrick Island and the mill effluent being generally confined to the western side of the Bay.

Results from current measurements carried out for Jackfish Bay during the summer of 1984 (Beak Consultants 1984) indicated that wind direction during the study period was most commonly in the NW through SW (315° - 225°) and the SE through SW (135° - 225°) sectors (Table 3.1). These directions generally align with the longitudinal axis of Moberly Bay and Jackfish Bay; the highest current and wind speed directions were observed to also have these vectors (Beak Consultants 1984). These results suggest that wind has a great impact on local surface currents. Average current speed during the study period was only 2.0 cm/sec compared to the typical Great Lakes average of 8 - 10 cm/sec. Results from drogue tracking indicated that the surface current speed ranged from 1.5 to about 3.0 cm/sec to the northwest.



Figure 3.1

Locations of water sampling stations in Jackfish and Moberly Bays during the August 1970 water quality survey (OMOE 1972).



Figure 3.2 Sampling station locations for the 1981 water survey in Jackfish Bay (Kirby 1986)



Figure 3.3

Locations of water sampling stations in Jackfish Bay for the 1987/1988 surveys (Sherman 1991). 26

During ice free conditions, the Blackbird Creek discharge floods the surface of Moberly Bay (Sherman 1991). The discharge generally travels south along the western shore of Moberly Bay to Cape Victoria, a distance of five km. Variable wind direction and speed can alter the shape and extent of the surface plume. Drogue tracking studies conducted during July and September of 1987 revealed a predominant southward direction in Moberly and Jackfish Bays although occasional eastward and northeast tracks toward Tunnel Bay were observed (Sherman 1991).

The strong thermal stratification or layering of the plume over the colder waters of Moberly and Jackfish Bays, results in poor effluent plume dispersion. The shape of the plume and the rate of its dilution by water in Jackfish Bay on two different days in each of July 1987 and July 1988 are illustrated in Figure 3.4. This figure is based on direct conductivity measurements and shows the rate of dilution of the plume in terms of the rate of conductivity decrease. The Blackbird Creek discharge is diluted to less than 25:1 within most of Moberly Bay and dilution to less than 100:1 often does not occur until the plume extends beyond Cape Victoria.

The effluent plume results in a gradient of warm, turbid, brown-coloured surface water having a much higher dissolved solid concentration extending from the mouth of the Creek into Jackfish Bay. As a result, water quality in Jackfish Bay is distinctly different than typical Lake Superior embayments.

## 3.1.2 Conventional Water Quality Parameters

Conventional water quality parameters include water colour, turbidity, temperature, dissolved oxygen and biological oxygen demand, nutrients, major ions and bacteria.

#### 3.1.2.1 Water Colour and Aesthetics

Colour may be detrimental in that it interferes with the passage of light, thereby impeding the photosynthesis of aquatic plants. Guidelines suggest that no undue increase in the colour of natural waters be allowed through waste disposal or other activities (McNeely et al. 1979). Organic and inorganic materials contribute to the colour of water. Apparent Hazen Colour Units (HCU) are influenced by suspended matter and by dissolved constituents. There are no Provincial Water Quality Guidelines for colour in ambient waters.

Colour (HCU) was measured at one station in Blackbird Creek as well as stations in Moberly Bay (10 stations), Jackfish Bay (11 stations) and Tunnel Bay (1 station) during August 1970 (OMOE 1972). The station locations are shown in Figure 3.1. Blackbird Creek had a colour value of 1,375 HCU. Samples from Moberly Bay were >2,500 HCU at the outlet of Blackbird Creek (Station 1) decreasing rapidly to <10 HCU at the northern end of Jackfish Bay (Stations 12, 13 and 14). Stations in southern Jackfish Bay (Stations 20, 21 and 22) and in Tunnel Bay (Station 19) had an HCU value of <5. The median and range of colour values for all stations sampled in 1970 were 10.5 and 2 to 2,500 HCU, respectively (Kirby 1986). These latter stations represent close to background conditions as they are outside the main plume (Figure 3.4) and, hence, reveal a pattern of strong colour change due to effluent from the Kimberly-Clark mill.

Colour was also measured during the June and September 1981 surveys (Kirby 1986). Stations sampled during 1981 included most of stations sampled in 1970 as well as additional stations, particularly outside of Jackfish Bay in Lake Superior (Figure 3.2). In comparison to the same stations sampled in 1970, the June 1981 survey indicated little or no improvement in colour. Although the upper range of colour values was less than half that of 1970 - 921.3 as compared to 2,500 HCU in 1970 - the median value was almost seven times higher - 72.2 as compared to 10.5 HCU (Kirby 1986). The 1981 median was found to be significantly (p < 0.05) higher than the 1970 median value.

Table 3.1. Jackfish Bay measured wind speed and direction, Summer 1984 (IEC Beak, 1984).

| Date   | Time          | Average Wind<br>Speed | Prevailing<br>Direction |
|--------|---------------|-----------------------|-------------------------|
| June 1 | 18:00 - 24:00 | 11.5                  | 180 •                   |
| June 2 | 24 - 06       | 14.3                  | 150°                    |
|        | 06 - 12       | 22.3                  | 135*                    |
|        | 12 - 18       | 6.0                   | 160 °                   |
|        | 18 - 24       | 4.8                   | 180 <sup>0</sup>        |
| June 3 | 24 - 06       | 5.5                   | 180 •                   |
|        | 06 - 12       | 7.8                   | 180 °                   |
|        | 12 - 18       | 6.2                   | 180                     |
|        | 18 - 24       | 9.0                   | 180 - 330 -             |
| June 4 | 24 - 06       | 9.1                   | 330 *                   |
|        | 06 - 12       | 6.7                   | 330 - 150 -             |
|        | 12 - 18       | 6.5                   | 160 •                   |
|        | 18 - 24       | 5.6                   | VAR                     |
| June 5 | 24 - 06       | 6.5                   | VAR                     |
|        | 06 - 12       | 13.5                  | VAR - 140 *             |
|        | 12 - 18       | 12.0                  | 140*                    |
|        | 18 - 24       | 3.5                   | 160°                    |
| June 6 | 24 - 06       | 4.2                   | VAR                     |
|        | 06 - 12       | 8.7                   | VAR                     |
|        | 12 - 18       | 4.8                   | VAR                     |
|        | 18 - 24       | 11.7                  | VAR - 135*              |
| June 7 | 24 - 06       | 16.5                  | 140 °                   |
|        | 06 - 12       | 16.3                  | 180 •                   |
|        | 12 - 18       | 11,5                  | 180 •                   |
|        | 18 - 24       | 6.8                   | VAR                     |
| June 8 | 24 - 06       | 21.5                  | 140 °                   |
|        | 06 - 12       | 21.2                  | 160 • - 240 •           |
|        | 12 - 18       | 15.2                  | 240 - 330 -             |
|        | 18 - 24       | 14.0                  | 260 °                   |
| June 9 | 24 - 06       | 7.7                   | 360 - 180 -             |
|        | 06 - 12       | 13.7                  | 180 • - 040 •           |
|        | 12 - 18       | 20.3                  | 040 •                   |
|        | 18 - 24       | 28.2                  | 030                     |

Table 3.1 (Cont'd)

| Date     | Time    | Average Wind<br>Speed | Prevailing<br>Direction |
|----------|---------|-----------------------|-------------------------|
| June 10  | 24 - 06 | 23.7                  | 010°                    |
| June 22  | 12 - 18 | 4.5                   | 150°                    |
|          | 18 - 24 | 8                     | 135°                    |
| June 23  | 24 - 06 | 7.2                   | 150°                    |
|          | 06 - 12 | 12.7                  | 130°                    |
|          | 12 - 18 | 12.2                  | 135°                    |
|          | 18 - 24 | 8.2                   | 165°                    |
| June 24  | 24 - 06 | 5.3                   | 165°                    |
|          | 06 - 12 | 19.8                  | 300°                    |
|          | 12 - 18 | 26.3                  | 315°                    |
|          | 18 - 24 | 16.2                  | 320°                    |
| June 25  | 24 - 06 | 7.2                   | 320°                    |
|          | 06 - 12 | 12.3                  | 350° - 210°             |
|          | 12 - 18 | 22.8                  | 210°                    |
|          | 18 - 24 | 10.3                  | 180°                    |
| June 26  | 24 - 06 | 9.5                   | 120°                    |
|          | 06 - 12 | 12.2                  | 130°                    |
|          | 12 - 18 | 9.2                   | 170°                    |
|          | 18 - 24 | 3.7                   | VAR                     |
| August 3 | 12 - 18 | 12.0                  | 180°                    |
|          | 18 - 24 | 7.7                   | 180°                    |
| August 4 | 24 - 06 | 4.0                   | 180°                    |
|          | 06 - 12 | 6.3                   | 190°                    |
|          | 12 - 18 | 9.7                   | 180°                    |
|          | 18 - 24 | 3.0                   | 195°                    |
| August 5 | 24 - 06 | 3.8                   | 210°                    |
|          | 06 - 12 | 3.8                   | 240°                    |
|          | 12 - 18 | 11.0                  | 180°                    |

Station Dismantled August 20<sup>th</sup>





Dilution of the effluent plume from Blackbird Creek based on the rate of reduction of conductivity measured in the plume in July 1987 and 1988 (unitless values) (Sherman 1991).

The results of the colour measurements from the 1988 surveys are shown in Figure 3.5. The results are comparable to that of the 1981 surveys in which the upper range of values approached 1,200 HCU. The colour value decreased gradually to between 50 and 10 near the southern portion of Moberly Bay and to background levels at the edge of the plume (1 HCU) and in southeast Jackfish Bay (Figure 3.5).

In addition to measurements of colour, the 1970 studies (OMOE 1972) also noted that degradation in the aesthetic quality due to odour, floating foam and the dark brown colour of Blackbird Creek and Moberly Bay was "perhaps the most serious impairment in terms of its effect on other water uses". The report also indicated that the offensive odour and objectionable appearance due to foam and the colour of Blackbird Creek have degraded the aesthetic value of the surrounding area as "is evident from the numerous complaints by passing motorists" (OMOE 1972). Subsequent to these studies, Kimberly-Clark installed culverts and landscaped the Highway #17 crossing of Blackbird Creek to alleviate the aesthetic impairment. It was the conclusion of the OMOE (1972) report, however, that additional work was required.

Substantial improvements were made in the Kimberly-Clark mill effluent treatment system subsequent to the 1981 surveys. However, degradation due to colour had not improved as of July of 1988.

## 3.1.2.2 Turbidity

Turbidity is a measure of the suspended particles such as silt, clay, organic matter, plankton and microscopic organisms in water which are usually held in suspension by turbulent flow (McNeely 1979). The Ontario Provincial Water Quality Objective (PWQO) for ambient water turbidity requires <10 percent Secchi depth decrease (OMOE 1984).

Turbidity is a useful characteristic for assessing water quality in areas receiving industrial wastewaters such as those from pulp mills. Receiving waters may have reduced clarity due to the presence of suspended materials such as organic matter from the effluent. Water clarity affects the ability of aquatic life such as algae to thrive in the receiving waters, and may be determined by taking secchi disc readings in the field or by laboratory measurements of optical interferences to the transmission of light (JTU - Jackson Turbidity Units or FTU - Formazin Turbidity Units). Secchi disc values are obtained by determining at what depth the black and white secchi disc is no longer visible from above. Although measurements of JTU and FTU are generally similar their values can not be directly compared to secchi disc. In general, secchi disc depths should decrease as FTU/JTU measurements increase.

The results of the 1970 investigation (OMOE 1972) indicated that highest turbidity occurred in Blackbird Creek and in Moberly Bay adjacent to the outfall (Station 1, Figure 3.1 and Appendix 3.1). These were found to have turbidity values of >150 JTU. The remainder of the samples within Moberly Bay were in the range of 2.5 to 4.9 JTU. The Tunnel Bay sample (Station 19) was 1.3 JTU which corresponded approximately to the values observed at stations in southern Jackfish Bay (1.5 to 2.5 JTU).

The June 1981 median turbidity for all samples collected in Moberly, Jackfish and Tunnel Bays (Stations 701-726, Figure 3.2) was 0.6 FTU with a range of 0.15 to 3.4 FTU (Kirby 1986). The data for each station were not provided by Kirby (1986).

The results of the 1987 and 1988 surveys revealed much higher turbidity values in Moberly Bay than found in 1970 or implied by the ranges reported for 1981. Turbidity values from 1987/88 ranged from 0.20 to 460 FTU. The Moberly Bay stations recorded mean values between 0.52 and 27.30 FTU (one high mean of



Figure 3.5

Colour values (HCU) for 1988 (Sherman 1991).

154.00 FTU was recorded at Station 811) in July and August of 1987 and between 0.63 and 25.00 FTU in July of 1988. The highest mean values were observed at the stations located closest to the mouth of Blackbird Creek (Stations 701, 702, 803, and 805-810, Figure 3.3). In comparison, stations in Tunnel and Jackfish Bays had mean values of between 0.25 and 1.80 during all three sampling periods which are comparable to the values found during the 1970 survey.

The 1987/88 survey included an investigation of water clarity as determined from secchi disc measurements (Sherman 1991). Secchi disc readings indicated that water clarity was poor within both the plume and Moberly Bay with depths ranging between 0.1 and 2.5 m. Outside the plume, in Jackfish Bay and Tunnel Bay, clarity was good with values of 3.0 to 8.0 m. Poor clarity within Moberly Bay was due to a combination of high dissolved colour (Section 3.1.2.1) and high suspended solids resulting from the Blackbird Creek discharge. Spatial trends in suspended solids concentrations were similar to those of colour with the highest concentrations near Blackbird Creek at Stations 701, 803 and 806 (greater than 30 mg/L) and declined to background levels of less than 1 mg/L (Figure 3.6).

The PWQO for turbidity was exceeded within the plume, including all of Moberly Bay, during the 1987 and 1988 surveys because the secchi disc depth measurements were reduced by more than 10 percent as compared to background conditions outside the plume. In addition, there does not appear to be any improvement in turbidity within areas of the AOC affected by the effluent plume between 1970 and 1988.

## 3.1.2.3 Dissolved Oxygen, BOD<sub>5</sub> and Temperature

Dissolved oxygen levels are an important characteristic of water, as they determine the ability of fish and other oxygen-requiring aquatic life to survive. Low oxygen levels can have an adverse affect on biota which is compounded when water temperatures are high. Dissolved oxygen levels in receiving waters may be reduced due to oxygen demanding materials which are measured in effluent as Biological Oxygen Demand - 5 day (BOD<sub>5</sub>) and Chemical Oxygen Demand (COD). The PWQO require a percent saturation of between 54 and 57 percent for water temperatures normally found in Lake Superior and its embayments. This is also expressed as a concentration of O<sub>2</sub> of greater than 5 mg/L for the protection of cold water biota (OMOE 1984).

Dissolved oxygen was measured as percent saturation during the 1970 survey. Although the percent saturation increased with distance from the mouth of Blackbird Creek, all stations were within the PWQO. The lowest value of 60 percent occurred at Station 1 (Figure 3.1) closest to the mouth of Blackbird Creek. This station also had the highest BOD<sub>5</sub> (240 mg/L). The remainder of stations in Moberly Bay ranged between 71 and 80 percent saturation whereas those in Jackfish and Tunnel Bays ranged between 75 and 96 percent (OMOE 1972). The BOD<sub>5</sub> concentration ranged between 1.6 and 3.9 mg/L (mean 2.34 mg/L) in Moberly Bay and between 1.2 and 1.8 mg/L (mean 1.39 mg/L) in Jackfish and Tunnel Bays.

The 1987/88 water quality survey was conducted before the secondary treatment system was brought on line by the mill, and the Blackbird Creek discharge was found to be high in oxygen demanding material. As in the case for colour and turbidity, the high biological oxygen demand of the Creek discharge extended through much of Moberly Bay (Figure 3.7) resulting in partial depletion of dissolved oxygen in the surface waters. BOD<sub>5</sub> concentrations in Moberly Bay were much higher at most stations during these surveys than found during 1970. Figure 3.7 shows the results for individual days in 1987 and 1988. The concentration of BOD<sub>5</sub> in the upper half of Moberly Bay ranged between 4 and 100 mg/L. The concentration decreased to about 1 mg/L at the southern end of Moberly Bay in July 1987 and within the central portion of Jackfish Bay in July 1988 (Figure 3.7).



Figure 3.6

Suspended solid concentrations (mg/L) for 1987 and 1988 (Sherman 1991).



Figure 3.7

BOD concentrations (mg/L) for 1987 and 1988 (Sherman 1991).

The mean value of station means for Moberly Bay was 16.0 mg/L and for Jackfish/Tunnel Bays was 0.83 mg/L. Typical values for open water in Lake Superior embayments are less than 1 mg/L (OMOE 1983).

Figures 3.8 and 3.9 compare vertical profiles of temperature and oxygen for Station 701 in Moberly Bay, Station 716 in Jackfish Bay and Station 713 in Tunnel Bay on selected days in the summers of 1987 and 1988. Surface waters at Station 701 had much lower dissolved oxygen concentrations than Stations 713 or 716, which demonstrates the oxygen demanding nature of the mill effluent on the receiving waters. The values recorded for the samples shallower than 4 m at Station 701 were in violation of the PWQO for waters less than 20 °C. Waters below the thermocline (approximately 6 to 8 m deep, Figure 3.9), which limits the depth of the plume in Moberly Bay, were similar in temperature and oxygen concentration to waters in Tunnel Bay and appeared unaffected by the effluent.

In conjunction with a fish bioassay conducted in 1983, dissolved oxygen concentrations were taken throughout Jackfish Bay (Flood et al. 1986). The lowest values detected during the study period were from sites located along the western shore of Jackfish Bay. Values progressively increased in samples taken on central and northern transects, respectively. The PWQO was not met at 24 percent of the sample stations.

In a 1990 fish bioassay, conducted to determine the effectiveness of the secondary treatment plant, conditions were found to be much improved (Flood 1990). Where daily dissolved oxygen values ranged from 4.2 to 5.2 mg/L at the Blackbird Creek discharge in July 10 to 14 of 1983, they ranged from 6.8 to 7.3 mg/L in July 26 to 30 of 1990. The lowest dissolved oxygen value measured in the 1983 study was 27 percent saturation, compared to 73 percent in 1990 (Table 3.2).

For a brief period in the spring, the Blackbird Creek discharge sinks, causing the discharge to pool in the deposition areas of Moberly Bay (Beak Consultants 1984). During this period, effluent with low oxygen levels is in direct contact with the bed of Moberly Bay and possibly also with Jackfish Bay proper. This contact would temporarily depress oxygen levels in the area and toxic factors in the effluent would come in direct contact with benthos.

## 3.1.2.4 Major lons, pH and Alkalinity

Concentrations of major ions in Moberly and Jackfish Bays were also found to be affected by the effluent plume from Blackbird Creek during the 1987 and 1988 surveys (Sherman 1991). Highest concentrations of cations (calcium, magnesium, sodium and potassium) and anions (sulphate and chloride) along with conductivity measurements were found in the vicinity of Blackbird Creek and values decreased with increasing distance from the discharge (Appendix 3.1). Conductivity provides a measure of the total ionic composition of the water and, hence, provides a useful approximation of the shape and extent of the effluent plume (Figure 3.4). During 1987/88 conductivity values (at 25 °C) ranged from 96.0 to 1,590.0 \(mu\text{mhos/cm}.\)

Normally, the largest proportion of cations in Lake Superior is composed of calcium and magnesium (OMOE 1983). However, within the effluent plume in Moberly Bay, sodium dominates the cations. The largest proportion of anions is normally the bicarbonate ion (HCO<sub>3</sub>.). However, the Blackbird Creek discharge resulted in a dominance of chloride ion. Both sodium salts and chloride (in the forms of chlorine) are added during the kraft pulping process.

pH values in Moberly Bay surface waters were below typical Lake Superior values as a result of the effluent discharge. Typical pH in Lake Superior, as shown in the unaffected areas of Jackfish Bay, are 7.8 to 8.0. During 1987 and 1988, the mean pH was lower at all Moberly Bay stations; ranging between 6.1 and 7.9 (Sherman 1991). pH measurements from the entire 1987/88 data set ranged from 5.4 to 8.00. The lower

# A STATION 702 - MOBERLY BAY



Figure 3.8 Vertical profiles for water temperature (C), dissolved oxygen (mg/L) and conductivity (μS/cm) at stations located in Moberly Bay (702 & 704) in 1987 and 1988 (Sherman 1991).

D 25/05/88

Depth (m) 17/07/68

24/07/88

Depth (m) 17/07/88

## C STATION 716 - JACKFISH BAY

Depth (m) 17/07/88



Depth (m) 17/07/88

9 24/07/88

Depth (m) 17/07/68

0 25/05/88

Figure 3.9

Vertical profiles for water temperature (C), dissolved oxygen (mg/L) and conductivity (uS/cm) at stations located in Jackfish Bay (716), and Tunnel Bay (713) (Sherman 1991).

Table 3.2 Dissolved oxygen levels at the fish exposure sites in Jackfish Bay, July 10-14, 1983 and July 26-30, 1990 (Flood 1990).

|                           | 1983  |       |                  |       |                  |          | 1990     |          |          |          |  |  |
|---------------------------|-------|-------|------------------|-------|------------------|----------|----------|----------|----------|----------|--|--|
| Exposure Site             | Day 1 | Day 2 | Day 3            | Day 4 | Day 5            | Day<br>1 | Day<br>2 | Day<br>3 | Day<br>4 | Day<br>5 |  |  |
| 1. Blackbird Creek        | 6.2   | . •   | 6.0              | 4.9*  | 4.8*             | 6.8      | 6.8      | 7.3      | •        | 7.2      |  |  |
| 2. 0.3 km out centre      | 4.2   | •     | 3.0 <sup>†</sup> | 7.5   | 3.7 <sup>†</sup> | 8.5      | 10.2     | 8.5      |          | 9.4      |  |  |
| 3. 0.75 km out westshore  | 6.9   | •     | 2.7              | 7.7   | 4.6 <sup>†</sup> | 8.6      | 8.9      | 8.6      |          | 9.5      |  |  |
| 4. 0.74 km out centre     | 6.4   | •     | 3.5 <sup>†</sup> | 8.1   | 4.4              | 8.7      | 10.0     | 9.6      | • •      | 9.5      |  |  |
| 5. 0.75 km out northshore | 8.5   | •     | 7.6              | 8.2   | 9.6              | 9.4      | 10.4     | 10.0     | •        | 9.2      |  |  |
| 6. 1.0 km out westshore   | 7.1   |       | 3.3 <sup>†</sup> | 7.6   | 4.1 <sup>†</sup> | 8.0      | 9.0      | 9.5      |          | 9.7      |  |  |
| 7. 1.0 km out centre      | 9.6   | · • . | 8.3              | 8.4   | 4.7*             | 9.5      | 10.0     | 10.0     | -        | 9.7      |  |  |
| 8. Cody Island westshore  | 6.6   | -     | 2.8 <sup>†</sup> | 9.4   | 4.4 <sup>†</sup> | 8.0      | 8.6      | 9.8      |          | 9.8      |  |  |
| 9. Cody Island centre     | 8.7   | •     | 6.6              | 8.8   | 9.1              | 9.5      | 10.5     | 10.0     | -        | 10.1     |  |  |
| 10. 2.4 km out westshore  | 8.9   |       | 9.9              | 8.8   | 9.5              | 9.3      | 9.7      | 10.6     | <b>-</b> | 10.6     |  |  |
| 11. Little Nick Rock      | 9.5   | -     | 9.7              | 9.0   | 9.7              | 9.8      | 10.3     | 10.0     | •        | 10.5     |  |  |
| 12. 3.5 km out westshore  | 9.6   | -     | 10.2             | 9.5   | 10.4             | 9.4      | 9.8      | 10.8     | •        | 10.7     |  |  |
| 13. Mouth of Tunnel Bay   | •     | •     |                  |       |                  | 9.7      | 10.5     | 10.5     | -        | 11.9     |  |  |
| C1 Control 1 Victoria Bay | 10.7  | -     |                  | 9.1   | 9.5              | 10.8     | 10.9     | 11.1     |          | 11.3     |  |  |
| 2C2 Control 2 Tunnel Bay  | 10.3  |       | 9.8              |       | 9.9              | 9.7      | 10.6     | 10.5     | •        | 11.4     |  |  |

Note No observations were taken on Day 4 1983 (July 29), due to bad weather conditions.

dissolved oxygen conditions which did not meet the minimum Provincial Water Quality Objectives for the protection of cold-water biota.

dissolved oxygen conditions which did not meet the minimum Provincial Water Quality Objective for the protection of warm or cold-water biota.

limit of the PWQO (6.5 to 8.5) was exceeded. In addition, mean pH values at stations 701 (6.35 pH), 803 (6.10 pH) and 806 (6.40 pH) taken during July 1987 were below the lower limit set by the PWQO.

During 1987 the mean alkalinity at all stations including those in Moberly Bay were primarily within the range of 43 to 45 mg/L with occasional values as low as 30.3 and as high as 57.2 mg/L. During July 1988 the mean alkalinity concentrations at stations within Moberly Bay, particularly those closest to the mouth of Blackbird Creek, tended to be much higher. The overall range was 46.5 to 194.0 mg/L with the highest values at the six stations located closest to the mouth of Blackbird Creek (Appendix 3.1). Mean concentrations in Jackfish and Tunnel Bays were generally within the range 44.5 to 52.5 mg/L. Although it would not appear that the effluent had much effect on Moberly or Jackfish Bays during 1987, it clearly resulted in elevated concentrations during 1988. The minimum and maximum recorded values during 1987/88 were 4.00 and 220.00 mg/L respectively.

The PWQO states that alkalinity should not be decreased by more than 25 percent of the natural concentrations. Although it is not clear what the natural concentrations are, the data for 1987 and from Jackfish Bay in 1988 indicate that it is likely about 45 mg/L. Thus there does not appear to be any violation of the PWQO. Short term elevation of the alkalinity in Moberly Bay occurs due to the effluent and although this does not violate any objectives, if sustained, it could result in a change in trophic status in the nearshore waters of the AOC.

#### **3.1.2.5** Nutrients

The effluent causes an increase in plant nutrients, particularly phosphorus and ammonia, within Jackfish Bay. The Provincial Water Quality Guideline for average total phosphorus in lake water is 20  $\mu$ g/L. This guideline was established to avoid nuisance algal growth, and a guideline of 10  $\mu$ g/L was established to achieve a higher level of protection from nuisance algal growth. The PWQO for un-ionized ammonia (i.e. NH<sub>3</sub>) is 20  $\mu$ g/L.

The average total phosphorus concentration at all stations in Moberly Bay during 1970 was 51.5  $\mu$ g/L, well in exceedence of the PWQ Guidelines. Station 10 (Figure 3.10) was the only station in Moberly Bay not to exceed the lower guideline based on an individual sample (8.0  $\mu$ g/L). The mean total phosphorus concentration of all stations in Jackfish Bay was 11.5  $\mu$ g/L, which although exceeding the lower guideline was well below the upper guideline. These concentrations clearly show the effect of the Kimberly-Clark effluent on nutrient enrichment in the AOC. Total phosphorus was <10  $\mu$ g/L at most stations in both Moberly and Jackfish Bays. However, individual exceedences occurred at Station 1 (330  $\mu$ g/L) located closest to the outlet of Blackbird Creek and Stations 15 (60  $\mu$ g/L) and 16 (40  $\mu$ g/L) in Jackfish Bay (Figure 3.1).

Mean total phosphorus concentrations measured during the 1987 and 1988 surveys exceeded the 10  $\mu$ g/L guideline at all 24 stations (100%) in Moberly Bay during July 1987; at 21 stations (87.5%) in August 1987; and 21 stations (87.5%) during July 1988. The 20  $\mu$ g/L guideline was exceeded at 21 stations (87.5%) in July 1987; 20 stations (83.3%) in August 1987; and at seventeen stations (70.8%) in July 1988 in Moberly Bay (Appendix 3.1). Those stations with the highest mean total phosphorus were located closest to the mouth of Blackbird Creek (70 to 570  $\mu$ g/L). Figure 3.10 illustrates the pattern of total phosphorus concentrations in the AOC for individual samples collected in July 1987 and July 1988. All samples ranged from 1 to 770  $\mu$ g/L. There were no exceedences at the four Tunnel Bay stations (Figure 3.1) for any of the three periods. In Jackfish Bay, the upper guideline was exceeded by mean concentrations at only two stations (12.5%) and only during the July 1987 surveys.



Phosphorous concentrations (ug/L) for 1987 and 1988 (Sherman 1991).

The PWQO for un-ionized ammonia is 20  $\mu$ g/L. Unionized ammonia constitutes only 0.22 to 0.86 percent of total ammonia based on temperature and pH conditions present. This objective was not exceeded in 1987 or 1988. Total ammonia ranged from 6 to 350  $\mu$ g/L during 1987 and 1988. The highest total ammonia concentrations occurred near the mouth of Blackbird Creek. The mean concentration of total ammonia increased from 1987 to 1988. 1987 mean values ranged from 10 to 40  $\mu$ g/L with 1988 values ranging from 100 to 170  $\mu$ g/L (Appendix 3.1).

Even though the total phosphorus data indicate localized eutrophication is occurring within Moberly Bay, high turbidity and colour (as discussed in previous sections) will likely inhibit algae growth in the bay. As these are reduced through pollution abatement efforts, it is expected that phosphorus concentrations in water (and sediment) will support more algal growth than is typical for nutrient poor (oligotrophic) Lake Superior waters.

Based on the data presented above and in Appendix 3.1, it appears that the concentrations of total phosphorus have not improved between 1970 and 1988 and total ammonia concentrations have increased between 1987 and 1988. Although these parameters are suitably diluted by the time the plume reaches the main portion of Jackfish Bay, the potential for eutrophication of the entire area of Moberly Bay is extremely high.

#### 3.1.2.6 Bacteria

Certain bacterial species are pathogens which may cause communicable diseases when present in water utilized by humans for body contact (McNeely et al. 1979). The origin of pathogens is primarily from human and animal wastes and contributed to natural waters via inadequately treated municipal wastewater and runoff contaminated by urban or agricultural sources such as septic systems and animal feed lots. Bacteria are also derived from industrial wastewaters, particularly varieties of Klebsiella spp. which are common in pulp mill effluents (Kirby 1986). These waters generally have lower densities of the disease causing bacteria (particularly Escherichia coli and Pseudomonas aeruginosa). Analyzing water samples for fecal coliform bacteria, particularly, Escherichia coli is a useful way of determining the presence of potential human fecal contamination. The PWQO for the swimming and bathing use of water is 100 organisms/100 mL of fecal coliform and 1,000 organisms/100 mL of total coliform bacteria. Escherichia coli constitutes 97 percent of the bacteriological flora of human faeces (CCREM 1987) and is a more reliable indicator of health risk associated with gastrointestinal illness. The IJC has recommended a guideline of 23 organisms/100 mL for the seasonal geometric mean of this bacteria (CCREM 1987). Pseudomonas aeruginosa is the main etiological agent for ear infections (CCREM 1987). The IJC has recommended that, for the protection of users of nearshore waters against ear infections, no more than 25 percent of analyses should have densities of this bacteria greater than 10 organisms/100 mL which corresponds to a geometric mean density of 1 organism/100 mL (CCREM 1987).

The results of bacteriological analyses conducted during the 1970 survey (OMOE 1972) indicated that geometric means at all stations were well below the PWQO for fecal coliform bacteria with all but one station having <4 organisms/100 mL (Appendix 3.1). The six stations closest to the outfall of Blackbird Creek exceeded the total coliform objective of 1,000 organisms/100 mL (range of 1,200 to 3,900 organisms/100 mL).

The June 1981 survey reported by Kirby (1986) also included a bacteria isolation survey involving Moberly, Jackfish and Tunnel Bays as well as sample locations in Lake Superior immediately to the east of Jackfish Bay and along a 20 km stretch west of Jackfish Bay (OMOE 1983). Bacterial sampling was conducted at most stations during June and July 1981 as well as selected stations (the Kimberly-Clark pumphouse and Blackbird Creek) throughout the year. There were few bacteria in the water in the winter months, whereas numbers increased in the spring and peaked in July and August. Results from this survey indicated that

bacteria levels were high in Moberly Bay and dispersed slowly in Jackfish Bay. Elevated bacterial levels were observed as far west as the pumphouse, south of the Town of Terrace Bay. These were traced back to the effluent discharged by Kimberly-Clark Canada Inc. (OMOE 1981). Due to thermal stratification, the effluent mixed poorly with the receiving waters in Moberly and Jackfish Bays.

Results of the June 1981 sampling indicated densities of *Pseudomonas aeruginosa* of between 300 and 19,000 organisms/100 mL at three stations in Moberly Bay and northern Jackfish Bay (Stations 701, 704 and 710, Figure 3.2) with the highest densities closest to the mouth of Blackbird Creek (Station 701). Densities of *Escherichia coli* ranged between <10,000 to <100,000 at Stations 701, 702, 703, 706 and 707 in Moberly Bay. This organism was not found in the Lake Superior samples during the June surveys. Additional surveys in July 1981 found high densities of *Pseudomonas aeruginosa* between 16 and 6,700,000 organisms/100 mL in Moberly and Jackfish Bays and between <2 to >15,000 organisms/100 mL in Lake Superior samples to the west of Jackfish Bay. Generally the density of *Pseudomonas aeruginosa* decreased from east to west (OMOE 1983).

All densities of *Pseudomonas aeruginosa* and *Escherichia coli* in Moberly Bay during the June surveys exceeded the recommended IJC guidelines. The density of *Pseudomonas aeruginosa* also exceeded the IJC recommended guideline during July 1981 at all stations in Moberly and Jackfish Bays as well as in Lake Superior. Although the density of this organism decreased continuously as the plume passed through Jackfish Bay and westerly along the shore of Lake Superior, it is clear that the effluent discharge from Blackbird Creek is contributing to significant bacterial contamination of the Jackfish Bay AOC and portions of the north shore of Lake Superior.

The 1981 bacteria data was also described briefly by Kirby (1986) who noted high concentrations of heterotrophic bacteria at stations nearest the Blackbird Creek outfall. Although there is no PWQO for heterotrophs, the high densities are indicative of high concentrations of organic pollutants. He also noted violations of the fecal coliform PWQO over all of Moberly Bay and Tunnel Bay as well as the northern and western portions of Jackfish Bay. Fecal coliform levels greater than one million colonies per 100 mL were detected in Moberly Bay and these decreased to between 100 and 19,999 organisms/100 mL in southwestern Jackfish Bay and at Cape Victoria on Lake Superior (Stations 720 and 723, Figure 3.2). The violations occurred at 21 stations (80.8% of stations). However, the analytical test to detect fecal coliforms is particularly sensitive to the presence of Klebsiella pneumoniae for which there is some debate regarding, health risks (Kirby 1986).

Table 3.3 summarizes the results of bacteriological analyses conducted at selected stations during the 1987 surveys (Sherman 1991). Figure 3.11 shows the distribution of total coliform densities during one survey in July 1987 and one in July 1988. The PWQO for total coliform bacteria was exceeded by geometric means at all stations listed in Table 3.3 except Station 713 which is located Tunnel Bay. Stations 20 and 5 are located within Blackbird Creek upstream of Lake A and downstream of Moberly Lake, respectively. The density of bacteria increased as the effluent passed through the Blackbird Creek system and the highest densities for all bacteria occurred at the downstream Blackbird Creek station and the Moberly Bay station located closest to the creek mouth (Station 701, Figure 3.3). This increase is likely due to bacterial reproduction within the relatively warm waters of the creek. Toxic materials in higher concentrations in the effluent at Station 20 than at Station 5 may also inhibit bacterial growth at this location. The high temporal variability in total coliform density is shown by the results of the individual surveys illustrated in Figure 3.11. Densities of Escherichia coli during July and August of 1987 exceeded the recommended IJC guideline at Stations 5 and 20 as well as at Station 702 in Moberly Bay. The IJC recommended guideline for Pseudomonas aeruginosa was likely also exceeded at these stations as well as all other stations except Station 713 in Tunnel Bay.



Figure 3.11

Total coliform densities for individual surveys in 1987 and 1988 (Sherman 1991).

Table 3.3 Bacteriological quality at selected stations in the Jackfish Bay AOC during July and August 1987 (Sherman 1991). See Figure 3.3 for station locations.

| Station #<br>(samples) |           |            | n Coliform (by MPN) aer |     | Sulphate<br>Reducers | Heterotroph<br>Bacteria<br>(20 °C)<br>(cnt/mL) |
|------------------------|-----------|------------|-------------------------|-----|----------------------|------------------------------------------------|
| 20 (5)                 | 7,096     | 626,614    | <4                      | 29  | 1,282                | 130,918                                        |
| 05 (6)                 | 3,749,730 | 17,458,222 | 55                      | 113 | 3,250,873            | 7,194,490                                      |
| 701 (10)               | 8,166,677 | 22,252,926 | 206                     | 208 | 3,618,000            | 8,497,274                                      |
| 702 (7)                | 947,389   | 2,492,792  | 31                      | 63  | 414,498              | 2,736,284                                      |
| 811 (8)                | 266,795   | 1,070,603  | 14                      | 32  | 117,953              | 1,567,938                                      |
| 704 (4)                | 257,776   | 665,868    | 16                      | 26  | 892,992              | 1,388,210                                      |
| 707 (5)                | 93,157    | 358,682    | <8                      | 19  | 147,556              | 1,146,976                                      |
| 716 (2)                | 12,986    | 60,168     | <3                      | 4   | 3,000*               | 266,627                                        |
| 713 (4)                | 641       | 3,181      | <3                      | 1   | 194                  | 33,394                                         |

Note All values are geometric mean of samples in organisms/100 mL unless otherwise indicated.

\* single result

Abundant organic matter deposited in the receiving waters from the mill effluent provides a hospitable habitat for microorganisms such as sulphate reducers and heterotrophic bacteria. Massive densities of both indicator organisms were present at the mouth of Blackbird Creek and into Moberly Bay (Table 3,3). Densities in the effluent were low due to poor conditions for growth of the bacteria within the mill.

High total coliform densities in the effluent likely reflect high densities of the bacterium Klebsiella spp. However, the presence of Escherichia coli and Pseudomonas aeruginosa in densities exceeding the LJC recommended guidelines during 1981 and 1987 is of some concern as it suggests a potential health risk associated with body contact recreation in Moberly and Jackfish Bays as well as to the west along the shore of Lake Superior. The presence of Escherichia coli also indicates a significant mammalian faeces component to the wastewater which may include human sources.

#### **3.1.3 Metals**

The PWQOs for metals were established to protect aquatic life against the toxic effects of elevated concentrations (OMOE 1984). Metals are known to have the potential to bioaccumulate (Callaghan et al. 1979).

Metals were not measured as part of the 1970 OMOE survey. During the 1981 surveys, metals were only measured at Station 701 which was located closest to the mouth of Blackbird Creek (Kirby 1986). The results of the June and September surveys are provided in Table 3.4 along with the respective PWQOs and

Table 3.4 Concentrations (mg/L) of metals in whole water at station 701 in Jackfish Bay, 1981 (Kirby, 1986).

|                   | Cd     | Cr    | Cu     | Ni       | Hg        | Pb       | Zn       |
|-------------------|--------|-------|--------|----------|-----------|----------|----------|
| Provincial Water  |        |       | •      |          |           |          |          |
| Quality Objective | 0.0002 | 0.100 | 0.005  | 0.025    | 0.00020   | 0.005    | 0.030    |
| GLWQA Objective   | 0.0002 | 0.050 | 0.005  | 0.025    | 0.00020   | 0.010    | 0.030    |
| June 23 9:00 a.m. | -      | •     | •      | -        |           | • •      |          |
| 11:00 a.m.        | 0.003* | 0.015 | 0.010* | 0.005    | 0.00330*  | 0.042*   | 0.050*   |
| 1:00 p.m.         | 0.002* | 0.020 | 0.009* | 0.007    | 0.00110*  | 0.039*   | 0.060*   |
| 3:00 p.m.         | 0.002* | 0.011 | 0.010* | 0.004    | 0.00300*  | 0.048*   | 0.050*   |
| June 24 9:00 a.m. | 0.002* | 0.009 | 0.040* | •        | 0.00014   | •        | 0.050*   |
| 11:00 a.m.        | 0.002* | 0.008 | 0.008* | <b>-</b> | 0.00008   | •        | 0.030    |
| 1:00 p.m.         | 0.003* | 0.009 | 0.006* | -        | < 0.00005 | •        | 0.040*   |
| 3:00 p.m.         | 0.003* | 0.011 | 0.020* | _        | < 0.00005 | •        | 0.040*   |
| June 25 9:00 a.m. | 0.003* | 0.012 | • •    | •        | •         | •        | 0.050*   |
| 11:00 a.m.        | 0.003* | 0.011 | •      | -        |           | •        | 0.050*   |
| 1:00 p.m.         | 0.002* | 0.007 | •      |          | •         | -        | 0.050*   |
| 3:00 p.m.         | 0.002* | 0.009 | •      | _        |           | <u>.</u> | 0.040*   |
| Sept 14 9:00 a.m. | 0.007* | 0.023 | 1.000* | 0.028*   | < 0.00005 | 0.004    | 0.046*   |
| 11:00 a.m.        | 0.002* | 0.017 | 1.200* | 0.012    | < 0.00005 | 0.002    | 0.042*   |
| 1:00 p.m.         | 0.002* | 0.013 | 2.000* | 0.017    | 0.00007   | 0.001    | 0.090*   |
| 3:00 p.m.         | 0.002* | 0.011 | 0.008* | 0.015    | 0.00005   | 0.001    | 0.038*   |
| Sept 15 9:00 a.m. | 0.002* | 0.011 | 0.072* | 0.014    | < 0.00005 | 0.001    | 0.040*   |
| 11:00 a.m.        | 0.002* | 0.013 | 0.047* | 0.014    | < 0.00005 | 0.001    | 0.031*   |
| 1:00 p.m.         | 0.002* | 0.011 | 0.008* | 0.017    | < 0.00005 | 0.001    | 0.028    |
| 3:00 p.m.         | 0.002* | 0.011 | 0.008* | 0.015    | < 0.00005 | 0.001    | 0.029    |
| Sept 16 9:00 a.m. | -      | 0.015 | 0.003  | 0.016    | 0.00008   | 0.001    | <b>-</b> |
| 11:00 a.m.        |        | 0.009 | _      | 0.016    | < 0.00005 | 0.001    |          |
| 1:00 p.m.         |        | •     | -      |          | <0.00005  | ·        |          |
| 3:00 p.m.         |        |       | _      | •        | < 0.00005 |          |          |

exceeds most stringent guideline.not sampled.

GLWQA Specific Objectives. The PWQOs and the GLWQA Specific Objectives for cadmium (100% of samples), copper (93.8%), nickel (7.7%), lead (23.1%) and zinc (84.2%) were exceeded at Station 701 (Table 3.4). The maximum concentration of copper was 400 times the objective and that of zinc was 3 times the objective (Kirby 1986). Cherwinsky and Murray (1986) had estimated that effluent dilution in Moberly Bay is only 20:1 at about 6 km from the discharge, indicating that elevated metals could still be expected further out from this station.

Mercury was sampled at 11 stations including Moberly and Jackfish Bay locations. The Objectives were exceeded at all sample locations on June 23. These included Stations 701 (Table 3.4), 702, 704, 707, 709 to 714 and 719 (Figure 3.2). In all, 19.1 percent of samples exceeded the PWQO and the GLWQA Specific Objective. Mercury concentrations decreased as distance from the mill discharge increased, indicating that the mill effluent was the source of mercury. Kirby (1986) concluded that the mill effluent was the most likely source of the metal contamination although he noted that other sources of zinc and copper may be present due to high concentrations on September 14, before the effluent would have reached the mouth of Blackbird Creek following start-up operations.

Metal concentrations were determined for all stations during the July and August 1987 and July 1988 surveys (Sherman 1991). The results for each station are provided in Appendix 3.1 and the sample locations are shown in Figure 3.3. Table 3.5 summarizes the range in station means for each metal and the percent exceedences of PWQO and GLWQA Specific Objectives by all station means.

Exceedences of guidelines occurred in Moberly Bay for aluminum, beryllium, iron, mercury, cadmium, chromium, copper, nickel, lead and zinc (Table 3.5). Only copper and lead mean concentrations exceeded guidelines in Tunnel Bay and only during one survey (July 1987). Guidelines were exceeded by station means in Jackfish Bay during two of the three surveys (July and August 1987). Exceedences occurred for mercury, cadmium, copper, lead and zinc. The frequency of exceedences varied considerably by parameter and date of survey, however, most guideline exceedences occurred during the July 1987 surveys and the fewest occurred during the 1988 surveys. Except for beryllium and chromium, the maximum values recorded for metals in water during 1987/88 exceeded the PWQO by one to two orders of magnitude (Table 3.5). Maximum values of beryllium exceeded the PWQO by five times and chromium was exceeded by 1.3 times.

## 3.1.5 Organic Contaminants

#### 3.1.5.1 Phenolics

Phenolic substances are organic compounds which may occur naturally in trace amounts as they are released by aquatic plants and decaying vegetation (McNeely et al. 1979). Major sources of phenolic compounds are released to the aquatic environment from the distillation of coal and wood, oil refining, chemical production, animal and human waste and phenolic pesticides. The PWQO to protect against tainting of edible fish flesh for reactive phenolics is  $1 \mu g/L$ .

During the 1981 survey by OMOE, phenolic substances were detected in the Kimberly-Clark mill effluent (Kirby 1986). The PWQO was exceeded in Moberly Bay at stations up to 4 km from the mouth of Blackbird Creek in June and up to 2.5 km in September. The maximum concentrations measured were 380  $\mu$ g/L in June and 244  $\mu$ g/L in September at Station 701 (Figure 3.2), closest to the mouth of the Creek (Kirby 1986). However, due to their relative instability, concentrations declined rapidly between stations 701 and 702.

Because the toxicity of specific phenolic compounds, as well as their ability to impart taste and odour, varies greatly, measurements were also made for trichlorophenol, tetrachlorophenol, pentachlorophenol, phenol and guaiacol. The corresponding PWQOs and concentrations of these parameters at 11 stations in Moberly Bay, Tunnel Bay and northern Jackfish Bay are provided in Table 3.6. Stations near the head of Moberly Bay

Table 3.5 Ranges in station means and percent exceedence by station means of PWQO and GLWQA Specific Objectives (for most stringent objective) for metals analyzed in Moberly Bay (MB), Jackfish Bay (JB) and Tunnel Bay (TB) during 1987 and 1988 (Sherman 1991). All values are in  $\mu$ g/L.

|                            | AL                  | As    | Be               | Fe                 | Hg               | Cd               | <b>.</b>        | Cu                | Mn     | Ni               | Pb                | Zn                |
|----------------------------|---------------------|-------|------------------|--------------------|------------------|------------------|-----------------|-------------------|--------|------------------|-------------------|-------------------|
| PWQO                       | 75                  | 100   | 10               | 300                | 0.2              | 0.2              | 100             | 5                 | -      | 25               | 5                 | 30                |
| GLWQA                      | _                   | 50    | -                | 300                | 0.2              | 0.2              | 50              | 5                 | _      | 25               | 10                | 30                |
| Total<br>Data Set<br>Range | ND-2,100            | ND-18 | ND-50            | ND-2,600           | NO-70            | ND-40            | ND-130          | ND-410            | ND-590 | ND-100           | ND-220            | ND-380            |
| Bay                        |                     |       |                  |                    |                  | JULY             | 1987            |                   |        |                  |                   |                   |
| MB<br>(23 STA)             | ND-1,000<br>(60.9%) | ND    | ND-37<br>(17.4%) | 9-1,210<br>(17.4%) | ND-13<br>(13%)   | ND-7<br>(8.7%)   | ND-110<br>(13%) | ND-177<br>(43.5%) | 16-507 | ND-70<br>(21.7%) | ND-113<br>(56.5%) | ND-200<br>(30.4%) |
| JB<br>(4 STA)              | ND-55               | ND    | ND-4             | 18-80              | ND-13<br>(25%)   | ND               | ND-7            | ND-11<br>(50%)    | ND-31  | ND-6             | ND-112<br>(75%)   | 3-135<br>(75%)    |
| TB<br>(3 STA)              | NO-39               | ND    | ND-6             | 37-62              | ND               | ND               | ND-6            | ND-6<br>(33.3%)   | ND-7   | ND-7             | 7-23<br>(100%)    | ND-9              |
|                            |                     |       |                  |                    |                  | AUGUST           | 1987            | Yan italia        |        |                  |                   |                   |
| MB<br>(21 STA)             | ND-612<br>(57.1%)   | ND    | ND-23<br>(9.5%)  | ND-1,140<br>(19%)  | ND-12<br>(4.8%)  | ND-11<br>(23.8%) | ND-40           | ND-23<br>(71.4%)  | ND-313 | ND-23            | ND-63<br>(69.6%)  | ND-60<br>(9.5%)   |
| JB<br>(4 STA)              | 16-41               | ND    | ND               | 28-74              | ND               | ND-0.4<br>(25%)  | ND-3            | ND                | 6-17   | ND               | ND                | ND-4              |
| TB<br>(3 STA)              | ND-16               | ND    | ND               | 11-45              | ND               | ND               | ND              | ND                | 2-3    | ND-3             | ND-4              | ND                |
|                            |                     |       |                  |                    |                  | JULY             | 1988            |                   |        |                  |                   |                   |
| MB<br>(22 STA)             | 16-508<br>(45.5%)   | NO    | ND               | ND-505<br>(9.1%)   | ND-35<br>(18.2%) | ND-4<br>(13.6%)  | ND-45           | ND-18<br>(36.4%)  | 7-348  | ND-13            | ND-20<br>(13.6%)  | ND-39<br>(4.5%)   |
| JB<br>(4 STA)              | ND-35               | ND    | ND               | ND-50              | ND               | ND               | ND-2            | ND                | ND-20  | ND               | ND                | ND-1              |
| TB<br>(3 STA)              | 13-15               | ND    | ND               | ND-24              | ND               | ND               | ND-2            | ND                | 3-6    | ND               | ND                | 1                 |

Table 3.6 Concentrations (µg/L) of phenolic compounds detected in Moberly Bay (MB), Tunnel Bay (TB) and Jackfish Bay (JB) in 1981 (Kirby, 1986). Station locations are shown in Figure 3.2).

| Station                                                   | Bay                               | Date    | TCP  | ПСР  | PCP  | Phenol | Guaiacol   |
|-----------------------------------------------------------|-----------------------------------|---------|------|------|------|--------|------------|
| Provincial '                                              | rovincial Water Quality Objective |         | 18.0 | 1.0  | 0.5  |        | *          |
| 701                                                       | МВ                                | June 23 | 1.30 | 0.60 | 0.54 | ND     | -          |
|                                                           |                                   | June 24 | ND   | 0.25 | 0.25 | ND     | 235        |
|                                                           |                                   | June 25 | 0.23 | 0.13 | -    | ND     | 265        |
| 702                                                       | МВ                                | June 23 | ND   | 0.30 | 0.25 | ND     | 119        |
|                                                           |                                   | June 24 | ND   | 0.25 | ND   | ND     | <i>7</i> 7 |
| 704                                                       | МВ                                | June 2  | 0.08 | 0.08 | 0.11 | ND     | 48         |
|                                                           |                                   | June 24 | 0.08 | 0.08 | 0.19 | ND     | 24         |
| 705                                                       | MB                                | June 23 | ND   | ND   | 0.06 | •      | •          |
|                                                           |                                   | June 24 | ND   | ND   | ND   | •      | •          |
| 706                                                       | MB                                | June 24 | ND   | 0.07 | 0,05 | -      | -          |
| 707                                                       | МВ                                | June 23 | ND   | 0.06 | 0.07 | ND     | 18         |
| 710                                                       |                                   | June 23 | ND   | ND   | ND   |        | -          |
| 713                                                       | ТВ                                | June 23 | -    | -    |      | ND     | ND '       |
| 701                                                       | MB                                | Sept 14 | ND   | ND   | 0.40 | 21.1   | ND         |
| 3 1 1 <b>9</b><br>3 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 |                                   | Sept 15 | ND   | ND   | 0.15 | 150.0  | 139.2      |
|                                                           |                                   | Sept 16 | ND   | ND   | ND   | 42.2   | 149.4      |
| 702                                                       | МВ                                | Sept 14 | ND   | ND   | ND   | ND     | ND         |
| 704                                                       | MB                                | Sept 14 | ND   | ND   | ND   | ND     | ND         |
| 707                                                       | МВ                                | Sept 14 | ND   | ND   | ND   | ND     | ND         |
| 709                                                       | JB                                | Sept 14 | ND   | ND   | ND   | ND     | ND         |
| 710                                                       | JB                                | Sept 14 | ND   | ND   | ND   | ND     | ND         |
| 712                                                       | JB                                | Sept 14 | ND   | ND   | ND   | ND     | ND         |
| 714                                                       | JВ                                | Sept 14 | ND   | ND   | ND   | ND     | ND         |

TCP trichlorophenol
TTCP tetrachlorophenol
PCP pentachlorophenol
ND not detected
not sampled

\* no PWQO, however Shaman and Palenshky (1973) recommended threshold concentration for not impairing fish flavour is 100  $\mu$ g/L.

(Stations 701, 702, 704 and 706) had the most frequent detections of phenol compounds. However, all concentrations were below the respective PWQO with the exception of pentachlorophenol at Station 701 nearest the mouth of Blackbird Creek on June 23, 1981. In addition, guaiacol was detected at levels which taint fish flesh (100  $\mu$ g/L) at Stations 701 (June 23 and 25, Sept. 15 and 16) and 702 (June 23, Table 3.5). Kirby (1986) indicated that the mill was the most likely source of phenols detected in Jackfish Bay during the June and September surveys.

Trace amounts of phenolic compounds, particularly pentachlorophenol and 2,4,6-trichlorophenol, were detected at Station 701, near the Blackbird Creek discharge, in 1987 and 1988 (Sherman 1991), but were not detected further out in the Bay.

## 3.1.5.2 Resin and Fatty Acids

Resin and fatty acids are components of pulp mill liquors and effluents and are significant and primary sources of toxicity in pulp mill effluents (McLeay et al. 1986). Resin acids are derived from resins found in the wood of coniferous trees, and are released in receiving waters as extractives during the pulping process (Taylor et al. 1988). Fatty acids are formed from fats stored in the wood to provide winter food reserves for the tree. These fats are hydrolysed during pulping to form fatty acids.

During the 1981 surveys, abietic acid and isopimaric acid concentrations exceeded the 96 hour LC<sup>50</sup> concentration for trout (1.1 mg/L and 0.7 mg/L, respectively) at Station 701 near the mouth of Blackbird Creek (Kirby 1986).

Resin and fatty acids were detected only periodically during the 1987 and 1988 surveys in trace amounts at Station 701 near the creek outfall (Sherman 1991). Dehydroabietic acid exceeded the PWQO (12.0  $\mu$ g/L at pH 7.5) in Moberly Bay during 1987 and 1988. The highest values (>300  $\mu$ g/L) occurred in 1988. The distributions of dehydroabietic acid during individual surveys in 1987 and 1988 are shown in Figure 3.12. During these surveys, the PWQO for dehydroabietic acid was exceeded at nine stations in the head of Moberly Bay including 701, 702 and 803-809 (Figure 3.3).

Although the concentrations of these acids in water decrease rapidly from the discharge point (Figure 3.12), it has been suggested (Sherman 1991) that resin acids associated with foam or particles in the effluent may be carried out into the Bay and sedimented, where they would break down more slowly than they otherwise would (see Section 3.2.4.2).

Preliminary results from sampling during July 1990, following start-up of the secondary treatment system at the mill, indicated that dehydroabietic acid was not detected in Moberly Bay in daily samples collected over a five day period (K. Flood, OMOE, pers. com.). The only resin or fatty acid measured in the effluent and Moberly Bay was palmitic acid, but only in trace amounts (maximum 26  $\mu$ g/L). None of the resin acids were detected in Moberly or Jackfish Bay (K. Flood, OMOE, pers. com.).

### 3.1.5.3 Volatile Organohalides

Chloroform, which is formed in the full bleached kraft pulp mill process, was elevated for a considerable distance into Moberly Bay and beyond. Results for individual surveys during 1987 and 1988 are shown in Figure 3.13. There is no PWQO or GLWQA Specific Objective for chloroform. No other volatile organic compound was detected in the open water samples.



Figure 3.12

Concentration of dehydroabletic acid (µg/L) for individual surveys in 1987 and 1988 (Sherman 1991)



Figure 3.13

Chloroform concentrations (µg/L) for individual surveys in 1987 and 1988 (Sherman 1991).

## 3.1.5.4 Other Organic Chemicals

Traces of 7BHC, hexachlorobenzene, total trihalomethanes and phenoxy herbicides were detected in the immediate vicinity of the mouth of Blackbird Creek (Sherman 1991).

## 3.1.6 Water Quality Summary

Water quality surveys undertaken during 1970, 1981 and 1987/88 indicated a plume of contamination in Jackfish Bay resulting from the discharge of effluent from the Kimberly-Clark Canada Inc. pulp mill via Blackbird Creek. Surface waters, situated above the hypolimnion layer, are most affected in terms of higher concentrations and more frequent exceedences of PWQOs and GLWQA Specific Objectives than bottom waters. Although the extent and impact of the plume varies depending on wind and current direction, the most heavily impacted zone includes all of Moberly Bay and the northern and western portions of Jackfish Bay. Nearshore waters of Lake Superior to the west of Jackfish Bay are also affected by the plume as shown by stations located offshore of Cape Victoria and by bacterial surveys. Elevated densities of several bacterial species occurred in densities exceeding PWQOs or IJC recommended levels as far west as Pumphouse Bay south of the Town of Terrace Bay. Although Tunnel Bay is mostly outside the plume, occasional guideline exceedences (particularly metals and bacteria) occur due to individual wind events moving the surface plume to the northeast.

The most recent water quality surveys for the Jackfish Bay AOC were undertaken during July and August 1987 and July 1988. These surveys identified concentrations of contaminants resulting in exceedences of PWQOs and/or GLWQA Specific Objectives for turbidity (secchi disc), dissolved oxygen, pH, total phosphorus, total coliform bacteria, fecal coliform bacteria, aluminum, beryllium, cadmium, chromium, copper, iron, mercury, nickel, lead, zinc and dehydroabietic acid. The dissolved oxygen objective was also violated during 1990 studies, however, dehydroabietic acid was not detected in Moberly Bay in 1990. The IJC recommended guideline for *Pseudomonas aeruginosa* was also exceeded during the 1987/88 and earlier investigations. Total phenolics and pentachlorophenol were exceeded during the 1981 surveys. Most exceedences occur in the upper half of Moberly Bay, however, exceedences occur regularly for some metals and bacteria in much of Jackfish Bay and occasionally in Tunnel Bay.

#### 3.2 SEDIMENT QUALITY

A fundamental requirement in remediating water quality problems in Areas of Concern is to assess sediment contamination and the effects of the sources of contamination on the AOC. The extent of sediment contamination must be known quantitatively in order to support effective remedial actions such as sediment removal, burial or destruction. Full bleached kraft pulp mill effluents have long been associated with adverse effects on sediment quality and sediment dwelling aquatic life of receiving waters in the Great Lakes Basin (Dymond and Laporte 1952, German and Pugh 1969, McLeay et al. 1986).

Moberly Bay, Tunnel Bay and the main body of Jackfish Bay represent three deposition basins separated by shoals or bedrock sills. Moberly Bay is sheltered from wind and wave action by high hills and a constricted entrance formed by shoals and islands. Jackfish Bay is protected from the open waters of Lake Superior by a shoal and an island. The longest fetch is oriented north-northeast with a distance of 5 km. The bed of Jackfish Bay consists of a wide range of materials including bedrock, glaciolacustrine clay, sands and coarse glacial till.

Bottom sediments were sampled for contaminant analysis during surveys in 1981 (Kirby 1986) and 1987/88 (Sherman 1991). Sample stations for the 1981 survey are shown in Figure 3.14 and for the 1987 survey in Figure 3.15. Sampling locations for the 1987 survey were chosen specifically to represent the deposition



Figure 3.14
Sampling station locations for the 1981 sediment survey in Jackfish Bay (Kirby 1986)



Sediment sampling stations for the 1987 sediment survey (Sherman 1991).

55

basins within Jackfish Bay (Figure 3.16). The basins are marked by the areas of fine-grained 'mud' deposits which represent recently deposited sediment and associated trace contaminants.

Many contaminants of concern have a tendency to adsorb or bind with fine-grained (especially organic) particles. The results of the 1981 and 1987 sediment surveys will be compared to the draft Provincial Sediment Quality Guidelines (PSQG) and the OMOE Guidelines for Open Water Disposal of Dredged Material Guidelines (OWDG).

The revised OWDG were established in 1978 and have been used extensively to determine whether dredged materials are suitable for open water or confined disposal. However, the particular contaminant concentrations were not based on known biological effects. Biologically-based guidelines (PSQG) have since been established to replace the OWDG. The PSQG guidelines released by the Ontario Ministry of the Environment in March 1991 (Persaud et al. 1991) "are intended to provide guidance during decision-making in relation to sediment issues, ranging from prevention to remedial action". They are based on the need to protect benthic communities and to prevent biomagnification from contaminated sediments. The guidelines are based on three levels of ecotoxic effects including: (1) the No-Effect Level (NEL) - the level at which no toxic effects have been observed on aquatic organisms; (2) the Lowest-Effect Level (LEL) - the level of contamination which can be tolerated by the majority of benthic organisms; and (3) the Severe-Effect Level (SEL) - the level at which pronounced disturbance of the sediment dwelling community can be expected (Persaud et al. 1991).

The physical and chemical characteristics of the surficial sediments (the top three cm) is described in the following sections. Where available, the quality of suspended sediment sampled from the mill effluent (effluent canal at Highway 17) and near the mouth of Blackbird Creek are also presented.

As mentioned, trace contaminants are generally associated with finer sediments such as silts and clays than with coarser sands. The results of the 1981 survey indicated that elevated trace contaminant levels in the Jackfish Bay AOC were associated with finer material (Kirby 1986). However, these observations were based on grab samples which were not fully representative of the depositional basins. A better understanding of the impact of mill effluent on sediments required a map of sediment characteristics identifying the exact extent of fine sediment distribution.

In 1987, a sonar survey was conducted of Jackfish Bay in order to develop a map of sediment characteristics for the entire area (Sherman and McMillan 1988). Sonar is a useful means of continuously mapping sediments. The resultant map from this survey is given in Figure 3.16. The sonar survey determined that fine-grained sediment ('mud') is accumulated in the deepest deposition areas. The sediment in these areas was found to be relatively uniform with the exception of Moberly Bay where the organic-rich sediment characteristic of the deposition basin (termed 'gyttja') has been influenced by the mill over the years. The authors were also able to identify areas of glacial till, glaciolacustrine clay and ice scouring. These results were confirmed by comparison with grab samples taken concurrently.

Sonar mapping also identified the location of large 'sand waves' also referred to as 'megaripples', which are located at the openings of Moberly and Jackfish Bays. These sand waves indicate that relatively strong currents enter or leave each bay with the potential for significant movement of sediments.



Lake bottom lithology of Jackfish Bay as determined by sonar survey October 19-30, 1987 (Sherman 1991).

## 3.2.1 Physical Description

The particle size of sediment sampled in 1987 was generally greater than 60 percent clay and silt (i.e., > 62 micrometres in diameter). Exceptions were higher coarse sand and gravel content from Stations 701 (at the mouth of Blackbird Creek, Figure 3.15) and 711 (on the edge of a shoal in Jackfish Bay). When these stations were excluded, the stations representing the three depositional areas (Figure 3.16) were found to be statistically similar with respect to particle size (Sherman 1991).

Eh (measured in mvolts) is a physical measure of oxidizing and reducing conditions in sediments. Positive values are an indication of oxidizing conditions in the interstitial waters (between the sediment particles) whereas negative values are an indication of a complete lack of oxygen and reducing conditions. The occurrence of reducing conditions in sediment pore waters can be used as an indication of contamination, particularly due to the presence of organic carbon and metals. The most severe reducing conditions were found in Moberly Bay (Figure 3.17). The sediments at most stations in Moberly Bay had a strong odour of hydrogen sulphide (H<sub>2</sub>S), a sign of reducing conditions and a lack of oxygen in the surficial sediment. The odour was also noted in Jackfish Bay, but only at stations near the mouth of Moberly Bay (Stations 710, 831, and 714).

#### 3.2.2 Oil and Grease Contamination

Another indication of the degree of sediment contamination is provided by the concentration of oil and grease in the sediments. The mean concentrations of oil and grease (solvent extractables) at stations sampled during the 1987 survey are provided in Figure 3.18. Values fluctuated widely throughout the three deposition basins with ranges in mean concentrations of 4,295 to 37,450; 102 to 10,820; and 15,000 to 16,000  $\mu$ g/g in Moberly Bay, Jackfish Bay, and Tunnel Bay deposition areas, respectively (Sherman 1991). The total range of individual samples was from 21 to 58,300  $\mu$ g/g (Sherman 1991). These are comparable to the concentration ranges measured during the 1981 surveys which ranged between 550 and 34,600  $\mu$ g/g in Moberly Bay and 430 and 6,150  $\mu$ g/g in Jackfish Bay (Table 3.7). The OMOE Dredge Disposal Guideline for oil and grease of 1,500  $\mu$ g/g was exceeded in each depositional area during surveys in 1981 (66.7% of samples) and 1987 (85.7% of station means). The guideline was even exceeded in Tunnel Bay which is removed from the direct influence of the mill effluent. Although the highest concentrations occurred in Moberly Bay, nearest the mill outfall, the wide variation in each basin suggests that there is no direct relationship between the mill effluent and oil and grease levels in the sediments.

#### 3.2.3 Nutrients

Total organic carbon provides an indication of the enrichment of the sediments with organic matter. The matter can originate from natural sources such as dead algae and other aquatic organisms and organic matter from the pulping process. The PSQG Lowest Effect Level (LEL) is 1 percent (10 mg/g) and the Severe Effect Level (SEL) is 10 percent (100 mg/g) with respect to the potential for disturbance of the sediment dwelling community.

The mean total organic carbon concentrations in the sediments sampled during the 1987 surveys are shown in Figure 3.19. The highest mean concentrations were in Moberly Bay with a range of 42 to 210 mg/g (excluding Station 701). Mean concentrations at four stations (28.6%) in Moberly Bay exceeded the SEL (Stations 702, 821, 822, 825) and six station means from the three depositional basins exceeded the LEL (17.1%). Jackfish Bay ranged from 5 to 56 mg/g and Tunnel Bay ranging from 27 to 33 mg/g. The total range of all bottom sediment samples was 5 to 250 mg/g (Sherman 1991). Values generally decreased from high concentrations in the suspended sediment of the effluent to lower concentrations in bottom sediment



Figure 3.17
Eh values for Jackfish Bay bottom sediment interstitial waters, 1987 (Sherman 1991).
Station locations are shown in Figure 3.15. Negative values indicate reducing conditions and positive values indicate oxidizing conditions.



Station mean concentrations of oil and grease (solvent extractables) in effluent (suspended solids) and in the three depositional basins (surficial sediment) for the Jackfish Bay AOC during 1987/88 (Sherman 1991). Station locations shown in Figure 3.15.



Station mean concentrations of total organic carbon (TOC) in effluent (suspended solids) and in the three depositional basins (surficial sediment) for the Jackfish Bay AOC during 1987/88 (Sherman 1991). Station locations shown in Figure 3.15.

Table 3.7 Oil and grease and nutrient concentrations in bottom sediments of Jackfish Bay in 1981 (Kirby 1986). Station locations are shown in Figure 3.14.

| Station Number | Total Kjeldahl<br>Nitrogen | Total<br>Phosphorous | Oil and Grease |
|----------------|----------------------------|----------------------|----------------|
| 701            | 200                        | 500                  | 550            |
| 702            | 7,700                      | 1,100                | 34,600         |
| 703            | 4,300                      | 1,000                |                |
| 704            | 4,300                      | 1,100                | 11,400         |
| 705            | 300                        | 400                  | •              |
| 706            | 300                        | 500                  |                |
| 707            | 900                        | 900                  | 4,050          |
| 708            | 800                        | 400                  |                |
| 709            | 600                        | 600                  |                |
| 710            | 2,000                      | 1,000                | 2,500          |
| 711            | 500                        | 1,100                | 430            |
| 731            | 1,200                      | 1,000                |                |
| 712            | 1,500                      | 1,300                | •              |
| 713            | 1,700                      | 1,200                | •              |
| 732            | 300                        | 600                  | •              |
| 714            | 1,400                      | 1,000                | 2,100          |
| 733            | 300                        | 1,700                |                |
| 734            | 900                        | 900                  |                |
| 715            | 300                        | 600                  |                |
| 716            | 2,300                      | 1,000                | 6,150          |
| 718            | 1,700                      | 1,000                | 5,200          |
| 719            | 200                        | 800                  | 900            |
| 721            | 300                        | 700                  | 4,500          |
| 722            | 380                        | 1,000                | 530            |
| PSQG LEL       | 550                        | 600                  |                |
| SEL            | 4,800                      | 2,000                |                |
| OWDG           | 2,000                      | 1,000                | 1,500          |

Note All concentrations mg/kg = ppm

not available

PSQG Provincial Sediment Quality Guidelines (Persaud et al. 1991).

LEL - Lowest Effect Level.

SEL - Severe Effect Level.

OWDG Open Water Dredged Material Disposal Guidelines.

with increasing distance from the mouth of Blackbird Creek (Figure 3.19). This indicates a strong influence of the mill effluent on sediment organic carbon.

Other nutrients which exceeded OWDG or PSQG included total phosphorus and TKN. Total phosphorus exceeded the OWDG (1,000  $\mu$ g/g) at 45.8 percent of stations and the PSQG-LEL (600  $\mu$ g/g) at 29.2 percent of stations during 1981 (Table 3.7). The SEL was not exceeded. The range in sample concentrations during 1981 was 400 to 1,700  $\mu$ g/g with high concentrations  $\geq$ 1,000  $\mu$ g/g occurring in all three bays (Table 3.7). During the 1987 surveys the total range of phosphorus in all samples was 300 to 1,580  $\mu$ g/g (Sherman 1991). The OWDG for TKN is 2,000  $\mu$ g/g and the PSQG LEL/SEL are 550/4,800  $\mu$ g/g. The range in sample concentrations during the 1981 surveys was 200 to 7,700  $\mu$ g/g with the three highest concentrations (>4,000  $\mu$ g/g) occurring in the bottom sediments of Moberly Bay (Table 3.7). Of a total of 24 stations from the three bays, 4.1 percent exceeded the PSQG-SEL, 20.8 percent exceeded the OWDG, and 58.3 percent exceeded the PSQG-LEL.

## **3.2.4 Metals**

The results of the 1981 survey for heavy metals in bottom sediments are provided in Table 3.8. Kirby (1986) concluded that the sediments were highly contaminated on the basis of the OWDG which were exceeded by individual samples for cadmium (12.5%), chromium (70.8%), copper (45.8%), iron (83.3%), mercury (8.3%) and zinc (16.7%). The PSQG were exceeded at the NEL by these metals as well as by nickel and manganese (Table 3.8). The SEL of the PSQG were exceeded only by manganese (4.2% of samples). Lead was the only metal which did not exceed guidelines. In comparing these results to the results from the 1970 surveys at approximately comparable stations, Kirby (1986) noted that concentrations of mercury, lead and chromium tended to be lower in the more recent survey. Based on a principal components analysis of the 1981 sediment data, he also observed that there was a high correlation of concentration with sediment type (highest concentrations associated with fine-grained sediment) but no distinct trend was discernible for the spatial pattern of sediment concentrations in relation to the mill outfall at the mouth of Blackbird Creek.

The results of the analyses of 10 heavy metals from the 1987 surveys are summarized in Table 3.9 on the basis of effluent and Blackbird Creek mean concentrations (suspended solids), mean concentrations for each depositional basin, and the range of results for all three bays combined. The OWDG and PSQG (LEL and SEL) are also indicated. Figures 3.20 to 3.29 provide individual station mean concentrations for each metal.

The OWDGs were exceeded by the mean concentrations of arsenic, cadmium, chromium, copper, iron, mercury, nickel, and zinc. The PSQG-LEL were exceeded by the same metals as well as by manganese and lead (Table 3.9). The PSQG-SEL was not exceeded by mean concentrations in any of the three depositional basins, however, maximum concentrations of arsenic, mercury and manganese did exceed the Severe Effect Level (Table 3.9). In comparison with the reference station located in Lake Superior (Station 844), background concentrations of chromium, copper, iron and nickel also exceeded their respective PSQG-LELs; manganese concentrations approached the LEL. Because this station is unaffected by any discharges and is considered typical of Lake Superior nearshore sediment for the area, exceedence of the PSQGs and OWDGs are probably due to natural elevated concentrations related to the mineralogy of sediments in the area.

Within Moberly Bay, cadmium, chromium, copper, nickel, mercury and zinc exceeded the LELs. Mercury exceeded the guideline by more than twice the value. The same series of metals with the exception of mercury and zinc also exceeded the LEL in Jackfish and Tunnel Bays. In addition, arsenic, lead and manganese exceeded the LEL in Tunnel Bay. The mean concentration at Station 825 (located near the western shore of Moberly Bay) of 4.69 µg/g exceeded the SEL for mercury.

Table 3.8 Concentration of heavy metals in Jackfish Bay sediments, 1981 (Kirby, 1986). Station locations are shown in Figure 3.14.

| Station<br>Number | Cadmium<br>Cd | Chromium<br>Cr | Cobalt<br>Co | Copper<br>Cu | Iron<br>Fe | Lead<br>Pb | Manganese<br>Mn | Mercury<br>Hg | Nickel<br>Ni | Zinc<br>Zn |
|-------------------|---------------|----------------|--------------|--------------|------------|------------|-----------------|---------------|--------------|------------|
| 701               | 0.3           | 16             | 4.7          | 6            | 8,600      | 3          | 110             | 0.01          | 5.5          | 35         |
| 702               | 0.83          | 43             | 5.3          | 31           | 9,400      | 8.7        | 150             | 0.17          | 19           | 140        |
| 703               | 1.3           | 66             | 8.2          | 49           | 21,000     | 17         | 300             | 0.55          | 23           | 150        |
| 704               | 1.2           | 6.3            | 8.3          | 47           | 22,000     | 18         | 310             | 0.59          | 23           | 140        |
| 705               | 0.3           | 12             | 3.5          | 4.5          | 9,500      | 3          | 86              | 0.01          | <b>5</b>     | 21         |
| 706               | 0.3           | 13             | 3.0          | 4.8          | 9,300      | 3          | 88              | 0.01          | 6            | 22         |
| 707               | 0.35          | 36             | 6.0          | 16           | 16,000     | 5          | 200             | 0.07          | 13           | 62         |
| 708               | 0.3           | 20             | 4.5          | 8            | 13,000     | 3          | 210             | 0.01          | 8.5          | 32         |
| 709               | 0.3           | 19             | 5.0          | 6.4          | 15,000     | 4.8        | 180             | 0.01          | 12           | 51         |
| 710               | 0.65          | 45             | 8.2          | 32           | 20,000     | 15         | 320             | 0.14          | 19           | 88         |
| 711               | 0.3           | 26             | 5.7          | 9.3          | 14,000     | 4.5        | 280             | 0.01          | 12           | 31         |
| 731               | 0.5           | 48             | 9.7          | 34           | 23,000     | 21         | 770             | 0.08          | 22           | 74         |
| 712               | 0.68          | 48             | 9.8          | 39           | 26,000     | 24         | 1,300           | 0.10          | 24           | 86         |
| 713               | 0.65          | 40             | 9.1          | 41           | 20,000     | 27         | 630             | 0.11          | 20           | 83         |
| 732               | 0.3           | 26             | 5.9          | 9.2          | 14,000     | 4          | 250             | 0.01          | 13           | 35         |
| 714               | 0.7           | 41             | 8.6          | 33           | 19,000     | 17         | 420             | 0.15          | 21           | <b>7</b> 7 |
| 733               | 0.23          | 55             | 5.9          | 10           | 29,000     | 3.3        | 280             | 0.01          | 13           | 31         |
| 734               | 0.6           | 43             | 8.4          | 29           | 19,000     | 14         | 330             | 0.06          | 19           | 59         |
| 715               | 0.3           | 26             | 5.0          | 9            | 15,000     | 3          | 250             | 0.01          | 14           | 32         |
| 716               | 1.1           | 50             | 8.8          | 49           | 21,000     | 24         | 460             | 0.27          | 24           | 100        |
| 718               | 0.98          | 49             | 7.6,         | 44           | 21,000     | 26         | 470             | 0.19          | 22           | 93         |
| 719               | 0.2           | 21             | 3.4          | 7            | 10,000     | 3          | 230             | 0.01          | 12           | 22         |
| 721               | 0.2           | 46             | 8.9          | 21           | 23,000     | 4.1        | 490             | 0.01          | 22           | 46         |
| 722               | 0.2           | 37             | 7.2          | 16           | 18,000     | 5.2        | 320             | 0.01          | 17           | 42         |
| PSQG LEL          | 0.6           | 26             | -            | 16.0         | 20,000     | 31         | 460             | 0.2           | 16.0         | 120        |
| SEL               | 10.0          | 110            |              | 110.0        | 40,000     | 250        | 1,100           | 2.0           | 75.0         | 820        |
| OWDG              | 1.0           | 25             | -            | 25.0         | 10,000     | 50         | =               | 0.3           | 25.0         | 100        |

Note All concentrations mg/kg = ppm

not available

PSQG Provincial Sediment Quality Guidelines (Persaud et al. 1991).

LEL - Lowest Effect Level.

SEL - Severe Effect Level.

OWDG OMOE Open Water Dredged Material Disposal Guidelines.

Table 3.9 Mean values ( $\mu g/g = ppm$ ) of heavy metals in three deposition basins in Jackfish Bay surficial sediment, 1987 (Sherman, 1991).

| Area                          | As            | Cd           | Cr          | Cu          | Fe              | Hg         | Mn           | Ni          | Pb          | Zn            |
|-------------------------------|---------------|--------------|-------------|-------------|-----------------|------------|--------------|-------------|-------------|---------------|
| Sample Locations              |               |              |             |             |                 |            |              |             |             |               |
| KC Effluent<br>(n=2)*         | 2.20          | 6.30         | 315.0       | 48.5        | 10550           | 0.15       | 890          | 64.0        | 16.5        | 315.0         |
| Blackbird Creek (n=2)*        | 2.50          | 16.50        | 200.0       | 80.0        | 9100            | 0.26       | 480          | 36.5        | 16.0        | 700.0         |
| Moberly Bay<br>(N=34)         | 3.10          | 1.11         | 56.0        | 40.0        | 18579           | 0.57       | 248          | 23.0        | 17.0        | 127.0         |
| Jackfish Bay<br>(N=37)        | 5.10          | 0.94         | 53.0        | 44.0        | 21972           | 0.16       | 431          | 25.0        | 26.0        | 87.0          |
| Tunnel Bay<br>(N=15)          | 8.40          | 1.12         | 58.0        | 52.0        | 27800           | 0.15       | 755          | 28.0        | 37.0        | 97.0          |
| Range <sup>†</sup> Min<br>Max | 0.55<br>14.00 | 0.20<br>2.10 | 2.0<br>81.0 | 4.3<br>68.0 | 7,900<br>31,000 | ND<br>9.10 | 100<br>1,400 | 7.0<br>31.0 | 2.9<br>31.0 | 29.0<br>260.0 |
| PSQG LEL                      | 6.00          | 0.60         | 26.0        | 16.0        | 20,000          | 0.20       | 460          | 16.0        | 31.0        | 120.0         |
| SEL                           | 33.00         | 10.00        | 110.0       | 110.0       | 40,000          | 2.00       | 1,100        | 75.0        | 250.0       | 820.0         |
| OWDG                          | 8.0           | 1.00         | 25.0        | 25.0        | 10,000          | 0.30       |              | 25.0        | 50.0        | 100.0         |
| Reference                     |               |              |             |             |                 |            |              |             |             |               |
| Station 844 (n=2)             | 3.30          | 0.47         | 48.0<br>0   | 29.0<br>0   | 22000.<br>00    | <0.01      | 445.<br>00   | 24.0<br>0   | 13.0<br>0   | 52.0<br>0     |

Note All concentrations mg/kg = ppm

PSQG Provincial Sediment Quality Guidelines (Persaud et al. 1991).

LEL - Lowest Effect Level.

SEL - Severe Effect Level.

OWDG OMOE Open Water Dredged Material Disposal Guidelines.

<sup>-</sup> not available

<sup>\*</sup> suspended solids

based on 102 samples from the three bays.



Station mean concentrations of arsenic in effluent (suspended solids) and in the three depositional basins (surficial sediment) for the Jackfish Bay AOC during 1987/88 (Sherman 1991). Station locations shown in Figure 3.15.



Figure 3.21
Station mean concentrations of cadmium in effluent (suspended solids) and in the three depositional basins (surficial sediment) for the Jackfish Bay AOC during 1987/88 (Sherman 1991). Station locations shown in Figure 3.15.



Station mean concentration of chromium in effluent (suspended solids) and in the three depositional basins (surficial sediment) for the Jackfish Bay AOC during 1987/88 (Sherman 1991). Station locations shown in Figure 3.15.



Station mean concentrations of copper in effluent (suspended solids) and in the three depositional basins (surficial sediment) for the Jackfish Bay AOC during 1987/88 (Sherman 1991). Station locations shown in Figure 3.15.



Station mean concentrations of iron in effluent (suspended solids) and in the three depositional basins (surficial sediment) for the Jackfish Bay AOC during 1987/88 (Sherman 1991). Station locations shown in Figure 3.15.



Station mean concentrations of lead in effluent (suspended solids) and in the three depositional basins (surficial sediment) for the Jackfish Bay AOC during 1987/88 (Sherman 1991). Station locations shown in Figure 3.15.



Station mean concentrations of manganese in effluent (suspended solids) and in the three depositional basins (surficial sediment) for the Jackfish Bay AOC during 1987/88 (Sherman 1991). Station locations shown in Figure 3.15.



Figure 3.27

Station mean concentrations of mercury in effluent (suspended solids) and in the three depositional basins (surficial sediment) for the Jackfish Bay AOC during 1987/88 (Sherman 1991) Station locations shown in Figure 3.15.



Figure 3.28

Station mean concentrations of nickel in effluent (suspended solids) and in the three depositional basins (surficial sediment) for the Jackfish Bay AOC during 1987/88 (Sherman 1991). Station locations shown in Figure 3.15.



Figure 3.29

Station mean concentrations of zinc in effluent (suspended solids) and in the three depositional basins (surficial sediment) for the Jackfish Bay AOC during 1987/88 (Sherman 1991). Station locations shown in Figure 3.15.

The results for individual stations were also examined in relation to the mill effluent discharge (Figures 3.20 to 3.29). Generally there is little or no relationship between the mean concentration of most metals and distance from, or concentration in, the mill effluent. Most display little or no relationship (cadmium, chromium, copper and nickel, Figures 3.21-3.23 and 3.28) or a reverse relationship (arsenic, iron, lead and manganese, Figures 3.20, 3.24, 3.25 and 3.26). Only mercury and zinc (Figures 3.27 and 3.29) have concentration patterns which suggest direct impact from the mill effluent. The lack of any trend likely indicates widespread background mineralogy which is confirmed by the absolute concentrations of these five metals at the reference station as noted above. A pattern of increasing concentration at locations furthest from the mouth of Blackbird Creek may reflect transport mechanisms, such as an affinity for finer grain sizes which are carried further, or reflect metal availability.

The movement of metals from sediment to the water column and their availability for biological uptake are important aspects to consider in order to define sources and identify remedial options. The behaviour of some metals such as manganese and iron in the sediments provides some indication of the conditions for sediment/water transfer and the availability of some metals for uptake. Oxides of manganese and iron have a high affinity for other metals. Manganese concentrations are lower in Moberly Bay sediments even though elevated concentrations occur in the suspended sediment in Blackbird Creek and in other areas of the Bay (Figure 3.26). The relatively severe reducing conditions in the Moberly Bay deposition area sediments are likely contributing to the solubilization or stripping of manganese. Similar reductions of iron were noted. The high sorption capacity of manganese and iron oxides for other metals (Forstner and Wittman 1983) may well be providing a mechanism for binding and precipitation of metals in the Blackbird Creek discharge, however, the conditions in Moberly Bay sediments favour release of these metals back into the water column.

The elevated mercury concentrations in Moberly Bay, as compared with other areas (Figure 3.27), can be related directly to the mill effluent. Mercury has historically been used at Kimberly-Clark Canada Inc. and would be expected to be elevated. Zinc also has a pattern of highest concentration in Moberly Bay in relation to the mill effluent discharge, decreasing to lower values in Jackfish and Tunnel Bays (Figure 3.29). However, zinc was not used in the kraft pulp mill process. The sources of this metal in the effluent is not clear although it may be due to the natural presence of zinc in wood fibre, which is then concentrated during the pulping process.

#### 3.2.5 Organics

#### 3.2.5.1 Phenolics and Aromatics

Phenolic compounds are a by-product of the pulping process and would be expected in the effluent discharge (McLeay et al. 1986, OMOE 1988). However, only the higher chlorinated phenolic chemicals would be expected to accumulate in sediments. There are no guidelines for phenolic compounds in sediment.

During the 1981 OMOE surveys, organic contaminants were analyzed at only 13 stations (Kirby 1986). Contaminants included 10 organochlorine pesticides, PCBs, hexachlorobenzene, phenol and guaiacol. Phenol and guaiacol were each detected at 5 of 8 stations during the 1981 surveys (Kirby 1986). The highest concentrations were at stations 702 and 704 as in the case of PCBs. Phenol concentrations ranged from not detected to 9.98  $\mu$ g/g and guaiacol ranged from not detected to 16.5  $\mu$ g/g (Kirby 1986).

Organochlorines, including 20 phenolic compounds, 12 chlorinated benzenes and 1 volatile, were measured in sediment samples during the 1987 and 1988 surveys (Sherman 1991). Detectable concentrations were found for only six parameters including hexachlorobenzene, pentachlorobenzene, tetrachlorobenzene, pentachlorophenol, tetrachlorophenol and 2,4,6-trichlorophenol. The results are summarized in Table 3.10. There are no guidelines for any of these compounds with the exception of hexachlorobenzene.

Table 3.10 Frequency of detection and maximum concentration of organochlorine compounds in surficial sediments in the three depositional areas of the Jackfish Bay AOC during 1987/88 (Sherman 1991).

|                              | Detection<br>limit | Moberly Bay<br>Station 15, N=41 | Jackfish Bay<br>Station 18, N=46 | Tunnel Bay<br>Station 4, N=18 |
|------------------------------|--------------------|---------------------------------|----------------------------------|-------------------------------|
|                              |                    | % (Max)                         | % (Max)                          | %                             |
| Hexachlorobutadiene          | 1                  | 0                               | 0                                | 0                             |
| Hexachlorobenzene            | 1                  | 83 (32)                         | 17(3)                            | 0                             |
| Hexachloroethane             | 1                  | 0                               | 0                                | 0                             |
| Pentachlorobenzene           | 1                  | 12 (3)                          | 0                                | 0                             |
| 2,3,6-trichlorotoluene       | 1                  | 0                               | 0                                | 0                             |
| 2,4,5-trichlorotoluene       | 1                  | 0                               | 0                                | 0                             |
| 2,6 a-trichlorotoluene       | 1                  | 0                               | 0                                | 0                             |
| 1,2,3 trichlorobenzene       | 2                  | 0                               | 0                                | 0                             |
| 1,2,3,4 tetrachlorobenzene   | 1                  | 2 (4)                           | 0                                | 0                             |
| 1,2,2,3,5 tetrachlorobenzene | 1                  | 0                               | 0                                | 0                             |
| 2,1,2,4,5 tetrachlorobenzene | 1                  | 0                               | 0                                | 0                             |
| 1,3,5 tetrachlorobenzene     | 2                  | 0                               | 0                                | 0                             |
| Pentachlorophenol            | 50                 | 5 (880)                         | 0                                | 0                             |
| 2,3,4 trichlorophenol        | 100                | 0                               | 0                                | 0                             |
| 2,3,4,5, tetrachlorophenol   | 50                 | 2 (128)                         | 0                                | 0                             |
| 2,3,5,6 tetrachlorophenol    | 50                 | 0                               | 0                                | 0                             |
| 2,4,5 trichlorophenol        | 50                 | 0                               | 0                                | 0                             |
| 2,4,6 trichlorophenol        | 50                 | 5 (302)                         | 2*                               | 0                             |

Note All concentrations in  $\mu g/g = ppm$ \* N=2 Volatiles and chlorinated benzenes have been associated with pulp mill effluents. Hexachlorobenzene was detected in 83 percent of the samples collected in Moberly Bay; the maximum value detected was 0.032  $\mu$ g/g. The Lowest Effect Level (PSQG) for this parameter is 0.01  $\mu$ g/g and this level was exceeded by the maximum value measured in Moberly Bay (Table 3.10). Traces of penta- and 1,2,3,4-tetrachlorobenzene were also noted.

Measurable concentrations of three chlorophenolic chemicals were also detected in Moberly Bay. 2,4,6-trichlorophenol was also detected at one station just outside Moberly Bay in the Jackfish Bay deposition area (Table 3.10).

### 3.2.5.2 Resin and Fatty Acids

The highest concentrations and frequency of detection of resin and fatty acids during the 1987 and 1988 surveys were in Moberly Bay (Table 3.11). Even though resin acids are reported to rapidly degrade (Taylor et al. 1988), high concentrations of several resin and fatty acids were found in sediments of all three depositional basins in the Jackfish Bay AOC. Dichlorodehydroabietic acid, which is one of the more persistent resin acids, was found in more than half of the samples from Moberly Bay (maximum concentration 3,700 ug/g). Elevated concentrations of dehydroabietic acid and other resin acids in Moberly Bay, as well as in Tunnel Bay, suggest that resin acids are more widely distributed and do not break down as quickly as expected in the aquatic environment.

#### 3.2.5.3 Dioxins and Furans

Dioxins and furans include 75 isomers of polychlorinated dioxins and 135 isomers of polychlorinated furans. The most toxic forms are those substituted at the 2,3,7,8 positions, particularly 2,3,7,8-tetrachlorodibenzo-p-dioxin. The toxic effects of dioxins and furans include weight loss, thymic atrophy, immunotoxicity, hepatotoxicity and porphyria, chloracne, hyperplasia and cancer, teratogenicity and reproductive toxicity (Safe 1990).

Dioxins and furans are by-products formed in combustion reactions, such as forest fires, and incinerators, as a result of the manufacture of industrial chemicals, and from the chlorination (bleaching) stage of bleached kraft pulp mills. Concentrations of 2,3,7,8-substituted dioxins and furans are usually undetectable in the ambient environment. Background levels of other isomers can often be detected, due to aerial deposition from industrial sources and/or diffuse production in forest fires, principally of the highly chlorinated forms (hepta and octa) which are very stable in sunlight and tend to persist in the environment. Industrial discharges of dioxins and furans to the air and water result in a net localized loading of these chemicals which adsorb to organic sediments and soils and which are adsorbed by aquatic or terrestrial animals from their diet. These chemicals can bioaccumulate to toxic levels in higher organisms.

Both bleached kraft mills and mills which do not use bleaching have been identified as sources of many forms of dioxins, but principally furans (OMOE 1988a). In both cases many of the isomers detected are the almost ubiquitous highly chlorinated forms found throughout the environment. However, mills using bleaching often discharge the 2,3,7,8-substituted forms.

Because dioxins and furans are poorly water soluble, they precipitate with suspended solids to the bottom sediments of the receiving environment. Little data exist, however, for concentrations of dioxins and furans in sediments (Sherman et al. 1990), and a guideline for these chemicals in sediment has not been established.

During the 1987 and 1988 surveys, sediment and effluent samples from Jackfish Bay were analyzed for polychlorinated dibenzo-p-dioxins (CDDs) and dibenzo-furans (CDFs). Sediments from the middle of

Table 3.11 Frequency of detection and maximum concentrations ( $\mu g/g$ ) of resin and fatty acids in surficial sediments in the three depositional areas of the Jackfish Bay AOC during 1987/88 (Sherman 1991).

| Resins and Fatty Acids      | Minimum         | Moberly Bay<br>sta=8, n=33 | Tunnel Bay<br>sta=4, n=12 | Jackfish Bay<br>sta=5, n=32 |  |  |
|-----------------------------|-----------------|----------------------------|---------------------------|-----------------------------|--|--|
|                             | Value<br>(μg/g) | % max<br><i>μ</i> g/g      | % max<br>μg/g             | % max<br><i>µ</i> g/g       |  |  |
| capric acid                 | 70              | 36 470                     | 8 195                     | 0                           |  |  |
| phthalic acid               | 24              | 15 132                     | 0                         | 0                           |  |  |
| lauric acid                 | 25              | 33 455                     | 25 510                    | 12 1020                     |  |  |
| myristic acid               | 7               | 84 2125                    | 83 840                    | 65 2635                     |  |  |
| palmitic acid               | 50              | 69 7470                    | 41 3175                   | 59 12810                    |  |  |
| linoleic acid               | 128             | 12 2255                    | 16 545                    | 12 1705                     |  |  |
| linolenic acid              | 57              | 84 6515                    | 33 330                    | 46 1515                     |  |  |
| oleic acid                  | 10              | 81 2030                    | 5 3690                    | 34 3600                     |  |  |
| stearic acid                | 10              | 45 2720                    | 25 910                    | 21 3650                     |  |  |
| pimaric acid                | 205             | 21 1065                    | 0                         | 3 245                       |  |  |
| sandaracopimaric acid       | 445             | 3 700                      | 16 660                    | 0                           |  |  |
| isopimaric acid             | 145             | 63 3605                    | 8 1535                    | 3 1245                      |  |  |
| palustric acid              | 800             | 3 800                      | 0                         | 0                           |  |  |
| dehydroabietic acid         | 105             | 94 13110                   | 100 10385                 | 71 5250                     |  |  |
| arachidic acid              | 75              | 84 4990                    | 100 1295                  | 68 3605                     |  |  |
| abietic acid                | 51              | 93 4304                    | 50 1195                   | 50 1390                     |  |  |
| neoabietic acid             | 50              | 15 1035                    | 0                         | 0                           |  |  |
| dichlorostearic acid        | 45              | 27 680                     | 0                         | 3 130                       |  |  |
| chlorodehydroabietic acid   | 95              | 48 1440                    | 8 95                      | 9 1125                      |  |  |
| dichlorodehydroabietic acid | 108             | 66 3700                    | 0                         | 9 2100                      |  |  |

Moberly Bay (Station 704) showed moderate concentrations of tetrachlorodibenzofurans (4CDF) and octachlorodibenzo-p-dioxins (8CDD) with trace concentrations of other dioxin and furan congeners (Table 3.12).

A difference test (MANOVA with Student-Neumen-Kuels test), between log transformed suspended solids and surficial sediment values, was carried out to determine whether the suspected point source was responsible for elevated contaminant levels (Sherman et al. 1990). Results for a difference test carried out for 4CDF and 8CDD (Table 3.12) were different for the two congeners. There was a progression of significant differences from the effluent to the sampled stations for 4CDF mean values. This suggests that the effluent was the main source of this congener. In contrast, there were no significant differences between the stations for 8CDD within Jackfish Bay, indicating that the mill was not the source. Some other source, such as atmospheric deposition, may have been responsible for elevated 8CDD levels.

Table 3.12 Octachlorodibenzo-p-dioxins (8CDD) and tetrachlorodibenzofurans (4CDF) (pg/g d.w.) found in surficial sediment samples from Jackfish Bay and suspended solids from the effluent and Blackbird Creek during 1987/88 (Sherman et al. 1990). Station locations are shown in Figure 3.15).

|                   |      |      |     | Statio | ons |     |     | Mar     | nova Value | 3              |
|-------------------|------|------|-----|--------|-----|-----|-----|---------|------------|----------------|
|                   | 5    | 20   | 704 | 716    | 713 | 844 | 845 | F value | P value    | r <sup>2</sup> |
| Number of Samples | 2    | 2    | . 4 | 2      | 4   | 2   | 2   |         |            |                |
| 8CDD<br>(pg/g)    | 250  | 141  | 219 | 233    | 126 | 32  | 12  | 13029   | 0.0002     | 0.88           |
| 4CDF              | 6223 | 2000 | 411 | 139    | 31  | 11  | 2.4 | 21.83   | 0.0001     | 0.92           |
| (pg/g)            |      |      |     |        |     |     |     |         |            |                |

(Sediment values represent geometric means. Also shown are results of a multivariate analysis of variance and student-Newman-Keuls test of between station differences. Statistically similar stations are joined with a double line.)

Figure 3.30 represents the sediment core profile for dioxin and furan congeners found in Moberly Bay at station 704. As with the surficial sediments, 4CDF and 8CDD congeners were the most common at all depths where detectable concentrations occurred. Low concentrations of 7CDD, 5CDF and 7CDF congeners were also detectable.

The congener pattern for the higher chlorinated congeners was similar to the "combustion pattern" found by Czuczwa and Hites (1986) in Siskiwit Lake (Isle Royale, Lake Superior). This combustion pattern is a typical background pattern for Lake Superior. A similarity between Jackfish Bay and Siskiwit Lake patterns indicates that the mill is not the source for these congeners; contamination is probably due to atmospheric sources. However, a pattern dominated by 4CDF from the pulp mill effluent was superimposed on this combustion pattern, indicating that 4CDF stems from the mill effluent.

### 3.2.5.4 Other Organics

The 1981 OMOE surveys found concentrations of organochlorine pesticides and hexachlorobenzene to be generally not detectable or detected in only trace amounts (Kirby 1986). Total PCB concentrations, however, ranged from not detected to 0.930  $\mu$ g/g at 12 stations. The highest concentrations occurred at stations 702 (0.930  $\mu$ g/g) and 704 (0.485  $\mu$ g/g) in Moberly Bay. Detectable concentrations were found at 8 stations of which the OMOE Open Water Dredged Material Disposal Guidelines (0.05  $\mu$ g/g) was exceeded at 7 stations. The PSQG-LEL for total PCBs (0.07  $\mu$ g/g) was exceeded at 6 stations.

The results for 29 organochlorines including pesticides, octachlorostyrene and PCBs measured during the 1987 and 1988 surveys are summarized in Table 3.13 according to depositional basin. Detectable concentrations were limited to the sediments collected from Moberly Bay with the exception of  $\gamma$ -BHC, octachlorostyrene, DDE, pp-DDD, 2,4-dichlorophenoxybutyric acid and 2,4-propionic acid (Table 3.13). The source of these compounds in the effluent is unknown.

PCBs were measured in samples from Moberly Bay (Table 3.13 and Figure 3.31). The maximum concentration of total PCBs is 0.280  $\mu$ g/g (280 ng/g) which exceeds the OWDG of 0.05  $\mu$ g/g and the PSQG-LEL of 0.07  $\mu$ g/g. Their presence may relate to past uses of PCBs in industrial electrical equipment at the mill.

Polynuclear aromatic hydrocarbons (PAHs) were evenly distributed at low concentrations throughout the study area. The tentative PSQG for total PAHs is 2.0  $\mu$ g/g. This was not exceeded by the total of the 16 PAHs measured at any station (Table 3.14). The concentration pattern and frequency of occurrence is fairly uniform throughout the three depositional basins and, hence, do not appear to be influenced by the mill effluent (Table 3.14). As in the case for the higher chlorinated dioxin congeners, atmospheric deposition may be the most likely source of the PAH compounds. They are known to be created by low temperature burning such as from wood stoves (Chan and Perkins 1989).

## 3.2.6 Historical Changes in Sediment Quality

Through radiodating techniques (Sherman et al. 1990), it is possible to determine the age of horizontal sections of a sediment core sample. Once these dates are established and contaminant levels in the sections are determined, contaminant levels can be compared to mill activities, such as process changes or leaks and spills, which may have resulted in sediment contamination. Radiodating is a useful means of understanding the historical context of environmental impact related to ongoing industrial activity.



# DIOXIN AND FURAN CONGENERS

Sediment core profile of dioxin furan congeners at Station 704 in Moberly Bay collected during 1988 (Sherman 1991). Station location shown in Figure 3.15.



Figure 3.31

Station mean concentrations of total PCBs (ng/g) in effluent (suspended solids) and in the three depositional basins (surficial sediment) for the Jackfish Bay AOC during 1987/88 (Sherman 1991). Station locations shown in Figure 3.15. Detection limit is 20 ng/g.

Table 3.13 Frequency of detection and maximum concentration (ng/g) of organochlorine compounds in surficial sediments in the three depositional areas of the Jackfish Bay AOC during 1987/88 (Sherman 1991).

| Compound                        | Detection       | Moberly<br>sta = 15, |             | Jackfish<br>sta = 18, |             | Tunnel Bay<br>sta=4,n=18 |             |
|---------------------------------|-----------------|----------------------|-------------|-----------------------|-------------|--------------------------|-------------|
|                                 | Limit<br>(ng/g) | %                    | max<br>ng/g | %                     | max<br>ng/g | %                        | max<br>ng/g |
| Aldrin                          | 1               | 0                    |             | 0                     |             | 0                        |             |
| Hexachlorocyclohexane (&BHC)    | 1               | 11                   | 3           | 0                     |             | 0                        |             |
| Hexachlorocyclohexane (b-BHC)   | 1               | 22                   | 6           | 0                     |             | 0                        |             |
| Hexachlorocyclohexane (7-BHC)   | 1               | 76                   | 32          | 20                    | 29          | 6                        | 4           |
| α-Chlordane                     | 2               | 35                   | 15          | 0                     |             | 0                        |             |
| 7-Chlordane                     | 2               | 22                   | 9           | 0                     |             | 0                        |             |
| Dieldrin                        | 2               | 0                    |             | 0                     |             | 0                        |             |
| Methoxychlor                    | 3               | 0                    |             | 0                     |             | 0                        |             |
| Endrin                          | 4               | 0                    |             | 0                     |             | 0                        |             |
| Endosulfan sulphate             | 4               | 0                    |             | 0.                    |             | 0                        |             |
| Endosulfan I                    | 2               | 0                    |             | 0                     |             | 0                        |             |
| Endosulfan II                   | 4               | 0                    |             | 0                     |             | 0                        |             |
| Heptachlor epoxide              | 1               | 0                    |             | 0                     |             | 0                        |             |
| Heptachlor                      | 1               | 0                    |             | 0                     |             | 0                        |             |
| Mirex                           | 5               | 0                    |             | 0                     |             | 0                        |             |
| Oxychlordane                    | 2               | 0                    |             | 0                     |             | 0                        |             |
| Octachlorostyrene               | 1               | 65                   | 18          | 4                     | 2.          | 0                        |             |
| op-DDT                          | 5               | 11                   | 15          | 0                     |             | 0                        |             |
| Polychlorinated biphenyls       | 20              | 19                   | 280         | 0                     |             | 0                        |             |
| DDD                             | 5               | 11                   | 15          | 0                     |             | 0                        |             |
| DDE                             | 1               | 24                   | 18          | 11                    | 5           | 11                       | 10          |
| PP-DDD                          | 5               | 68                   | 45          | 17                    | 10          | 0                        |             |
| Dicamba                         | 100             | 0                    |             | 0                     |             | 0                        |             |
| Picloram                        | 100             | 11                   | 440         | 0,                    |             | 0                        |             |
| Silvex                          | 50              | 0                    |             | 0                     |             | 0                        |             |
| 24-Dichlorophenoxyacetic acid   | 100             | 0                    |             | 0                     |             | 0                        |             |
| 24-Dichlorophenoxybutyric acid  | 200             | 0                    |             | 2                     | 275         | 0                        |             |
| 24-D Propionic acid             | 100             | 8                    | 155         | 4                     | 110         | 0                        |             |
| 245-Trichlorophenoxyacetic acid | 50              | 0                    |             | 0                     |             | 0                        |             |

Table 3.14 Frequency of detection and maximum concentration (µg/g) of polynuclear aromatic hydrocarbons in surficial sediments in the three depositional areas of the Jackfish Bay AOC during 1987/88 (Sherman 1991).

| Compound                 | Detection       | Moberi<br>sta=15 |             | Jackfish Bay<br>sta=5,n=10 |             | Tunnel Bay<br>sta=4,n=5 |             |
|--------------------------|-----------------|------------------|-------------|----------------------------|-------------|-------------------------|-------------|
|                          | limit<br>(µg/g) | %                | max<br>µg/g | %                          | max<br>μg/g | %                       | max<br>μg/g |
| Dibenzo (a,h) anthracene | 0.04            | 29               | 0.06        | 10                         | 0.04        | 0                       |             |
| Benzo (g,h,i) perylene   | 0.04            | 53               | 0.09        | 40                         | 0.06        | 50                      | 0.09        |
| Naphthalene              | 0.04            | 0                |             | 20                         | 0.09        | 50                      | 0.16        |
| Acenaphthylene           | 0.04            | 0                |             | 0                          |             | 0                       |             |
| Acenaphthene             | 0.04            | 0                |             | 0                          |             | 0                       |             |
| Fluorene                 | 0.04            | 0                |             | 0                          |             | 0                       |             |
| Phenathrene              | 0.07            | 0                |             | 50                         | 0.28        | 67                      | 0.16        |
| Anthracene               | 0.01            | 35               | 0.01        | 10                         | 0.05        | 50                      | 0.03        |
| Fluoranthene             | 0.02            | 100              | 0.18        | 80                         | 0.24        | 100                     | 0.24        |
| Pyrene                   | 0.05            | 82               | 0.23        | 60                         | 0.19        | 83                      | 0.20        |
| Benzo (a) anthracene     | 0.02            | 71               | 0.17        | 60                         | 0.11        | 67                      | 0.10        |
| Chrysene                 | 0.02            | 82               | 0.24        | 60                         | 0.20        | 83                      | 0.12        |
| Benzo (k) fluoranthene   | 0.02            | 65               | 0.09        | 50                         | 0.08        | 67                      | 0.15        |
| Benzo (b) fluorene       | 0.05            | 53               | 0.08        | 50                         | 0.08        | 67                      | 0.15        |
| Benzo (a) pyrene         | 0.04            | 65               | 0.10        | 50                         | 0.07        | 50                      | 0.10        |
| Indeno (1,2,3-cd) pyrene | 0.04            | 29               | 0.05        | 10                         | 0.05        | 50                      | 0.08        |
| Total PAHs               |                 |                  | 1.30        |                            | 1.54        |                         | 1.58        |

Radiodating was used by Sherman et al. (1990) to date a sample taken from the centre of Moberly Bay (Station 704, Figure 3.15). No evidence of disturbance of the surficial layers was noted. The dates established from the Pb-210 profiles agreed very closely with appearance of Cs-137 within the core. Established dates were also corroborated with other fluctuations in chemical profiles and core appearance that correspond to dates of historical changes at the mill or other events significant to the core record. Dates established for the period after 1940 were considered accurate to within 2 to 3 years. Due to the relatively high sedimentation rate in the core sample area caused by the suspended solids loading from Blackbird Creek, the resolution of section age over the period of mill operation (1949 to present) is considered to be even finer; within 2 years. It is expected that the sedimentation rate decreased as a result of the 1989 installation of an aerated lagoon system by the mill which reduced the amount of organic matter discharged in the effluent (Chapter 4).

The core profile of tetrachlorodibenzofuran (4CDF) concentration (Figure 3.32) showed relatively high values which abruptly dropped to undetectable levels (<60 pg/g) below a depth of 10 cm. This drop corresponds to 1973 and the abruptness of the concentration change from 1973 to 1975 is not consistent with a decay or gradual introduction of 4CDF into the sediment. Rather, the profile suggests that a sudden process change at the mill had resulted in production of 4CDF following 1973 and continuing to the time of sampling (1988).

The abrupt appearance of 4CDF in the sample following 1973 may correspond to the mill changing from 'cold' to 'hot' chlorine bleaching. Warmer temperatures used in the second process favour the formation of 4CDF. Another possibility is that the use of oil-based brownstock defoamers, which have recently been shown to contain dioxin and furan precursors, may be the cause.

Concentrations of octachlorodibenzo-p-dioxins (8CDD) in the same core (Figure 3.32) showed moderate values similar to those of remote areas of Lake Superior (Czuczwa and Hites 1986). No abrupt change in concentration with depth in the core was found and measurable concentrations of 8CDD were noted in core segments that predated the start of mill operations.

Figures 3.33 and 3.34 illustrate concentrations of mercury, lead, zinc, cadmium, manganese, copper, loss on ignition (fibre) and total organic content in a core sample from Station 704 in Moberly Bay collected in 1988 (Sherman 1991). Concentrations of zinc, cadmium, copper, loss on ignition and total organic carbon increase in the more recent years. Lead and manganese show little or no change over time. The high levels of zinc in sediments is interesting as this metal is not added to any processes in the mill. However, as noted earlier, metals are naturally taken up by trees and stored in wood fibre. It may be that during the pulping process, metals are released from the pulp and concentrated in the wastewater. Similarly, increased zinc concentrations in recent sediments may be a result of decreased water usage on a pulp production basis in recent years.

The results of the 1987 and 1988 surficial sampling described earlier suggested that copper and manganese and possibly cadmium concentrations reflected geochemical characteristics of the sediments in the region rather than pollution from a single source (Section 3.2.4). The increasing concentrations of cadmium and copper in more recent years (Figures 3.33 and 3.34, however, suggests that anthropogenic sources are more likely than gross regional geochemical characteristics. The atmospheric deposition of trace metals is known to contribute relatively large loadings to Great Lakes, particularly those remote from industrial and urban activity (Nriagu 1986, 1990). The results of the sediment core data which show increasing concentrations of cadmium and copper (as well as zinc) throughout the industrial era (i.e., since the late 1800s) combined with the surficial results showing ubiquitous concentrations provides strong evidence for a significant atmospheric component to the occurrence of these metals.



Figure 3.32

Concentration pattern of tetrachlorodibenzofurans (4CDF) and octachlorodibenzo-p-dioxins (8CDD) in a sediment core collected in 1988 at Station 704 in Moberly Bay (Sherman et al 1990). Station location shown in Figure 3.15.



JULY 19, 1988



JULY 19, 1988

Figure 3.33

Concentrations of mercury, lead, zinc and cadmium in a sediment core collected in 1988 at Station 704 in Moberly Bay (Sherman 1991). Station location is shown in Figure 3.15.



JULY 19, 1988



**JULY 19, 1988** 

Figure 3.34

Concentrations of manganese, copper, fibre (loss on ignition) and total organic carbon in a sediment core collected in 1988 at Station 704 in Moberly Bay (Sherman 1991). Station location is shown in Figure 3.15.

Between 1972 and 1978, the Kimberly-Clark mill used a mercury anode chlorine generation unit, which resulted in mercury losses from the gradual degeneration of the anode. Additional mercury and lead (from the lining of the reaction chamber) were likely discharged during this period. Increased mercury and lead levels in the core section corresponding to this time period reflects their use by the mill (Figure 3.33).

### 3.2.7 Sediment Quality Summary

The results of geophysical investigations of sediments from the Jackfish Bay AOC during 1987 and 1988 identified the presence of three depositional basins in which fine-grained (mud) sediments dominated. These basins correspond to Moberly, Jackfish and Tunnel Bays. The sediments of Moberly Bay have the highest percentage of organic material and consequently the most reducing conditions. The presence of the organic material is attributed primarily to the mill effluent which enters via Blackbird Creek. The sediments of the three basins are variously contaminated due to a variation in sources and to processes which affect their accumulation and availability.

Contaminants which exceed either the Dredged Material Disposal Guidelines and/or the Lowest Effect Level of the draft Provincial Sediment Quality Guidelines, based on surveys undertaken during 1987 and 1988 include: oil and grease, total organic carbon, total phosphorus, arsenic, cadmium, chromium, copper, iron, lead, manganese, mercury, nickel, zinc, hexachlorobenzene and total PCBs. TKN measured in 1981 also exceeded guidelines. In addition, high concentrations of certain phenolic compounds, resin and fatty acids, and dioxins and furans, for which no guidelines are available, contaminate sediments within the AOC.

Contaminants which are attributed to the Kimberly-Clark effluent based on their temporal or spatial distribution patterns, either currently or historically, include total organic carbon, TKN, mercury, zinc, total PCBs, hexachlorobenzene, phenolic compounds, resin and fatty acids and tetrachlorodibenzofurans. The most likely sources for the higher chlorinated dibenzo-p-dioxins and furans, PAHs, and certain metals (cadmium and copper) are diffuse and point sources remote from the AOC and contributed via atmospheric deposition. Cadmium and copper concentrations may also reflect local geochemical conditions along with chromium, iron, nickel and manganese. The distribution patterns of total phosphorus, arsenic and lead do not clearly identify likely sources.

The presence of PCBs in sediment within Moberly Bay may be due to their former use in electrical equipment at Kimberly-Clark. Detectable concentrations of organochlorine pesticides were found only in Moberly Bay sediments.

Although the data are not sufficient to identify statistically significant trends over time, a comparison of data collected in 1981 with data collected in 1987/88 and the historical record identified in sediment cores from Moberly Bay suggest certain trends. Generally, concentrations of oil and grease, total phosphorus, and manganese appear to be fairly constant over time. Total organic carbon, cadmium, copper and zinc appear to be increasing in concentration whereas mercury and total PCBs are decreasing.

#### 3.3 BIOTA

#### 3.3.1 Benthic Macroinvertebrates

Benthic macroinvertebrates are useful organisms for determining environmental quality. They are relatively immobile and ubiquitous, hence, they integrate the effects of water and sediment quality conditions at any one location and allow for comparisons among areas which are affected differently by pollution. In addition, because different species have different sensitivities to contaminants, environmental quality in any given area can be determined by describing benthic communities with regard to: the presence or absence of certain species; the overall abundance of taxa and species; density and distribution of taxa; diversity and richness of

the community, and correlating the benthos with sediment conditions. In addition, the evaluation of temporal changes in any or all of these components can be used to determine whether environmental quality is worsening or improving.

Beak Consultants Ltd prepared a report in 1988 (Beak Consultants 1988) summarizing the results of biological surveys conducted in Moberly, Tunnel and Jackfish Bays in 1969, 1975 and 1987. The authors summarized benthic species richness and distribution as well as community structure for each of the survey years and identified important temporal trends from 1969 to 1975 and 1975 to 1987.

### 3.3.1.1 Species Density and Diversity

The Beak report concluded that the greatest species diversity was detected in association with aquatic vegetation. This observation can be explained by the fact that aquatic vegetation provides benthos with diverse habitat, suitable for an array of benthic species. In contrast, limited species diversity was observed in odorous sediments where much organic matter had accumulated. The authors suggested that organic loadings from Kimberly-Clark Canada Inc. may have degraded benthic habitat and associated benthos.

Total organism density was depressed in the extreme west due to the effects of mill effluent entering from Blackbird Creek, followed by a density rise to the immediate east due to the effects of organic enrichment, followed by a gradual decline to the east. The enrichment of west-central areas of Moberly Bay and Jackfish Bay was concluded to be consistent with the observed pattern of dispersion of the effluent plume from Blackbird Creek (Beak Consultants 1988).

Ponto poreia hoyi density decreased dramatically between 1969 and 1987, indicating that environmental quality was deteriorating over this period. These organisms are extremely sensitive to pulp mill effluent. In 1969, this organism was essentially absent in central and western Moberly Bay and a few locations in the western portion of inner Jackfish Bay. Densities were high in Tunnel Bay, although they were lower in the eastern portions of inner and outer Jackfish Bay. However, by 1987, there were no P. hoyi in any of Moberly Bay or the western portion of Jackfish Bay (Figure 3.35). Densities were found to have continued to decrease in Tunnel Bay, and there were substantial decreases in eastern and central portions of Jackfish Bay.

Conversely, tubificids, which are pollution tolerant, increased in density and extent of high density between 1969 and 1987, especially in Moberly Bay and the western and central section of Jackfish Bay (Figure 3.36). The maximum density in 1969 was 30,000/m³, whereas in 1987, the maximum density was 196,000/m³. The authors noted that these results indicate that Jackfish Bay is gradually becoming enriched, possibly as a result of the cumulative effects of organic loadings from the mill (Beak Consultants 1988).

## 3.3.1.2 Benthic Community Impairment

Cluster analysis using the quantitative benthic data identified four distinct benthic communities or clusters as existing during each of the three survey years. Discriminant analysis of these clusters, utilizing environmental characteristics associated with the benthic sampling locations, identified sediment particle size, water depth, organic matter accumulation in the sediments, and the presence of aquatic vegetation as the most important factors distinguishing among the four benthic clusters. In general, the clusters which were found to be most characteristic of degraded environmental conditions were most often distinguished by a fine-textured sediment (Beak Consultants 1988).



Figure 3.35

Distribution of Pontoporeia hoyi in the Jackfish Bay AOC in 1987 (Beak Consultants 1988).



Figure 3.36

Density zones of tubificids in the Jackfish Bay AOC during 1987 (Beak Consultants 1988).

Figures 3.37 and 3.38 illustrate the distribution of the four benthic community clusters identified for 1969 and 1987, respectively.

In 1969, 1975 and 1987, one benthic cluster (cluster 1) consisted of two benthic subgroups; a deepwater, oligotrophic subgroup (nonimpaired community) and a small subgroup near the mouth of Blackbird Creek (severely impaired community). Both subgroups revealed low benthic densities and relatively low diversities.

The pollution tolerant species *Tubifex tubifex* was found to characterize severely impaired communities in the vicinity of the mill influence (Figures 3.37 and 3.38). This zone, which remained relatively constant at 0.2 to 0.3 km, was thought to be a result of the toxicity or loss of habitat resulting from fibre deposition.

Beyond the zone of severe impairment (cluster 1), an additional cluster (cluster 2), characterized by medium diversity and dominated by oligochaetes, occurred during 1969 and 1975 and was interpreted as representing slightly degraded conditions influenced by mill inputs (Beak Consultants 1988). Clusters 3 and 4 identified during these two surveys were interpreted as representing 'relatively unimpaired' to unimpaired conditions with no obvious effects from pulp mill discharges.

The 1987 survey, however, revealed two clusters (clusters 2 and 3) in addition to the severely degraded community (cluster 1) indicative of organic enrichment and representing impaired conditions (Figure 3.38). The authors interpreted this finding as representing increased and more widespread organic enrichment of Moberly Bay and western Jackfish Bay (Beak Consultants 1988).

Sediment chemistry results, determined from sediments sampled coincidently with the 1975 benthic sampling, identified the two impaired benthic communities as having the highest mean concentrations of copper, cadmium, lead, zinc; loss on ignition and TKN (Beak Consultants 1988).

As well as a greater number of impaired communities, the overall size of the zone of impairment also increased between 1969 and 1987. In 1969 the degraded zones (clusters 1 and 2, Figure 3.37) extended to Cody Island in Moberly Bay, however, by 1987 it extended west of St. Patrick Island and into Tunnel Bay (clusters 1 and 2, Figure 3.38). This increase was not thought to correspond to substantial increases in suspended solids levels or BOD<sub>5</sub> loadings but, as in the case of species diversity changes, likely represent the cumulative effects of mill discharges with time.

## 3.3.1.3 Benthic Contaminant Body Burdens

Because of their ubiquitous distribution and lack of mobility, benthic macroinvertebrates also serve as useful biomonitors of chemical conditions within areas of interest. Analysis of contaminants within benthos may be undertaken for resident populations in order to determine chemical burdens within the local population, or by introducing noncontaminated organisms for specified periods of time to determine the rate and nature of bioaccumulating chemicals. These methods have been used extensively to characterize and monitor chemical contamination in several AOCs, particularly those within the connecting channels. However, there have been very few studies of chemical body burdens in benthic fauna of the Jackfish Bay AOC.

Opposum shrimp (Mysis relicta) collected off the mouth of Moberly Bay coincident with the collection of sediment samples during the 1987/88 survey (Section 3.2.5.3) were also tested for dioxins and furans (Sherman et al. 1990). The congener pattern for M. relicta was found to be similar to that of the mill effluent. 2,3,7,8-tetrachlorodibenzofuran was the dominant isomer found with traces of other congeners including 2,3,7,8-tetrachlorodibenzo-p-dioxin. Octachlorodibenzo-p-dioxins (8CDD) were not detected in mysids from Jackfish Bay or the control site off Lawson Island. This indicated that, although there were moderate 8CDD levels in sediments, they were not taken up by the shrimp.



Figure 3.37

Benthic community clusters during 1969 (Beak Consultants 1988).



Figure 3.38

Benthic community clusters during 1987 (Beak Consultants 1988).

Introduced caged mussels (Elliptio complanata) and white sucker (Catostomus commersoni) collected in Moberly Bay by other researchers displayed similar congener patterns to mysids. Table 3.15 summarizes the information. The higher chlorinated dioxins and furans, including the 6CDD/6CDF, 7CDD/7CDF and 8CDD/8CDF congeners, were mostly not detectable in the biota. However, the 4CDD/4CDF congeners were common to mysids, mussels and white suckers. According to the data in Table 3.15, the most toxic of these (2,3,7,8-TCDD) constituted the entire fraction of the tetrachlorinated dibenzo-p-dioxins in mysids. It is not known if the suckers is also true for the mussels or suckers.

Table 3.15 Concentrations of dioxins and furans (pg/g wet wt.) found in opposum shrimp (Mysis relicta) at the mouth of Moberly Bay and introduced caged mussels and white sucker (in Moberly Bay) from the Jackfish Bay AOC (Sherman et al. 1990).

| Congener     | Mysis* | Mussels <sup>†</sup> | White Suckers * |
|--------------|--------|----------------------|-----------------|
| 2378 - T4CDD | 9      |                      |                 |
| 4CDD         | 9      | <2                   | 7               |
| 5CDD         | <7     | ND <sup>†</sup>      | ND <sup>†</sup> |
| 6CDD         | <20    | ND <sup>‡</sup>      | ND <sup>‡</sup> |
| 7CDD         | ND(9)  | ND <sup>‡</sup>      | ND(4)           |
| 8CDD         | INT    | ND(7)                | ND(7)           |
| 4CDF         | 48     | 34                   | 44              |
| 5CDF         | 16     | ND*                  | <b>⋖</b> 3      |
| 6CDF         | <4     | ND <sup>‡</sup>      | ND <sup>‡</sup> |
| 7CDF         | <4     | ND(4)                | ND(6)           |
| 8CDF         | ND†    | ND(7)                | ND(8)           |
| N            | 2      | 4                    | 4               |
| %lipid       | 1.20   | 2.23                 | 4 13.54         |

<sup>\*</sup> data of Sherman (1990)

INT = level of 5CDD in spiked procedure blank was approximately equal to the levels found in the samples

data of A. Hayton (OMOE, unpublished)

<sup>&</sup>lt;sup>‡</sup> data of I. Smith (OMOE) and M. McMaster (U. Waterloo) (unpublished)

#### 3.3.2 Fish

### 3.3.2.1 Fish Communities

The Jackfish Bay fish community includes at least 31 species (Table 3.16), and is dominated by species from the cold water assemblage. This community varies considerably, from the heavily contaminated northern portion of Moberly Bay, which produced the lowest Integrated Biotic Index (IBI) for northern Lake Superior during a 1986 electrofishing survey, to the relatively productive northern portion of Tunnel Bay (B.A.R. Environmental 1987). The southern portion of Jackfish Bay is strongly influenced by Lake Superior and is characterized as oligotrophic system, low in fish productivity and abundance. The following species are most common to the AOC: lake trout, rainbow trout, lake whitefish, round whitefish, lake herring, lake chub, chinook salmon, coho salmon, pink salmon, rainbow smelt, common white suckers and longnose suckers. The introduction of exotic fish species such as rainbow trout, chinook salmon and pink salmon has increased species diversity, however, native species continue to dominate the community structure.

Lake trout has persisted as the dominant piscivore in Jackfish Bay, although Pacific salmon populations appear to be increasing along the north shore of Lake Superior. Natural reproduction of chinook and coho salmon occurred in numerous northern rivers during the 1980s and reported catches from sport and commercial fisheries also increased.

A major shift in the forage base occurred with the immigration of rainbow smelt into Lake Superior in the 1930s. Smelt replaced lake herring as the primary food source for lake trout, with little apparent effect on lake trout, as both smelt and herring appeared to be suitable forage (Anderson and Smith 1971). The abundance of forage fish in Jackfish Bay has not been investigated.

The sea lamprey have depressed Lake Superior fish stocks since the 1950s (Anonymous 1986). Chemical control was introduced in the mid-1960s, and lamprey populations have remained in check since this period. Wounding rates estimated for commercially caught lake trout are presently considered moderate. Wounding rates in Management Zone 18 spanning a five year period (1982 to 1986) ranged from 1.2 to 11.5 percent. The Steel River is the only Lake Superior tributary in Zone 18 which is currently treated with TFM lampricide on a three to five year cycle.

## 3.3.2.2 Toxicity and Mutagenicity

In July 1983, surface waters in Jackfish Bay were found to be acutely lethal to rainbow trout, up to a distance of 1.5 km from the mouth of Blackbird Creek (Flood et al. 1986). In October 1989, the Kimberly-Clark mill brought a secondary effluent treatment facility on line. In addition to reducing organic loadings in the final effluent, this treatment facility was expected to reduce effluent toxicity. In July 1990, toxicity testing was conducted in Jackfish Bay to determine the effectiveness of this new facility (Flood 1990).

Results from this study indicated that the resultant final effluent is non-lethal in 96-hour laboratory bioassays with rainbow trout. Similarly, the effluent, once diluted with the receiving waters in Moberly Bay, is not toxic to fathead minnow or rainbow trout in caging studies. The LC50 using *Daphnia magna* in the laboratory was found to be greater than 100 percent. That is, a non-diluted effluent sample could not kill 50 percent of the test organisms. Thus, the final effluent was found to meet its current control order with regards to toxicity, and the toxicity criteria proposed under Ontario's Municipal-Industrial Strategy for Abatement (MISA).

**Table 3.16** Fish species occurring within the Jackfish Bay AOC.

| Species                | Common name            | Electro-<br>shocking* | Commercial Catch † | Netting<br>Surveys <sup>‡</sup> |
|------------------------|------------------------|-----------------------|--------------------|---------------------------------|
| Petromyzon marinus     | sea lamprey            |                       | •.                 |                                 |
| Aci penser fulvescens  | lake sturgeon          |                       | •                  |                                 |
| Alosa pseudoharengus   | alewife                | •                     |                    |                                 |
| Oncorhynchus gorbuscha | pink salmon            |                       | •                  |                                 |
| O. kisutch             | coho salmon            |                       | •                  |                                 |
| O. tshawytscha         | chinook salmon         |                       | •                  | •                               |
| O. mykiss              | rainbow trout          | •                     | . •                | •                               |
| Salmo trutta           | brown trout            |                       |                    |                                 |
| S. fontinalis          | brook trout            |                       | •                  | ,                               |
| S. namaycush           | lake trout             |                       | . •                |                                 |
| Coregonus artedii      | lake herring           |                       | •                  | •                               |
| Coregonus spp.         | chub spp.              |                       | •                  | •                               |
| C. clupea formis       | lake whitefish         | •                     | •                  | •                               |
| Prosopium cylindraceum | round whitefish        |                       | •                  | •                               |
| Osmerus mordax         | rainbow smelt          | •                     | •                  |                                 |
| Esox lucius            | northern pike          |                       | •                  |                                 |
| Chrosomus eos          | northern redbelly dace |                       |                    | •                               |
| Cyprinus carpio        | carp                   | •                     |                    |                                 |
| Notro pis atherinoides | emerald shiner         |                       |                    | •                               |
| N. hudsonius           | spottail shiner        | •                     |                    | •                               |
| Catostomus catostomus  | longnose sucker        | •                     | • `                | •                               |
| C. commersoni          | common white sucker    | •                     | •                  | •                               |
| Lota lota              | burbot                 | •                     | •                  | •                               |
| Pungitius pungitius    | ninespine stickleback  | •                     |                    |                                 |
| Percopsis omiscomaycus | trout perch            | •                     |                    |                                 |
| Perca Javescens        | yellow perch           | •                     |                    | •                               |
| Stizostedion vitreum   | walleye                |                       | •                  | •                               |
| Etheostoma nigrum      | johnny darter          |                       |                    | •                               |
| Percina caprodes       | logperch               |                       |                    | •                               |
| Cottus bairdi          | mottled sculpin        | •                     |                    |                                 |
| C. cognatus            | slimy sculpin          | •                     |                    |                                 |
| Couesius plumbeus      | lake chub              | • .                   |                    |                                 |

Species list compiled from the following:

\* B.A.R. Environmental (1986).

Lake Superior Fisheries Unit, commercial catch records. OMNR and OMOE netting surveys.

Considerable research has gone into the study of sublethal effects of the mill effluent on fish in Jackfish Bay (McMaster et al. 1991a&b, Munkittrick 1990, Munkittrick et al. 1991a,b&c, Smith et al. 1990, 1991). Results from studies on local white sucker collected in 1988 (Munkittrick et al. 1991c) indicated that these fish grew more slowly than reference fish, had smaller gonads, lower fecundity with age, an absence of secondary sex characteristics in males, failure of females to show an increase in egg size with age, reduced serum estradiol and testosterone (steroids) concentrations, and greater hepatic mixed-function oxidase (MFO) activity. Tests with lake whitefish and longnose sucker produced the same results as for white sucker. These three fish species are benthic species which makes them useful for monitoring the effects of contaminants in sediments, on aquatic life.

MFOs are enzymes located in the liver that oxygenate natural and synthetic chemicals, preparing them for excretion or other destinations (Smith et al. 1991). Many chemical contaminants such as PCBs, dioxins, furans and PAHs, are potent inducers of the activity of these enzymes (Smith et al. 1991). Smith et al. (1991) also noted that induced MFO activities have been associated with reductions in reproduction and the susceptibility of various species to develop cancers.

PCBs were not implicated by Smith et al. (1990, 1991) as the cause for the induction of MFO activity in white suckers from Jackfish Bay because there was no correlation with PCB concentration and observed MFO activities. They noted that dibenzo-p-dioxins and furans are potent inducers and concluded that the MFO induction in suckers from Jackfish Bay is most likely due to the presence of dioxins, furans and resin acids in the discharge from Kimberly-Clark. Smith et al. (1991) also correlated the induction of MFOs in Jackfish Bay with disruptions of the reproductive process observed by Munkittrick et al. (1990).

After secondary treatment of the mill effluent was brought on line in October 1989, liver weights in whitefish and white sucker decreased (though they were still larger than reference fish) but MFO activity was not decreased (Munkittrick et al. 1991b). However, after a two week mill shutdown, there was no MFO induction in longnose sucker, MFO activity was reduced in white sucker, and the impact zone for MFO induction in lake whitefish was reduced. From these observations, the authors noted that: i) secondary treatment was not successful in removing MFO activating compounds; ii) induction was not related to sediment contamination with persistent compounds; and iii) MFO inducing agent(s) are rapidly cleared by fish. It was also found that neither secondary treatment or a temporary shutdown returned testosterone and estradiol levels to normal levels in white and longnose sucker (Munkittrick et al. 1991b).

The induction of MFO activity in white suckers collected from Jackfish Bay in the summer of 1988, prior to secondary treatment, was correlated by Smith et al. (1991) with an "abnormal incidence of liver neoplasms (cancers)". Greater than 20 percent of lake whitefish caught in Jackfish Bay during August 1989 and August/September 1990 had unexplainable external lesions which did not appear to be related to predatory attack or infection (Munkittrick et al. 1991a). The presence of these lesions in an isolated unpopulated bay which has received large volumes of pulp mill effluent, as well as the absence of reports of similar wounding in other lake whitefish, lead the authors to suggest an association between the lesions and the discharge of bleached kraft mill effluent.

### 3.3.2.3 Sport Fish Contaminant Body Burdens

One of the problems noted by the IJC in designating Jackfish Bay as an Area of Concern was the presence of contaminants (mercury and PCBs) in sport fish in concentrations which restricted their consumption by humans. The 1989 "Guide to Eating Ontario Sport Fish" listed Jackfish Bay as unrestricted consumption of whitefish and cisco as well as lake trout up to 45 cm in length (OMOE/OMNR 1989). Lake trout longer than 45 cm were limited to long-term consumption of no more than 0.2 kg/week due to mercury concentrations between 0.5 and 1.0  $\mu$ g/g and/or PCBs greater than 2.0  $\mu$ g/g. Children under 15 and women of childbearing age were not advised to eat any of these fish. However, the 1990 and 1991 guides identified

consumption of lake trout up to 65 cm in length as unrestricted with respect to mercury and PCB concentrations (OMOE/OMNR 1990, 1991). In addition, the 1991 Guide to Eating Ontario Sport Fish noted that consumption of whitefish, cisco and white sucker to 45 cm in length was also unrestricted. However, the guide notes that the consumption of lake trout greater than 55 cm may need to be restricted for consumption due to concentrations of dioxins and furans expressed as toxic equivalents of 2,3,7,8-tetrachlorodibenzo-p-dioxin.

As of 1991, fish consumption restrictions were in place for Jackfish Lake due to mercury (yellow perch) and mercury and/or PCBs (northern pike and walleye). However, this lake is considered to be outside the influence of the mill effluent and, hence, mercury concentrations > 1.5  $\mu$ g/g in yellow perch between 35 and 45 cm in length is likely due to natural background sources.

Table 3.17 lists the number of detections and the range of concentrations of 14 contaminants measured in lake trout collected for the OMOE/OMNR Sportfish Consumption Program as well as levels of 2,3,7,8-TCDD and 2,3,7,8-TCDF in white suckers collected during 1988. Concentrations of all contaminants tended to be low and there were no exceedences of Ontario's fish consumption guidelines for the protection of human consumers. The GLWQA Specific Objectives for the protection of piscivorous wildlife were exceeded by maximum concentrations of total PCBs  $(0.1 \ \mu g/g)$  in lake trout but not for mirex (any detectable concentration).

### 3.3.2.3 Juvenile Fish Contaminant Body Burdens

Spottail shiners (Notro pis hudsonius) are restricted to localized nearshore habitats and, as such, have been found to be useful biomonitors (spatially and temporally) of contaminant inputs (Suns et al. 1991). As important forage fish, these and other cyprinids provide an important link in the transfer of contaminants to higher trophic levels. Juvenile (young-of-the-year) spottail shiners have been used for contaminant monitoring in all the Great Lakes and connecting channels as part of the Great Lakes International Surveillance Plan since the mid 1970s.

Young-of-the-year spottail shiners have been collected at Jackfish Bay since 1979. Analyses have been undertaken for total PCBs, DDT, mirex, chlordane, BHC, hexachlorobenzene (HCB) and octachlorostyrene (OCS). The results of these analyses are presented in Table 3.18. Although low concentrations of BHC and HCB were detected during 1983 and 1986, respectively, these chemicals along with mirex, chlordane and OCS are essentially not detectable in young-of-the-year spottail shiners from Jackfish Bay (Table 3.18). Trace or detectable concentrations of PCBs and DDT were measured during most years, however, PCBs were not detected and DDT was detected at only trace amounts during the most recent collections (1988). No significant correlations (p>0.05) with time were found for total PCB, DDT and chlordane residues in spottail shiners from Jackfish Bay (Suns et al. 1991).

The GLWQA Specific Objectives for the protection of piscivorous wildlife due to PCBs, DDT and mirex were not exceeded during any of the five years of sampling (Table 3.18).

### 3.3.3 Biota Summary

The biota within the Jackfish Bay AOC, including benthic macroinvertebrates and sport fish, have been impacted as a result of the mill effluent discharged through Blackbird Creek. Densities of benthic macroinvertebrates tend to be lowest along the western portion of Moberly and Jackfish Bays due to the influence of the effluent plume from Blackbird Creek. Between 1969 and 1987, maximum densities of pollution tolerant organisms (tubificids) increased by more than six times while densities of pollution intolerant organisms (Ponto poreia hoy) decreased dramatically. During this period the extent of tubificids also increased in concert with a decrease in the extent of P. hoyi. Whereas in 1969 only the central portion

Table 3.17 Frequency of detection and concentrations (μg/g) of mercury, PCBs, dioxins, furans, and organochlorine pesticides in lake trout collected in 1989 and of 2,3,7,8-TCDD and 2,3,7,8-TCDF in white suckers collected in 1988 from Jackfish Bay.

| Parameter         | Ontario Fish<br>Consumption<br>Guidelines | Detection<br>Limit                    | No. Detected/<br>No. Samples | Range               |
|-------------------|-------------------------------------------|---------------------------------------|------------------------------|---------------------|
|                   | L                                         | ake Trout (198                        | 9)1                          |                     |
| Mercury           | 0.5                                       | 0.01                                  | 20/20                        | 0.6-0.38            |
| Total PCBs        | 2.0                                       | 0.02                                  | 20/20                        | 0.04-0.44           |
| Mirex             | 0.1                                       | 0.005                                 | 0/20                         | ND                  |
| Hexachlorobenzene | <del>-</del>                              | 0.001                                 | 16/20                        | ND-0.004            |
| pp-DDE            |                                           | 0.001                                 | 19/20                        | ND-0.117            |
| <b>α</b> -внс     |                                           | 0.001                                 | 18/20                        | ND-0.009            |
| ү-внс             |                                           | 0.001                                 | 8/20                         | ND-0.001            |
| α-chlordane       |                                           | 0.002                                 | 20/20                        | 0.002-0.017         |
| γ-chlordane       |                                           | 0.002                                 | 19/20                        | ND-0.007            |
| pp-DDD            | <u> </u>                                  | 0.002                                 | 5/20                         | ND-0.001            |
| Toxaphene         | 3.0                                       | 0.2                                   | 18/20                        | ND-1.47             |
| 2,3,7,8-TCDD      |                                           | 0.000002                              | 5/5                          | 0.0000029-0.0000113 |
| 1,2,3,7,8-5PCDD   |                                           | • • • • • • • • • • • • • • • • • • • | 5/5                          | 0.0000036-0.0000055 |
| 1,2,3,4,7,8-6HCDD |                                           | .11                                   | 0/5                          | ND                  |
| 1,2,3,6,7,8-6HCDD |                                           | ",                                    | 0/5                          | ND                  |
| 1,2,3,7,8,9-6HCDD |                                           | 0.000002                              | 0/5                          | ND                  |

Table 3.17 (cont'd)

| Parameter           | Ontario Fish<br>Consumption<br>Guidelines | Detection<br>Limit                    | No. Detected/<br>No. Samples | Range               |
|---------------------|-------------------------------------------|---------------------------------------|------------------------------|---------------------|
| 1,2,3,4,6,7,8-7HCDD |                                           | • • • • • • • • • • • • • • • • • • • | 1/5                          | ND-0.0000011        |
| 80CDD               | -                                         | •                                     | 5/5                          | 0.0000016-0.0000035 |
| 2,3,7,8-TCDF        |                                           | •                                     | 5/5                          | 0.000020-0.000058   |
| 1,2,3,7,8-5PCDF     |                                           |                                       | 5/5                          | 0.0000023-0.0000080 |
| 2,3,4,7,8-5PCDF     | -                                         | •                                     | 5/5                          | 0.0000015-0.0000036 |
| 1,2,3,4,7,8-6HCDF   | -                                         | •                                     | 0/5                          | ND                  |
| 1,2,3,6,7,8-6HCDF   | -                                         |                                       | 0/5                          | ND                  |
| 1,2,3,7,8,9-6HCDF   | -                                         | 90                                    | 0/5                          | ND                  |
| 2,3,4,6,7,8-6HCDF   | ÷                                         | ••                                    | 0/5                          | ND                  |
| 1,2,3,4,6,7,8-7HCDF |                                           | **                                    | 1/5                          | ND-0.0000022        |
| 1,2,3,4,7,8,9-7HCDF |                                           | ••                                    | 0/5                          | ND                  |
| 80CDF               | -                                         |                                       | 0/5                          | ND                  |
|                     | Wh                                        | ite Suckers (1                        | 988)²                        |                     |
| 2,3,7,8-TCDD        | 0.00002                                   | 0.000002                              | 4/4                          | 0.0000027-0.0000120 |
| 2,3,7,8-TCDF        |                                           | 0.000002                              | 4/4                          | 0.0000210-0.0000650 |

ND = not detected

data courtesy of the OMOE/OMNR Sportfish Consumption Program.

data from Sherman et al. (1990).

Table 3.18 Organochlorine concentrations in young-of-the-year spottail shiners collected from Jackfish Bay from 1979 to 1988 (Suns et al. 1991). Values are means (standard deviations) expressed as  $\mu_g/g$ .

| Year | n     | Total<br>Length | Fat<br>(%)   | PCBs             | DDT              | Mirex     | Chlordane | внс              | нсв          | ocs          |
|------|-------|-----------------|--------------|------------------|------------------|-----------|-----------|------------------|--------------|--------------|
|      |       | Detect          | ion Limit    | 0.02             | 0.002            | 0.005     | 0.002     | 0.001            | 0.001        | 0.001        |
|      | GLWQA | Specific        | Objective    | 0.1              | 1.0              | detection |           |                  | <b>,</b>     | _            |
| 1979 | 7     | 33-4            | 2.0<br>(0.4) | TR               | ND               | ND        | ND        | ND               | ND           | <del>-</del> |
| 1983 | 7     | 36-2            | 4.1<br>(0.5) | 0.089<br>(0.022) | 0.003<br>(0.001) | ND        | ND        | 0.005<br>(0.001) | TR           | ND           |
| 1984 | 7     | 31-4            | 0.7<br>(0.1) | TR               | 0.002<br>(0.001) | ND        | ND        | ND               | ND           | ND           |
| 1986 | 3     | 35-4            | 2.2<br>(0.2) | ND               | 0.002<br>(0)     | ND        | ND        | ND               | 0.004(<br>0) | ND           |
| 1987 | 3     | 45-2            | 4.2<br>(0.4) | ND               | TR               | ND        | ND        | ND               | ND           | ND           |

ND = not detected NA = not sampled - = no objective of Moberly Bay and the northwestern portions of Jackfish Bay were affected, by 1987 the density of *P. hoyi* had decreased in Tunnel Bay as well as the eastern and central portions of Jackfish Bay.

These trends were similar to those observed by the distribution and number of impaired benthic communities. The extent of communities identified as impaired increased between 1969 and 1975. Between 1975 and 1987 the extent increased further and an additional impaired community was identified. Impaired communities were found to occur in sediments which had the highest mean concentrations of cadmium, copper, lead, zinc and TKN as well as high levels of fibre (loss on ignition). The impact to benthic macroinvertebrates in the Jackfish Bay AOC have been attributed to the Kimberly-Clark mill effluent.

Changes to the structure of the fish community have been mostly related to causes such as over-harvesting, the sea lamprey and the introduction of exotic species. However, recent studies of lake whitefish, longnose sucker and white sucker from Jackfish Bay have revealed several effects which researchers attributed to be due to the mill effluent. These include slower growth, smaller gonads, lower fecundity with age, absence of secondary sex characteristics in males, failure of females to show increase in egg size with age, decreased estradiol and testosterone levels and increased mixed oxidase function activities in comparison to noncontaminated reference fish. The increased MFO activity has been attributed to the presence of organic contaminants such as dioxins, furans and resin acids which are present in the mill effluent. The addition of secondary treatment in October 1989 reduced the toxicity of the effluent, but has not resulted in a reduction of MFO activity in white suckers from Jackfish Bay.

The body burdens of native benthos (Mysis relicta), introduced mussels (Elliptio complanata) and white suckers from Jackfish Bay indicate a pattern of dioxin and furan bioaccumulation which suggests the mill effluent as the major source. This includes the bioaccumulation of tetrachlorodibenzo-p-dioxins (including the highly toxic 2,3,7,8-TCDD congener) and tetrachlorodibenzofurans, contributed by the effluent, in greater concentrations than the higher chlorinated dioxins, contributed mostly through atmospheric deposition. The higher chlorinated compounds occur in sediment at concentrations comparable or higher than the TCDDs and TCDFs, however, the latter appear to be preferentially accumulated by biota.

Although fish consumption advisories were previously in effect due to mercury and PCB concentrations, these restrictions have been removed. The removal is based on collections during 1989 which indicated that all contaminants were below the Ontario consumption guidelines. However, consumption of lake trout greater than 55 cm may be restricted for consumption due to the sum of dioxins and furans expressed as toxic equivalents of 2,3,7,8-tetrachlorodibenzo-p-dioxin. The only guideline exceedence in either sport fish or young-of-the-year spottail shiners collected in 1989 and 1988, respectively, is the GLWQA Specific Objective for the protection of piscivorous wildlife from PCBs. This objective was exceeded by up to four times by the maximum concentration measured in lake trout collected during 1989.

## 3.4 BLACKBIRD CREEK

The environmental condition of Blackbird Creek, including Lake A and Moberly Lake, has also been impacted due to its role as effluent receiver for the Kimberly-Clark Canada Inc. mill. The Blackbird Creek system has been utilized since 1948 with the expectation that it would provide some level of natural effluent treatment. As part of this natural treatment system, Lake A was to serve as a settling basin for solids and its capacity would be maintained by regular dredging. However, dredging was not sufficient to remove the large quantities of solids being deposited and, as a result, the lake quickly in-filled. Lake A has since been bypassed and no longer provides any treatment capacity.

# 3.4.1 Upstream - Downstream Water Quality

During the 1987/88 water quality surveys undertaken by OMOE, Blackbird Creek was sampled at an upstream location (Station 20) close to the mill effluent discharge and a downstream location (Station 5) near its outlet to Moberly Bay. Analyses were undertaken for bacteria, conventional parameters, nutrients, metals, and various organic contaminants including organochlorine pesticides, phenolics and resin and fatty acids (Sherman 1991). The mean, ranges and exceedences of PWQO for these parameters are provided by station and year in Tables 3.19 through 3.23. For the downstream station (Station 5), the tables provide an indication of whether or not mean concentrations increased, decreased or were unchanged relative to the upstream effluent for comparable sample periods. The percent of samples which exceeded the PWQO at the downstream station are also indicated.

Table 3.19a summarizes the data for conventional parameters, nutrients and metals for effluent (Station 20). Table 3.19b provides data for the same parameters for the downstream Blackbird Creek station (Station 5). Of 26 parameters analyzed at Station 5 in 1987, 21 decreased in concentration in the downstream direction. Twelve of these trends were statistically significant (p < 0.05). Only pH, magnesium and iron increased from the effluent discharge to the outlet of Blackbird Creek. The trends were similar during 1988 with 22 of 27 parameters showing decreasing downstream trends (10 significantly). Magnesium, alkalinity and pH were the only parameters to increase, and none of these trends were significant. PWQOs were exceeded regularly near the outlet of Blackbird Creek for pH (1987), total phosphorus (1987/88), aluminum (1987/88), iron (1987/88) and zinc (1987/88).

Tables 3.20a and 3.20b summarize the effluent and Blackbird Creek data, respectively, for organochlorine pesticides. Downstream trends for the 21 parameters measured are highly variable with 14 increasing in concentration during 1987 and only 8 increasing during 1988. The lack of a clear trend between upstream and downstream concentrations indicate that the creek does not play a role in either reducing or enhancing the loadings of these contaminants prior to entry into Moberly Bay. Also, the relatively low concentrations suggest the mill effluent is not a major source of organochlorine pesticides, including PCBs, to the AOC. Occasional exceedences of PWQOs for several parameters were recorded, particularly for dieldrin, methoxychlor, endrin, endosulphan I, endosulphan II, endosulphan-SO<sub>4</sub>, heptachlor, p,p-DDD, p,p-DDE and p,p-DDT. The source of these contaminants is not apparent.

Resin and fatty acids data are provided in Table 3.21. These parameters are characteristic of effluent derived from bleached kraft paper mills and contribute to effluent toxicity. Eighteen of the 20 acids decrease in concentration from the effluent discharge to the lower portion of Blackbird Creek in 1988. However, none of the differences between upstream and downstream mean concentrations were statistically significant (p < 0.05).

Tables 3.22a and b indicate that virtually all phenol compounds decrease in concentration in the downstream direction within Blackbird Creek. Of particular concern are concentrations of 2,3,4,5-tetrachlorophenol, 2,4,6-trichlorophenol and pentachlorophenols which exceed their respective PWQOs within the creek.

Geometric mean densities of total coliform, Escherichia coli, Pseudomonas aeruginosa, and heterotrophic bacteria for Stations 20 and 5 are provided in Tables 3.23a and b. Geometric means increased in the downstream direction for all four bacterial parameters during 1987. Increases in mean total coliform and heterotrophic bacteria densities were significant (p < 0.05). The trends were more variable and not significant during the 1988 surveys. Geometric mean total coliform exceeded the PWQO (1,000 organisms/100 mL) and Escherichia coli and Pseudomonas aeruginosa exceeded the IJC recommended densities (23 and 1 organisms/100 mL, respectively) for the protection of human bathers during both 1987 and 1988. Increases in the downstream direction indicate that either additional sources of bacteria occur

Table 3.19a Concentrations of conventional parameters, nutrients and metals in Kimberly-Clark (Station 20) effluent samples in 1987 and 1988 (Sherman 1991). All units in mg/L unless otherwise noted.

|                     |            | July/   | Aug 1987     |          | 10 | July 1988 |          |          |  |  |  |  |
|---------------------|------------|---------|--------------|----------|----|-----------|----------|----------|--|--|--|--|
| Parameter           | N          | Minimum | Maximum      | Mean     | N  | Minimum   | Maximum  | Mean     |  |  |  |  |
| Conventional Parame | eters (    | mg/L):  |              |          | :  |           |          |          |  |  |  |  |
| Calcium             | 20         | 39.0    | 69.0         | 45.65    | 17 | 37.80     | 119.0    | 58.11    |  |  |  |  |
| Magnesium           | 20         | 3.9     | 5.5          | 4.89     | 16 | 4.5       | 6.0      | 4.93     |  |  |  |  |
| Sodium              | 20         | 190     | 360          | 260.75   | 17 | 188       | 340      | 252.71   |  |  |  |  |
| Potassium           | 20         | 6.0     | 20.0         | 9.81     | 17 | 5.1       | 12.0     | 9.0      |  |  |  |  |
| Alkalinity          | 14         | 0.0     | 230.0        | 75.64    | 17 | 47.7      | 227.9    | 133.19   |  |  |  |  |
| Sulphate            | 20         | 38.40   | 112.00       | 66.32    | 17 | 0.00      | 274.20   | 89.39    |  |  |  |  |
| Chloride            | 21         | 160     | 492          | 362.86   | 17 | 224       | 435      | 309.35   |  |  |  |  |
| pH                  | 20         | 3.2     | 8.9          | 5.38     | 16 | 6.6       | 7.9      | 7.05     |  |  |  |  |
| Cond25 (umho/cm)    | 21         | 1,171   | 1,970        | 1,611.19 | 18 | 1,203     | 1,980    | 1,492.72 |  |  |  |  |
| Suspended Solids    | 20         | 10      | 120          | 26       | 16 | 14.5      | 113      | 37.93    |  |  |  |  |
| Turbidity (FTU)     | 20         | 29      | 70           | 38.45    | 16 | 10.3      | 28       | 19.79    |  |  |  |  |
| Nutrients (mg/L):   | : 1        | 1.      |              |          | •  |           |          |          |  |  |  |  |
| Total Phosphorus    | 20         | 0.12    | 0.68         | 0.42     | 16 | 0.14      | 0.74     | 0.37     |  |  |  |  |
| Phosphate           | 8          | 0.06    | 0.88         | 0.35     | 14 | 0.03      | 0.19     | 0.07     |  |  |  |  |
| Ammonium            | 5          | 0.10    | 3.20         | 1.60     | 14 | 0.05      | 0.30     | 0.15     |  |  |  |  |
| TKN                 | 20         | 0.40    | 3.50         | 1.89     | 16 | 0.85      | 2.80     | 2.02     |  |  |  |  |
| Nitrate             | 7          | 0.11    | 0.46         | 0.29     | 11 | 0.05      | 0.30     | 0.19     |  |  |  |  |
| DOC                 | 20         | 85      | 223          | 173      | 16 | 14.3      | 196      | 157      |  |  |  |  |
| Tannins             | 19         | 50      | 200          | 92.68    | 16 | 25        | 125      | 64.38    |  |  |  |  |
| True Colour         | 20         | 648     | 1,870        | 1,152.85 | 16 | 500       | 1,577    | 1,128.94 |  |  |  |  |
| BOD <sub>5</sub>    | 17         | 80      | 195          | 152.06   | 16 | 37        | 242      | 146.06   |  |  |  |  |
| Metals (mg/L):      | ·          |         |              |          |    |           |          |          |  |  |  |  |
| Aluminum            | 18         | 0.34    | 1.00         | 0.79     | 16 | 0.07      | 4.70     | 0.74     |  |  |  |  |
| Arsenic             | 21         | < 0.001 | 0.003        | 0.001    | 16 | < 0.001   | 0.002    | < 0.001  |  |  |  |  |
| Beryllium           | 21         | -       | -            | -        | 16 | -         |          | -        |  |  |  |  |
| Cadmium             | 21         | _       | •            | •        | 16 | •         | <u>.</u> |          |  |  |  |  |
| Chromium            | 21         |         |              | ari 🕍 🕬  | 16 | 0.02      | 0.41     | 0.08     |  |  |  |  |
| Copper              | 21         |         | _            |          | 16 | < 0.002   | 0.41     | 0.02     |  |  |  |  |
| Iron                | 21         | 0.44    | 1.20         | 0.81     | 16 | 0.21      | 1.10     | 0.55     |  |  |  |  |
| Mercury (µg/L)      | 20         | < 0.01  | 0.39         | 0.05     | 15 | < 0.01    | 0.40     | 0.06     |  |  |  |  |
| Manganese           | 21         | 0.30    | 0.79         | 0.51     | 16 | 0.30      | 0.53     | 0.39     |  |  |  |  |
| Nickel              | 21         | JU      | <b>U.</b> 17 | V.J.1    | 16 | •         | •        | J.J.     |  |  |  |  |
| Lead                | 21         |         | •            |          | 16 | _         |          |          |  |  |  |  |
| Zinc                | 21         | 0.07    | 0.22         | 0.15     | 15 | < 0.005   | 0.19     | 0.07     |  |  |  |  |
|                     | <b>Z</b> 1 | 0.07    | 0.33         | U.13     | 13 | ~0.003    | 0.19     | 0.07     |  |  |  |  |

Table 3.19b Concentration of conventional parameters, nutrients and metals in Blackbird Creek (Station 5) water samples in 1987 and 1988 (Sherman 1991). All units in mg/L unless otherwise noted.

|                   | 1 4  |           | July/Au | g 1987   |                |    |         | July    | 1988     |                                                                                                               |           |
|-------------------|------|-----------|---------|----------|----------------|----|---------|---------|----------|---------------------------------------------------------------------------------------------------------------|-----------|
| Parameter         | N    | Minimum   | Maximum | Mean .   | Trend* Zexceed | N  | Minimum | Maximum | Mean     | Trend* Zexceed                                                                                                | PWQO      |
| Conventional Para | mete | rs (mg/L) | ):      |          |                |    |         |         |          |                                                                                                               |           |
| Calcium           | 22   | 4.0       | 55.0    | 40.84    | <b>.</b>       | 17 | 35.20   | 67.40   | 52.20    | 4                                                                                                             |           |
| Magnesium         | 21   | 5.0       | 6.2     | 5.60     | 1              | 16 | 4.6     | 5.5     | 5.03     | 1                                                                                                             |           |
| Sodium            | 22   | 120.0     | 274.0   | 188.0    | •              | 17 | 134     | 260     | 206.41   | •                                                                                                             |           |
| Potassium         | 22   | 4.5       | 11.3    | 6.72     | •              | 17 | 4.4     | 9.8     | 7.67     | 4                                                                                                             |           |
| Alkalinity        | 22   | 8.0       | 156.0   | 55.09    | <b>.</b>       | 17 | 84.70   | 204.0   | 149.45   | 1                                                                                                             |           |
| Sulphate          | 22   | 30.0      | 79.10   | 48.27    | •              | 17 | 31.10   | 91.30   | 61.70    | 1                                                                                                             |           |
| Chloride          | 23   | 190.0     | 420.0   | 291.74   | •              | 17 | 173.0   | 370.0   | 257.65   | 4                                                                                                             | 1 4 4 4 7 |
| рН                | 22   | 5.0       | 7.1     | 6.33     | <b>†</b> 59%   | 16 | 6.80    | 7.50    | 7.20     | t 0%                                                                                                          | 6.5-8.    |
| Cond25 (umho/cm)  | 23   | 913.0     | 1,680.0 | 1,225.04 |                | 17 | 881.0   | 1,490.0 | 1,261.12 | . •                                                                                                           |           |
| Suspended Solids  | 21   | 10.0      | 45.0    | 24.90    | <b>.</b>       | 16 | 15.20   | 40.0    | 26.07    | 1                                                                                                             |           |
| Turbidity (ftu)   | 22   | 14.0      | 36.0    | 22.09    | <b>.</b>       | 16 | 8.00    | 30.0    | 14.81    | <b>+</b>                                                                                                      |           |
| Nutrients (mg/L): |      |           |         |          |                |    |         |         |          |                                                                                                               |           |
| Total Phosphorus  | 21   | 0.13      | 0.71    | 0.40     | ↓ 100%         | 15 | 0.03    | 0.43    | 0.29     | ↓ 93%                                                                                                         | 0.03      |
| Phosphate         | 5    | 0.07      | 0.15    | 0.11     | 4.             | 15 | 0.03    | 0.11    | 0.06     | _                                                                                                             |           |
| Ammonium          | 1    | 0.50      | 0.50    | 0.50     | 1 NC           | 15 | 0.05    | 0.20    | 0.12     | † NC                                                                                                          |           |
| TKN               | 21   | 0.48      | 2.90    | 1.88     | -              | 16 | 1.50    | 2.80    | 1.98     | . ↓                                                                                                           |           |
| Nitrate           | 6    | 0.10      | 1.0     | 0.27     | -              | 7  | 0.05    | 0.20    | 0.14     | <b>.</b>                                                                                                      |           |
| DOC               | 22   | 3.20      | 383.0   | 113.0    |                | 15 | 8.20    | 124.0   | 98.20    | +                                                                                                             |           |
| Tannins           | 20   | 25        | 90      | 62.5     | ] <b>,</b> .   | 16 | 25      | 125     | 59.25    | 1                                                                                                             |           |
| True Colour       | 22   | 678       | 1,240   | 928.0    | 1              | 16 | 463     | 1,412   | 1,009.94 |                                                                                                               |           |
| BOD (5 Day)       | 21   |           | 195     | 69.5     | 1              | 15 |         | 298     | 75.78    | e de la companya de | 1         |

Table 19b (Cont'd)

|                |      |          | July/Aug | 1987         |                |    |         | July 1       | 988    |                   |        |
|----------------|------|----------|----------|--------------|----------------|----|---------|--------------|--------|-------------------|--------|
| Parameter      | N    | Minimum  | Maximum  | Mean         | Trend* Zexceed | N  | Minimum | Maximum      | Mean   | Trend*<br>Zexceed | PWQO   |
| Metals (mg/L): |      |          |          |              |                |    |         |              |        |                   |        |
| Aluminum       | 17   | 0.34     | 1.0      | 0.60         | 1 NC           | 16 | 0.07    | 0.48         | 0.29   | ₹ 94%             | 0.075  |
| Arsenic        | 20   | <0.001   | 0.002    | <0.001       | 1 0%           | 16 | <0.001  | <0.001       | <0.001 | - 0%              | 0.10   |
| Beryllium      | 20   | ÷.       |          | <del>-</del> |                | 16 | -       | -            |        |                   |        |
| Cadmium        | 20   |          |          |              |                | 16 | _       |              |        |                   | 0.0002 |
| Chromium       | : 20 | <u> </u> | -        |              |                | 16 | 0.02    | 0.08         | 0.05   | ↓ 0%              | 0.10   |
| Copper         | 20   |          | <u> </u> | _            |                | 16 | -       | -            | _      |                   | 0.005  |
| Iron           | 20   | 0.56     | 1.30     | 0.88         | 1 100%         | 16 | 0.36    | 0.61         | 0.51   | ↓ 100%            | 0.30   |
| Mercury (µg/L) | 22   | <0.01    | 0.03     | <0.01        | ↓ 0%           | 15 | 0.01    | 0.13         | 0.02   | ↓ 0%              | 0.20   |
| Manganese      | 20   | 0.24     | 0.56     | 0.38         | 1              | 16 | 0.21    | 0.46         | 0.34   | •                 |        |
| Nickel         | 20   |          | -        | -            |                | 16 |         | <del>-</del> | _      |                   | 0.025  |
| Lead           | 20   |          | •        | <del>-</del> |                | 16 | -       | _            | _      |                   |        |
| Zinc           | 20   | 0.04     | 0.17     | 0.10         | ↓ 100%         | 16 | 0.01    | 0.10         | 0.03   | 4 31%             | 0.03   |

- \* Trend symbols are as follows:
  - decrease from upstream station
  - † increase from upstream station
  - significant decrease from upstream station
  - t significant increase from upstream station
  - no change from upstream station
- NC Percent in exceedence of PWQO not calculated
- † PWQO is for a range of pH 6.5 9.0

Table 3.20a Concentration of organochlorine pesticide levels in Kimberly-Clark (Station 20) effluent samples in 1987 and 1988 (Sherman 1991). Concentrations are in ng/L.

|                     |       | July/     | Aug 1987 |        |    | Ju      | ly 1988 |        |
|---------------------|-------|-----------|----------|--------|----|---------|---------|--------|
| Parameter           | N     | Minimum   | Maximum  | Mean   | N  | Minimum | Maximum | Mean   |
| Organochlorine Pest | icide | s (ng/L): |          |        |    |         |         |        |
| Aldrin              | 17    | <1.00     | <1.00    | <1.00  | 16 | <1.00   | 67.0    | 5.12   |
| œВНC                | 17    | <1.00     | <1.00    | <1.00  | 16 | <1.00   | 170.00  | 17.90  |
| ь-внс               | 17    | <1.00     | <1.00    | <1.00  | 16 | <1.00   | 1030.00 | 87.10  |
| <b>γ</b> -ВНС       | 17    | <1.00     | <1.00    | <1.00  | 16 | <1.00   | 140.00  | 21.90  |
| α-Chlordane         | 17    | < 2.00    | <2.00    | <2.00  | 16 | <2.00   | <2.00   | 2.00   |
| 7-Chlordane         | 17    | <2.00     | < 2.00   | <2.00  | 16 | <2.00   | <2.00   | 2.00   |
| Dieldrin            | 17    | <4.00     | 50.00    | 9.53   | 16 | <4.00   | 200.00  | 18.5   |
| DMDT-Methoxychlor   | 17    | <4.00     | 950.00   | 138.00 | 16 | <4.00   | 750.00  | 71.80  |
| Endrin              | 17    | <4.00     | 400.00   | 28.20  | 16 | <4.00   | 290.00  | 24.10  |
| Endosulphan-SO4     | 17    | <4.00     | 170.00   | 22.50  | 16 | <4.00   | 160.00  | 21.50  |
| Endosulphan I       | 17    | <2.00     | 150.00   | 17.10  | 16 | <2.00   | 100.00  | 17.90  |
| Endosulphan II      | 16    | <4.00     | 104.00   | 14.00  | 16 | <4.00   | 60.00   | 9.75   |
| Heptachlor epoxide  | 16    | <2.00     | <8.00    | 2.37   | 16 | <2.00   | 203.00  | 30.60  |
| Heptachlor          | 17    | <1.00     | <1.00    | <1.00  | 16 | <1.00   | 90.00   | 16.40  |
| Mirex               | 17    | < 5.00    | < 5.00   | < 5.00 | 16 | < 5.00  | < 5.00  | < 5.0  |
| Oxychlordane        | 17    | <2.00     | <2.00    | <2.00  | 16 | <2.00   | 86.00   | 13.30  |
| OP-DDT              | 17    | < 5.00    | < 5.00   | < 5.00 | 16 | < 5.00  | < 5.00  | < 5.00 |
| Total PCB           | 17    | <20.00    | <20.00   | <20.00 | 16 | <20.00  | <20.00  | <20.00 |
| PP-DDD              | 17    | < 5.00    | < 5.00   | < 5.00 | 16 | < 5.00  | 720.00  | 87.20  |
| PP-DDE              | 17    | <1.00     | <1.00    | <1.00  | 16 | <1.00   | 25.00   | 3.69   |
| PP-DDT              | 17    | < 5.00    | 155.00   | 16.20  | 16 | < 5.00  | 160.00  | 23.80  |

Table 3.20b Concentration of organochlorine pesticide levels in Blackbird Creek (Station 5) water samples in 1987 and 1988 (Sherman 1991). All units in ng/L.

|                       |      |           | July/Aug   | 1987   |                   |     |         | July 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 88     |                   |      |
|-----------------------|------|-----------|------------|--------|-------------------|-----|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------|------|
| Parameter             | N    | Minimum   | Maximum    | Mean   | Trend*<br>Zexceed | N   | Minimum | Maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mean   | Trend*<br>Zexceed | PWQO |
| Organochlorine Pes    | tici | les (ng/L | <b>)</b> : |        |                   | • • |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                   |      |
| Aldrin                | 23   | <1.00     | <10.00     | 1.74   | † 0%              | 15  | <1.00   | <1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <1.00  | ↓ 0%              | 1.0  |
| α-BHC                 | 23   | <1.00     | <10.00     | 2.13   | 1                 | 15  | <1.00   | 40.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.60   | 1                 |      |
| b-BHC                 | 23   | <1.00     | <10.00     | 1.74   | <b>†</b>          | 15  | <1.00   | 214.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 29.30  | 1                 |      |
| γ-BHC                 | 23   | <1.00     | <10.00     | 1.74   | 1                 | 15  | <1.00   | 150.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 27.50  | 1                 |      |
| α-Chlordane           | 23   | <2.00     | <10.00     | 2.35   | 1 0%              | 15  | <2.00   | 39.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.47   | † 0%              | 60.0 |
| γ-Chlordane           | 23   | <2.00     | <10.00     | 2.35   | 1 0%              | 15  | <2.00   | 70.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.10  | 1 7%              | 60.0 |
| Dieldrin              | 23   | <4.00     | 40.00      | 8.09   | ↓ 9%              | 15  | <4.00   | 40.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.40   | ↓ 0%              | 1.0  |
| DMDT-Methoxychlor     | 23   | <5.00     | 520.00     | 101.00 | ↓ 26%             | 15  | <4.00   | 40.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.27   | ↓ 0%              | 40.0 |
| Endrin                | 23   | <4.00     | 40.00      | 6.96   | ↓ 4%              | 15  | <4.00   | 96.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14.90  | ↓ 13%             | 2.0  |
| Endosulphan-SO4       | 23   | <4.00     | 76.00      | 12.70  | ↓ 13%             | 15  | <4.00   | 40.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.40   | ↓ 0%              | 3.0  |
| Endosulphan I         | 23   | <2.00     | 106.00     | 14.20  | ↓ 13%             | 15  | <2.00   | 20.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.20   | ↓ 0%              | 3.0  |
| Endosulphan II        | 23   | <4.00     | 40.00      | 7.65   | 1 4%              | 15  | <4.00   | 80.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15.90  | † 13%             | 3.0  |
|                       |      |           |            |        |                   |     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                   |      |
| Heptachlor<br>epoxide | 22   | <2.00     | <10.00     | 2.64   | 1 0%              | 15  | <2.00   | 3.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.65   | 1 0%              | 1.0  |
| Heptachlor            | 23   | <1.00     | <5.00      | 1.35   | 1 0%              | 15  | <1.00   | 10.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25.70  | ↑ 13%             | 1.0  |
| Mirex                 | 23   | <5.00     | 10.00      | 6.96   | t 4%              | 15  | <5.00   | <5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00   | - 0%              | 1.0  |
| Oxychlordane          | 23   | <2.00     | <10.00     | 2.35   | . <b>t</b>        | 15  | <2.00   | 8.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19.10  | 1                 |      |
| OP-DDT                | 23   | <5.00     | <25.00     | 5.87   | 1 0%              | 15  | <5.00   | 15.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 38.70  | t 7%              | 3.0  |
| Total PCB             | 23   | <20.00    | <100.00    | 27.00  | 1 0%              | 15  | <20.00  | <20.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00   | - 0%              | 1.0  |
| PP-DDD                | 23   | <5.00     | <25.00     | 5.87   | 1 0%              | 15  | <5.00   | 26.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 66.80  | ↓ 13%             | 1.0  |
| PP-DDE                | 23   | <1.00     | <5.00      | 1.17   | 1 0%              | 15  | <1.00   | The state of the s | 11.80  | 1 13%             | 1.0  |
| PP-DDT                | 23   | <5.00     | 30.00      | 6.96   | ↓ 4%              | 15  | <5.00   | 38.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 128.00 | ↑ 7%              | 1.0  |

Trend symbols are as follows:

Note: no significant downstream differences for any of these parameters.

decrease from upstream station

increase from upstream station

<sup>-</sup> no change from upstream station

Table 3.21 Comparison of resin, aromatic and fatty acid levels in effluent samples and water samples collected from Kimberly-Clark (Station 20) and Blackbird Creek (Station 5) in 1987 and 1988 (Sherman 1991). All units are in  $\mu$ g/L.

| Parameter                   | Kim | berly-Cla<br>(Station |    |             |    |                | Blackbi<br>(Stat | rd Cr<br>ion 5 |              |          |
|-----------------------------|-----|-----------------------|----|-------------|----|----------------|------------------|----------------|--------------|----------|
|                             |     | //Aug<br>987          |    | luly<br>988 |    | July/A<br>1987 |                  |                | July<br>1988 |          |
|                             | N   | Mean                  | N  | Mean        | N  | Mean           | Trend*           | N              | Mean         | Trend*   |
| Resin Acids (µg/L):         |     |                       |    |             |    |                |                  | 17.5           |              |          |
| Abietic Acid                | 20  | 45                    | 17 | 346         | 20 | 13             | . ↓              | 17             | 51           | 1        |
| Chlorodehydroabietic Acid   | 20  | 18                    | 17 | 14          | 20 | 17             | •                | 17             | 12           | . ↓      |
| Dichlorodehydroabietic Acid | 20  | 13                    | 17 | 11          | 20 | 12             | -                | 17             | <10          | 1        |
| Dehydroabietic Acid         | 20  | 120                   | 17 | 491         | 20 | 75             | 1                | 17             | 181          | +        |
| Isopimaric Acid             | 20  | 35                    | 17 | 135         | 20 | 24             | 1                | 17             | 49           | 1        |
| Levopimaric Acid            | 20  | 13                    | 17 | 95          | 20 | 12             | •                | . 17           | 11           | 1        |
| Neoabietic Acid             | 20  | 12                    | 17 | 51          | 20 | 10             | 1                | 17             | 12           | •        |
| Palustric Acid              | 16  | 9                     | 14 | 33          | 14 | 10             | -                | 17             | 11           | <b>1</b> |
| Pimaric Acid                | 20  | 22                    | 17 | 91          | 20 | 15             | 1                | 17             | 54           | 1        |
| Sandaracopimaric Acid       | 20  | 14                    | 17 | 35          | 20 | 11             | 1                | 17             | 12           | 1        |
| Fatty Acids (µg/L):         |     |                       |    |             |    |                |                  |                |              |          |
| Arachidic Acid              | 20  | 21                    | 17 | 15          | 20 | 18             | 1                | 17             | . 11         | 1        |
| Capric Acid                 | 20  | 11                    | 17 | 10          | 20 | 10             |                  | 17             | 10           |          |
| Dichlorostearic Acid        | 20  | 26                    | 17 | 12          | 20 | 18             | 1                | 17             | 10           | 1        |
| Lauric Acid                 | 20  | 10                    | 17 | 10          | 20 | 10             |                  | 17             | 10           | •        |
| Linoleic Acid               | 20  | 44                    | 17 | 44          | 20 | 10             | 1                | 17             | 10           | 1        |
| Linolenic Acid              | 20  | 12                    | 17 | 13          | 20 | 11             |                  | 17             | 10           | 1        |
| Myristic Acid               | 20  | 10                    | 17 | 11          | 20 | 10             |                  | 17             | 10           | 1        |
| Oleic Acid                  | 20  | 28                    | 17 | 50          | 20 | 18             | 1                | 17             | 11           | 1.       |
| Palmitic Acid               | 20  | 28                    | 17 | 81          | 20 | 16             | 1                | 17             | 43           | 1        |
| Stearic Acid                | 20  | 25                    | 17 | 28          | 20 | 18             | <b>.</b>         | 17             | 21           | . ↓      |

<sup>\*</sup> Trend symbols are as follows:

- decrease from upstream station
- † increase from upstream station
- no change from upstream station

Note: no significant differences in downstream concentrations

Table 3.22a Concentrations of polychlorinated phenols in effluent samples in Kimberly-Clark (Station 20) in 1987 and 1988 (Sherman 1991). All units are in ng/L.

|                            |       | July/   | Aug 1987 |       |    | Jul     | y 1988  |       |
|----------------------------|-------|---------|----------|-------|----|---------|---------|-------|
| Parameter                  | N     | Minimum | Maximum  | Mean  | N  | Minimum | Maximum | Mean  |
| Polychlorinated Phenols (n | g/L): |         |          |       |    |         |         |       |
| 2,3,4 trichlorophenol      | 17    | <100    | 11,000   | 1,376 | 17 | <100    | <1,000  | 233   |
| 2,3,4,5 tetrachlorophenol  | 17    | <20     | 1,870    | 307   | 17 | <50     | 1,820   | 224   |
| 2,3,5,6 trichlorophenol    | 17    | <10     | 6,150    | 1,908 | 17 | <50     | <500    | 115   |
| 2,4,5 trichlorophenol      | 17    | <50     | 950      | 231   | 17 | <50     | 150     | 136   |
| 2,4,6 trichlorophenol      | 17    | <50     | 21,000   | 8,747 | 16 | <50     | 9,000   | 4,263 |
| Pentachlorophenol          | 17    | <50     | 5,250    | 2,021 | 17 | <50     | 1,100   | 434   |

Table 3.22b Concentrations of polychlorinated phenols in Blackbird Creek (Station 5) water samples collected in 1987 and 1988 (Sherman 1991). All units are in ng/L.

|                            |      | J       | uly/Aug | 1987  |              |    |         | July 19 | 88     |        |        |
|----------------------------|------|---------|---------|-------|--------------|----|---------|---------|--------|--------|--------|
| Parameter                  | N    | Minimum | Maximum | Mean  | Trend*       | N  | Minimum | Maximum | n Mean | Trend* | PWQO   |
| Polychlorinated Phenols (n | g/L) | 8       |         |       |              |    | ,       |         |        |        |        |
| 2,3,4 trichlorophenol      | 18   | <100    | 1,100   | 157   | 1 0%         | 17 | <100    | 275     | 163    | 1 0%   | 18,000 |
| 2,3,4,5 tetrachlorophenol  | 18   | <20     | 1,500   | 255   | 1 6%         | 17 | <50     | 440     | 126    | 1 0%   | 1,000  |
| 2,3,5,6 trichlorophenol    | 17   | <50     | 2,480   | 612   | 1 0%         | 17 | <50     | <500    | 76.5   | 1 0%   | 18,000 |
| 2,4,5 trichlorophenol      | 18   | <50     | 525     | 139   | ↓ 0%         | 17 | <50     | 590     | 115    | 1 0%   | 18,000 |
| 2,4,6 trichlorophenol      | 18   | 1,430   | 14,000  | 5,971 | ↓ 0%         | 16 | <50     | 24,000  | 4,929  | 1 6%   | 18,000 |
| Pentachlorophenol          | 18   | <50     | 2,465   | 923   | <b>↓</b> 67% | 17 | <50     | 1,330   | 320    | ↓ 12%  | 500    |

Trend symbols are as follows:

decrease from upstream station

increase from upstream station

significant decrease from upstream station

Table 3.23a. Bacterial densities in effluent samples in Kimberly-Clark (Station 20) in 1987 and 1988 (Sherman 1991). All units are count per 100 mL.

|                              |      | Jul.    | y/Aug 1987 |         |   |           | July 1988 |          |
|------------------------------|------|---------|------------|---------|---|-----------|-----------|----------|
| Parameter                    | N    | Minimum | Maximum    | Mean*   | N | Minimum   | Maximum   | Mean*    |
| Bacterial Densities (Cnt/100 | mL): |         |            |         |   |           |           |          |
| Total Coliforms              | 5    | <100    | 300,000    | 7,096   | 7 | 7,000     | 9,000,000 | 568,853  |
| Total Coliform (background)  | 5    | <10,000 | 10,000,000 | 626,614 | 0 | -         | -         | -        |
| Escherichia coliform by MPN  | 5    | <3      | 9          | 4       | 7 | <3        | 43        | 8        |
| Heterotrophic at 20°C        | 5    | <10,000 | 1,705,000  | 130,918 | 1 | 5,200,000 | 5,200,000 | 5,200,00 |
| Pseudomonas aeruginosa       | 5_   | <10     | 200        | 29      | 7 | <10       | 800       | 57       |

#### Geometric Mean

Table 3.23b Bacterial Densities in Blackbird Creek (Station 5) water samples in 1987 and 1988 (Sherman 1991). All units are count per 100 mL.

|                                |    |             | July/Aug 198 | 37     |                    | 12. |           | July 1988 | 4         |                  |        |
|--------------------------------|----|-------------|--------------|--------|--------------------|-----|-----------|-----------|-----------|------------------|--------|
| Parameter                      | N  | Minimum     | Maximum      | Mean*  | Trend <sup>†</sup> | N   | Minimum   | Maximum   | Mean* Tro | end <sup>†</sup> | Guide  |
| Bacterial Densiti              | es | (Cnt/100 mL | <b>)</b> :   |        |                    |     |           |           |           |                  |        |
| Total Coliforms                | 6  | 1,400,000   | 9,000,000    | 3,749  | ,730 <b>t</b>      | 7   | 28,000    | 800,000   | 361,410   | ţ                | 1,000* |
| Total Coliform<br>(background) | 6  | 14,000,000  | 38,000,000   | 17,458 | ,222               | 0   |           |           | <b>-</b>  |                  |        |
| Escherichia<br>coliform by MPN | 5  | 23          | 240          |        | 55 ↑               | 7   | <3        | 93        | 6         | <b>+</b>         | 23     |
| Heterotrophic at<br>20°C       | 6  | 3,850,000   | 11,000,000   | 7,194  | ,490 <b>†</b>      | 2   | 3,200,000 | 6,900,000 | 4,698,941 | 1                |        |
| Pseudomonas<br>aeruginosa      | 5  | 90          | 200          |        | 113 t              | 6   | 50        | <100      | 49        | <u> </u>         | 15     |

Geometric Mean

Trend symbols are as follows:

decrease from upstream station increase from upstream station significant increase from upstream station

PWQO IJC recommended guidelines

downstream of the mill discharge or the organisms are naturally reproducing. It should be noted that although the density of total coliforms were relatively high, the geometric means at both stations during 1987 were much lower than at the control station.

The concentrations of most conventional parameters, nutrients, metals, phenolic compounds, and resin and fatty acids either show a slight, non-significant decrease or a significant decline in concentrations as the effluent passes through the Blackbird Creek System. This suggests that the creek provides at least some treatment capacity prior to entering Moberly Bay. However, these trends are based on very limited sampling. The large volume of solids and associated adsorbed contaminants within the creek system remain susceptible to movement into Moberly Bay. Heavy rainfall associated with major summer rainstorms and high flows during spring snow melt are events which could lead to significant downstream transport of sediment and associated contaminants. These events have not been monitored or sampled to determine their significance to the transport of contaminants and, hence, the value of the Blackbird Creek System to serve as an effluent treatment system is not accurately known. High concentrations of most parameters in water and sediment of Jackfish Bay, including numerous exceedences of provincial and GLWQA guidelines, indicate that any treatment is very minor.

Fathead minnows (*Pime phales promelas*) were tested with receiving water samples collected during 1986 and 1987 from Station 5 in Blackbird Creek and a control station (Station 713) in Tunnel Bay for 7-day growth tests (Neville, undated). Fathead minnows were also tested for acute toxicity using receiving waters from Blackbird Creek (Station 5) collected in 1987. The samples from Blackbird Creek were found to inhibit the growth of fathead minnows during both years. Significant reductions in larval growth occurred with 30 percent and 10 percent dilutions (using control sample) relative to the control samples. The undiluted Blackbird Creek samples were also acutely lethal with 40 to 90 percent mortality occurring within 5 hours and 100 percent mortality within 24 hours. However, subsequent toxicity testing of effluent samples (Station 20) since the secondary treatment facility was operational (October 1989) indicated that the resultant final effluent is non-lethal in 96-hour laboratory bioassays with rainbow trout (Section 3.3.2.2).

# 3.4.2 Sediment Quality

There are few data regarding sediment quality in the Blackbird Creek System. In December 1990 and January 1991, Beak Consultants (1991) sampled mill effluent as well as sediment and water in Blackbird Creek and Moberly Lake to determine the toxic load of the system and identify alternatives for remediation. The results of the effluent analyses are presented in Chapter 4.

Sediments from Blackbird Creek immediately downstream of the Lake A bypass and from Moberly Lake were analyzed for 33 chlorophenols, 10 resin acids and 10 fatty acids. All chlorophenol compounds including pentachlorophenol and several tri- and tetrachlorophenol compounds were not detectable in sediments from the creek. Only 4-chlorocatechol (0.5  $\mu$ g/g) and 3,4,6-trichlorocatechol (0.7  $\mu$ g/g) were detected in Moberly Lake sediments (Beak Consultants 1991).

A total of only 3.3  $\mu$ g/g of fatty acids and 1.4  $\mu$ g/g of resin acids were measured in Blackbird Creek sediments. However, in Moberly Lake, fatty acids ranged from 70 to 308  $\mu$ g/g and resin acids from 55.0 to 128.4  $\mu$ g/g (Beak Consultants 1991). The most abundant resin acids were abietic, monochlorodehydroabietic, dehydroabietic and dichlorodehydroabietic. The Beak study concluded that the sediments of Moberly Lake were considered an "environmental issue" due to their concentrations of resin and fatty acids.

In addition, the Beak study found concentrations of sodium, BOD<sub>5</sub>, COD, phenols and TKN to be 10 to 130 times higher in Moberly Lake sediments than in the control station or the upstream Blackbird Creek station. The control station was in Sister Lake which drains via a small tributary into Blackbird Creek. Measured

concentrations in Moberly Lake sediments were: sodium, 2,300  $\mu$ g/g; BOD<sub>5</sub>, 12,900  $\mu$ g/g; COD, 500,000  $\mu$ g/g; and TKN, 3,300  $\mu$ g/g. The TKN concentration exceeded the Provincial Sediment Quality Guideline at the Lowest Effect Level (550  $\mu$ g/g) but not the Severe Effect Level (4,800  $\mu$ g/g).

4.0 SOURCES

|   | Ar and a |
|---|----------|
|   |          |
|   |          |
|   |          |
|   |          |
|   |          |
|   |          |
|   |          |
|   |          |
|   |          |
|   |          |
|   |          |
|   |          |
|   | 1        |
|   |          |
|   |          |
|   |          |
|   |          |
|   |          |
|   | . P      |
|   |          |
|   |          |
|   |          |
|   |          |
|   | day dia  |
|   |          |
|   |          |
|   |          |
|   |          |
|   |          |
|   |          |
|   |          |
|   |          |
|   |          |
|   |          |
|   |          |
|   |          |
|   |          |
|   |          |
| - |          |
|   |          |
|   |          |
|   |          |
|   |          |
|   |          |
|   |          |
|   |          |
|   |          |
|   |          |
|   |          |
|   |          |
|   |          |
|   |          |
| * |          |
|   |          |
|   |          |
|   |          |
|   |          |
|   |          |
|   |          |
|   |          |
|   |          |
|   |          |
|   |          |
|   |          |
|   |          |

## 4.0 SOURCES

The sources of chemicals which impact on water, sediment and biota quality within the Jackfish Bay AOC include one point source and several nonpoint sources. The only point source is the effluent from the Kimberly-Clark Canada Inc. pulp mill located in Terrace Bay. There are no other industrial or municipal dischargers to the AOC.

Nonpoint sources include atmospheric, in-place sediment contamination (from natural sources as well as Kimberly-Clark effluent) and spills. Other potential nonpoint sources such as urban and agricultural runoff, groundwater contamination from waste sites or shipping do not occur in the Jackfish Bay AOC.

Parameters which have been found to exceed provincial or GLWQA guidelines in water (w), sediment (s) or biota (b) within the Jackfish Bay AOC, primarily during the most recent surveys (1987/88), are listed below.

| Conventional and Nutrients  | Metals         | Organics                                  |
|-----------------------------|----------------|-------------------------------------------|
| turbidity (secchi disc) (w) | aluminum (w)   | dehydroabietic acid (w)                   |
| dissolved oxygen (w)        | arsenic (s)    | total phenolics (w)                       |
| pH (w)                      | beryllium (w)  | pentachlorphenol (w)                      |
| total phosphorus (w,s)      | cadmium (w,s)  | 2,3,4,5-tetrachlorophenol (w)             |
| TKN (s)                     | chromium (w,s) | 2,4,6-trichlorophenol (w)                 |
| total coliform bacteria (w) | copper (w,s)   | oil and grease (s)                        |
| fecal coliform bacteria (w) | iron (w,s)     | total organic carbon (s)                  |
|                             | manganese (s)  | hexachlorobenzene (s)                     |
|                             | mercury (w,s)  | total PCBs (s,b)                          |
|                             | nickel (w,s)   | dieldrin (w)                              |
|                             | lead (w,s)     | methoxychlor (w)                          |
|                             | zinc (w,s)     | endrin (w)                                |
|                             |                | endosulphan I, II and SO <sub>4</sub> (w) |
|                             |                | heptachlor (w)                            |
|                             |                | p,p-DDD (w)                               |
|                             |                | p,p-DDE (w)                               |
|                             |                | p,p-DDT (w)                               |

High concentrations of certain phenolic compounds, resin and fatty acids, and dioxins and furans, for which no guidelines are available, have also been found to contaminate sediments within the AOC. The IJC recommended guidelines for *Pseudomonas aeruginosa* and *Escherichia coli* were also exceeded during the 1987/88 and earlier investigations.

## 4.1 POINT SOURCES

As noted above, there is only one point source discharger to the Jackfish Bay AOC. This is the Kimberly-Clark Canada Inc. bleached kraft pulp mill.

# 4.1.1 Mill History and Effluent Treatment Systems

The Kimberly-Clark pulp mill began operations in 1948 as an unbleached kraft mill (Beak 1988). It was expanded in 1972 to a fully bleached two-line kraft mill with capacity increasing from 240 air dried tonnes per day (ADt/d) to 400 ADt/d (Beak 1988). In 1978, a new bleaching and finishing plant was brought online, increasing capacity to 1,135 ADt/d. A primary treatment facility incorporating two reactor clarifiers was installed at the time of the 1978 expansion (Beak 1988). Until this time the only treatment was that afforded by the Blackbird Creek System. Table 4.1 provides a chronological history of the mill development and abatement history.

Beginning in 1972, the mill utilized a mercury anode unit to produce chlorine for the bleaching process. Mercury contamination of sediments in Moberly Bay occurred during this time due to loss of mercury from the unit. This process was discontinued in 1978.

The average effluent flow from the mill in 1990 was 94.9 x 10<sup>3</sup> m<sup>3</sup>/day. Two process effluent sewers are discharged from the mill: an acid and an alkaline sewer. The alkaline sewer is discharged to the primary treatment system (clarifier) along with the domestic sewage which has undergone aerobic biological treatment in a packaged sewage treatment plant. It is then transferred to a mixing chamber where it mixes with the acid effluent. The acid sewer contains a low amount of suspended solids such that it can bypass the clarifier to go directly to the acid lift station before entering the mixing chamber. In the mixing chamber, the mixed effluents attain a neutral pH before undergoing secondary treatment in the aerated stabilization basin (ASB).

The primary effluent treatment system is comprised of two mechanical screening systems, a coarse bar screen and a travelling screen and a reactor clarifier. The clarifier sludge is de-watered and burned in the power boiler.

The secondary treatment system consists of a settling basin and three cells. This system is also known as the aerated stabilization basin (ASB). Organic material is broken down by aerobic microorganisms in the three cells, with the greatest degradation occurring in the first cell.

From the secondary treatment system, the effluent is discharged into an effluent canal which discharges into the Blackbird Creek system. This system flows for approximately 14 km, by-passing Lake A and passing through Moberly Lake prior to entering Moberly Bay. The effluent usually comprises over 90 percent of the stream flow in Blackbird Creek. One exception occurs during spring run-off when the natural flow almost doubles the volume of the mill effluent flow.

Control Orders are legally-enforceable requirements issued under Section 6 of the Environmental Protection Act (OMOE 1991b). They define abatement actions and compliance dates by which actions must be completed. The current Control Order for Kimberly-Clark Canada Inc. was issued on October 23, 1990. Limits imposed by the Control Order requires that the mill effluent not exceed 22.4 tonnes of BOD<sub>5</sub> per day or 30.0 tonnes/day averaged over any 30 consecutive working days; and 11.5 tonnes/day of suspended solids or 7.0 tonnes/day averaged over any 30 consecutive days. Also, when undiluted, the effluent must pass the 96-hour LC<sub>50</sub> test (i.e., effluent must not be acutely lethal to test fish). As of December 31, 1991, adsorbable organic halides (AOX) are not to exceed 2.5 kg/ADt of bleached kraft pulp (OMOE data files).

Treatment or process changes to further improve effluent quality are not currently planned for the pulp mill. Although the company is investigating means of reducing AOX levels, additional remedial actions at the mill will be contingent on require provided through the MISA and RAP programs.

Table 4.1 Chronological development and abatement history of the Kimberly-Clark Canada Inc. pulp mill, Terrace Bay, Ontario.

| 1946      | •Construction of Terrace Bay pulp mill commenced                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1948      | -First pulp produced - November 12                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1540      | •Rated capacity 320 ADMT/D                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1958      | •Chlorine dioxide added to bleaching circuit                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1973      | Stud lumber mill added Installed new recovery boiler                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1975      | Start of expansion to new mill Second kraft mill to increase rated capacity to 1135 ADMT/D                                                                                                                                                                                                                                                                                                                                                                 |
| 1977      | Completed construction of mill expansion     New wood room constructed during mill expansion - Dry debarking                                                                                                                                                                                                                                                                                                                                               |
| 1978      | •First pulp produced from No. 2 mill - February •Spill pond constructed                                                                                                                                                                                                                                                                                                                                                                                    |
| 1979      | •Clarifier installed for alkaline sewer                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1981      | •Major fire in the digester/blow tank area - October 30 •During the four and one-half month reconstruction period, a number of improvements were made to process control and environmental equipment included:  •Installation of a condensate stripper  •Installation of turpentine decanter  •Installation of NCG collection and destruction system  •Construction of domestic sewage treatment plant  •Construction of clarifier screening system bypass |
| 1982      | •Cooling water recycle system in place in the kiln/causticizing area                                                                                                                                                                                                                                                                                                                                                                                       |
| 1983      | •Knot recycle system in place<br>•Conductivity monitoring system installed in the alkaline sewer system                                                                                                                                                                                                                                                                                                                                                    |
| 1984      | Spill control system completed in No. 2 Mill Improved soap recovery program in place Higher chlorine dioxide substitution in bleacheries No. 1 Mill dedicated to hardwood Polymer feed system added to alkaline clarifier Additional clarifier added to causticizing area for clarification of area wastes Improvements made to No. 2 brown stock washers                                                                                                  |
| 1985      | No. 2 brown stock closure Spill control system completed for No. 1 Mill E.O. stage added to No. 2 bleachery A number of improvements to both bleacheries, including new instrumentation, resulted in a significant reduction in bleachery chemical use and resultant discharges                                                                                                                                                                            |
| 1985-86   | •A number of improvements to No. 1 brown stock washers including: improved soap recovery, foam control and vacuum improvements                                                                                                                                                                                                                                                                                                                             |
| 1988      | Clarifier hydraulic load reduced                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1989      | •Secondary treatment completed - October/89                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1990      | Bleach plant improvements Higher chlorine dioxide substitution Hypochlorite stage replaced with Papricycle Stage New control system                                                                                                                                                                                                                                                                                                                        |
| 1991      | <ul> <li>Hot water wood Stave replaced</li> <li>New chip thickness screening plant</li> <li>New screen rejects system</li> <li>Chlorine strength analyzers and re-circulation piping installed</li> </ul>                                                                                                                                                                                                                                                  |
| Future Pl | ans                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|           | <ul> <li>12th Digester in #2 mill to be constructed</li> <li>Company investigating alternative means of bleaching (ex. oxygen delignification, and R8 chlorine dioxide generator</li> </ul>                                                                                                                                                                                                                                                                |

## 4.1.2 Effluent Quality

# 4.1.2.1 Regulated Parameters

The quality of effluent from the Kimberly-Clark mill has improved a great deal over the past several years as a result of a number of abatement efforts. These are summarized in Table 4.1. Table 4.2 provides a summary of annual loadings of parameters which are monitored in effluent as well as an indication of the number of monthly exceedences of their OMOE Control Order limits.

The introduction of secondary treatment in October 1989 was the single most significant addition, as demonstrated by the reduction in biochemical oxygen demand (BOD<sub>5</sub>). BOD<sub>5</sub> in the effluent was reduced from an annual average of 26,225 kg/d in 1988 to 1,400 kg/d in 1990 (Table 4.2).

Table 4.2 Average annual effluent loadings of monitored pollutants in Kimberly-Clark Canada Inc. effluent and number of monthly exceedences (in brackets for 1986 to 1989 only)\*. All loadings in kg/day unless otherwise noted.

|                               |         |         |                       |            |           |           | <u> </u>          |
|-------------------------------|---------|---------|-----------------------|------------|-----------|-----------|-------------------|
|                               | 1973    | 1981    | 1986                  | 1987       | 1988      | 1989      | 1990 <sup>†</sup> |
| Flow (m <sup>3</sup> /d)      | 202,600 | 113,800 | 110,333               | 115,000    | 117,100   | 109,344   | 94,900            |
| BOD <sub>5</sub> (t/d)        | 30,100  | 30,600  | 29,550(0)             | 24,833(NA) | 26,225(5) | 17,633(0) | 1,400             |
| Total Phosphorus              | NA      | NA      | 76.35(1) <sup>‡</sup> | 64.63(0)   | 62 (0)    | NA        | NA                |
| Suspended Solids              | 6,700   | 5,400   | 5,345(0)              | 5,568(2)   | 4,863(0)  | 3,878(0)  | 4,100             |
| Toxicity(LC <sub>50</sub> )** | NA      | 10.0    | 12.5-45.6             | 15.1-42.8  | 11.8-41.4 | 25.3-51.0 | non-lethal        |

<sup>\*</sup> data taken from OMOE annual Reports on the Industrial Direct Discharges in Ontario (OMOE 1987, 1988, 1989, 1991b).

#### NA Not available

Suspended solids were reduced by 20 percent over the same period, although most of the improvement occurred prior to the secondary treatment system being operational, as shown by the total loadings as well as the elimination of monthly Control Order exceedences.

The secondary treatment system also reduced the toxicity of the effluent. Kimberly Clark effluent is no longer acutely lethal to rainbow trout as discussed in section 3.3.2. However, sublethal effects are still observed.

Total phosphorus is also routinely monitored. Although exceeding the Control Order limit once in 1986 (Table 4.2), it remains consistently below the 1.0 mg/L concentration guideline (Table 3.19a).

Post-secondary treatment, data from OMOE files.

<sup>\*</sup> exceedence considered an anomaly as measurement is not consistent with typical mill levels.

<sup>%</sup> effluent required to kill 50% of the test fish.

## 4.1.2.2 Effluent Characterization Studies

In addition to the regular self-monitoring program required for the parameters regulated by the Control Order, several effluent characterization studies have been undertaken. These include the July and August 1987 and July 1988 surveys conducted by OMOE at Station 20 (Sherman 1991); the MISA 12 months of effluent sampling from January 1, 1990 to December 31, 1990 (OMOE 1991c); and a three day final effluent survey undertaken by Beak Consultants in December 1990 to January 1991 (Beak Consultants 1991).

The average loadings for four conventional parameters, four nutrients, four resin acids, four chlorinated phenolics and one organochlorine pesticide in samples collected at Station 20 during the OMOE 1987/88 surveys are provided in Table 4.3. Effluent concentrations and downstream characteristics were discussed in detail in Section 3.4. Tables 3.19 through 3.23 in Section 3.4 summarize effluent concentrations.

The data from the 1987/88 OMOE surveys (presented in Tables 3.19 through 3.23 and in Table 4.3) represent effluent conditions prior to the operation of the secondary treatment system. Those parameters which occur in the mill effluent and also exceeded concentration-based water, sediment or biota guidelines in Blackbird Creek (Station 5) or Moberly, Jackfish, or Tunnel Bays are noted in Table 4.3. Loadings are based on a limited period of sampling, however, the average daily loadings for total phosphorus and suspended solids (Table 4.3) are comparable to the annual loadings for 1987 and 1988 (Table 4.2).

As of 1987/88, the mill effluent contributes large average daily loadings of sodium, chloride, sulphate, suspended solids, phosphorus, phosphate, ammonium and TKN. Resin acids contributed to effluent toxicity in 1987/88 (Table 4.2) with average daily loadings ranging from 1 to 43 kg (Table 4.3).

The Municipal Industrial Strategy for Abatement (MISA) program is a strategy aimed at reducing pollutants to Ontario surface waters. It was announced by the Provincial government in 1986 (OMOE 1986), and affects the municipal sector (sewage treatment plants) as well as eight industrial sectors including: electric power generation; industrial minerals; inorganic chemicals; iron and steel; metal mining and refining; organic chemicals; petroleum refining; and pulp and paper. During the recently completed first stage, the industry monitored their wastewater to determine exactly what was in it and at what concentrations. Based on these results, the government is developing abatement regulations. "MISA's ultimate goal, is the virtual elimination of toxic contaminants in municipal and industrial discharges into waterways. The fulfilment of this goal is necessary to reduce the risk of damage to the ecosystem and to protect public health by minimizing the presence of toxics in drinking water, fish and wildlife" (OMOE 1986).

Effluent monitoring for the pulp and paper sector took place from January 1, 1990 to December 30, 1990 (OMOE 1991c). Regulations based on these results are expected in late 1991. Pulp mills in Ontario's four Lake Superior AOCs are the Thunder Bay, Fort William and Provincial Papers Divisions of Abitibi-Price Inc. and Canadian Pacific Forest Products in Thunder Bay; Domtar Inc. in Red Rock (Nipigon Bay AOC); Kimberly-Clark Canada Inc. in Terrace Bay (Jackfish Bay AOC); and James River Marathon Ltd. in Marathon (Peninsula Harbour AOC). The results of the first six months of monitoring for selected parameters from each of these mills is provided in Table 4.4 (OMOE 1991c). Of particular note are the concentrations of AOX (Adsorbable Organic Halide), TKN, cadmium, chromium, nickel, zinc and tetrachlorodibenzo-p-dioxins in effluent from the Kimberly-Clark mill which tend to be the among the highest of all mills located on Lake Superior.

Table 4.5 compares results of analyses of the 2,3,7,8-tetrachlorodibenzo-p-dioxin congener in effluent at ten pulp mills in northwestern Ontario during the 1990 MISA study. Effluent from the Kimberly-Clark Canada Inc. mill had the second highest mean concentration of all ten mills.

Table 4.3 Loadings of effluent at Station 20 in Jackfish Bay 1987/88. All loadings are in kg/d.

|                             | July/Aug 1987                       | July 1988                           |  |
|-----------------------------|-------------------------------------|-------------------------------------|--|
| Parameter                   | Mean (# samples)<br>Range<br>(kg/d) | Mean (# samples)<br>Range<br>(kg/d) |  |
| Conventional:               |                                     |                                     |  |
| Sodium                      | 29,380 (20)<br>360 - 54,080         | 29,360 (17)<br>1,000 - 29,410       |  |
| Sulphate                    | 23,460 (20)<br>5,290 - 56,760       | 12,840 (17)<br>0 - 38,630           |  |
| Chloride (unfilt. reactive) | 41,370 (21)<br>21,470 - 187,490     | 45,780 (17)<br>23,770 - 170,830     |  |
| Suspended Solids            | 4,640 (20)<br>2,220 - 19,800        | 4,280 (17)<br>0 - 12,430            |  |
| Nutrients:                  |                                     |                                     |  |
| Total Phosphorous*          | 55 (20)<br>14 - 89                  | 45 (16)<br>18 - 81                  |  |
| Phosphate                   | 45 (7)<br>10 - 111                  | 8 (14)<br>4 - 21                    |  |
| Total Ammonium              | 199 (5)<br>12 - 403                 | 18 (14)<br>6 - 33                   |  |
| Total Kjeldahl Nitrogen*    | 250 (20)<br>47 - 452                | 246 (16)<br>108 - 395               |  |
| Resin Acids:                |                                     |                                     |  |
| Abietic Acid                | 6.7 (20)<br>1.1 - 42.1              | 42.9 (17)<br>9.4 - 307.5            |  |
| Chlorodehydroabietic Acid   | 2.4 (20)<br>1.1 - 5.3               | 1.8 (17)<br>1.1 - 3.6               |  |
| Dichlorodehydroabietic Acid | 1.7 (20)<br>1.1 - 3.3               | 1.3 (17)<br>1.1 - 2.3               |  |
| Dehydroabietic Acid         | 15.4 (20)<br>1.2 - 52.0             | 60.9 (17)<br>4.1 - 396.7            |  |
| Chlorinated Phenolics:      |                                     |                                     |  |
| 2,4,6 trichlorophenol       | 1.119 (17)<br>0.006 - 2.502         | 0.530 (16)<br>0.006 - 1.159         |  |
| Pentachlorophenol*          | 0.247 (17)<br>0.008 - 0.593         | 0.053 (17)<br>0.006 - 0.121         |  |
| Phenolics*                  | 13.71 (11)<br>0.06 - 50.50          | - (0)                               |  |
| 2,4 dichlorophenol          | 0.38 (20)<br>0.11 - 2.70            | - (0)<br>-                          |  |
| Organochlorine Pesticide:   |                                     |                                     |  |
| DDT Total*                  | 0.0021 (17)<br>0.0006 - 0.0194      | 0.0027 (16)<br>0.0005 0.0176        |  |

Parameters which exceeded sediment, water or biota guidelines in Blackbird Creek or Moberly, Jackfish or Tunnel Bays prior to 1989.

Table 4.4 Summary of priority pollutants from the pulp mills located on the north shore of Lake Superior.

Results are shown as mean values taken from January 1 to June 30, 1990 as part of the MunicipalIndustrial Strategy for Abatement (MISA) for process effluent monitoring of the pulp and paper sector.

| Parameter           | Abitibi -<br>Fort<br>William<br>Division<br>(Thunder<br>Bay) | Abitibi -<br>Thunder<br>Bay<br>Division<br>(Thunder<br>Bay) | Abitibi -<br>Provincial<br>Papers<br>(Thunder<br>Bay) | Canadian Pacific Forest Products (Thunder Bay) | Domtar<br>(Red Rock) | James<br>River-<br>Marathon<br>(Marathon) | Kimberly-<br>Clark<br>(Terrace<br>Bay) |
|---------------------|--------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------|----------------------|-------------------------------------------|----------------------------------------|
| Conventional Parame | ters: (mg/L)                                                 |                                                             |                                                       |                                                |                      |                                           |                                        |
| AOX                 |                                                              |                                                             |                                                       | 24.29                                          | 1.83                 | 55.60                                     | 20.49                                  |
| BOD <sub>5</sub>    | 499.33                                                       | 607.82                                                      | 88.08                                                 | 280.73                                         | 165.41               | 203.67                                    | 15.46                                  |
| DOC                 | 379.43                                                       | 611.86                                                      | 62.49                                                 |                                                |                      |                                           |                                        |
| TKN                 | 2.71                                                         | 1.73                                                        | 1.2                                                   | 1.44                                           | 1.80                 | 3.04                                      | 4.71                                   |
| Total Phosphorous   | 0.30                                                         | 0.20                                                        | 0.08                                                  | 0.67                                           | 0.22                 | 0.65                                      | 0.51                                   |
| TSS                 | 31.82                                                        | 42.67                                                       | 34.10                                                 | 92.50                                          | 65.59                | 41.78                                     | 44.25                                  |
| Metals: (mg/L)      |                                                              |                                                             |                                                       |                                                |                      |                                           |                                        |
| Aluminum            | 0.52731                                                      | 1.03561                                                     | 2.01154                                               | 4.47573                                        | 3.44545              | 0.25840                                   | 0.46500                                |
| Cadmium             | 0.00022                                                      | 0.00157                                                     | 0.00022                                               | 0.00067                                        |                      | 0.00033                                   | 0.00050                                |
| Chromium            | 0.01067                                                      |                                                             | 0.00067                                               | 0.08077                                        | 0.00800              | 0.01333                                   | 0.16333                                |
| Copper              | 0.05233                                                      | 0.00317                                                     | 0.05933                                               | 0.02483                                        |                      | 0.03667                                   | 0.00167                                |
| Lead                | 0.00067                                                      | 0.00347                                                     | 0.00468                                               |                                                |                      | 0.02500                                   | 0.00500                                |
| Mercury             |                                                              |                                                             |                                                       | 0.00001                                        |                      | 0.00068                                   | 0.00003                                |
| Nickel              | 0.00133                                                      |                                                             |                                                       | 0.00267                                        |                      | 0.00833                                   | 0.01333                                |
| Silver              | 0.00083                                                      |                                                             | 0.00067                                               | 0.00083                                        |                      |                                           |                                        |
| Zinc                |                                                              | 0.06045                                                     | 0.03800                                               | 0.14855                                        | 0.04227              | 0.07480                                   | 0.08654                                |
| Phenols: (µg/L)     |                                                              |                                                             |                                                       |                                                |                      | <b>1</b>                                  |                                        |
| Pheno1              | 21.86                                                        | 2.25                                                        | 0.48                                                  | 30.00                                          | 3.26                 | 1.93                                      |                                        |
| Chlorinated Organic | s: (ng/L)                                                    |                                                             |                                                       |                                                |                      | 404                                       |                                        |
| Total TCDD          |                                                              |                                                             |                                                       |                                                |                      | 0.07                                      | 0.18                                   |
| Total TCDF          |                                                              |                                                             |                                                       | 0.05                                           |                      | 0.49                                      | 0.36                                   |

Table 4.5 Mean and range of concentrations for dioxins and furans in final process effluents from ten pulp mills in northwestern Ontario. Data was collected from January 1 to December 31, 1990 as part of the MISA monitoring program (OMOE 1991c and Smith, OMOE unpublished data).

| Mill                       | Location        | Process Type(s)                      | *  | 2378-TCDD (pg/L)<br>Mean<br>(Range) | TEQ*<br>(pg/L) | Flow (10 <sup>3</sup> m <sup>3</sup> /d)<br>Mean<br>(Range) | Loading<br>( g<br>TEQ/yr) |
|----------------------------|-----------------|--------------------------------------|----|-------------------------------------|----------------|-------------------------------------------------------------|---------------------------|
| Canadian<br>Pacific Forest | Thunder<br>Bay  | Bleached Kraft<br>Sulfite/Groundwood | 18 | ND<br>(-)                           | 27.0           | 173                                                         | 1.710                     |
| Products Ltd.              | Dryden          | Bleached Kraft                       | 18 | ND<br>(-)                           | 30.5           | 31                                                          | 1.010                     |
| Boise-Cascade              | Kenora          | Sulfite/Mechanical                   | 9  | ND<br>(-)                           | 11.5           | 47                                                          | 0.197                     |
|                            | Fort<br>Frances | Bleached/Kraft<br>Groundwood         | 23 | 1.0<br>(ND-24)                      | 87.6           | 77                                                          | 2.440                     |
| James River -<br>Marathon  | Marathon        | Bleached Kraft                       | 18 | 9.7<br>(ND-80)                      | 192.0          | 61                                                          | 4.275                     |
| Abitibi-Price              | Thunder<br>Bay  | Groundwood                           | 12 | ND<br>(-)                           | 24.0           | 44                                                          | 0.385                     |
|                            | Prov.<br>Paper  | Sulfite/Mechanical                   | 10 | ND<br>(-)                           | 0.001          | 47                                                          | 0.017                     |
|                            | Fort<br>William | Groundwood                           | 8  | ND<br>(-)                           | 0.008          | 21                                                          | 0.016                     |
| Domtar                     | Red Rock        | Semi-bleached<br>Kraft Groundwood    | 18 | ND<br>(-)                           | 0.029          | 94                                                          | 0.00099                   |
| Kimberly-Clark             | Terrace<br>Bay  | Bleached Kraft                       | 18 | 5.7<br>(ND-33)                      | 156.0          | 94                                                          | 5.350                     |

<sup>\*</sup> TEQs (Toxic Equivalency Factors) based upon OMOE 1985, summed for the various isomers detected in effluent. Zero (0) was substituted for non-detectable concentrations in calculations, hence these values likely underestimate actual discharges.

Table 4.6 provides the concentration data for all priority pollutants detected in the Kimberly-Clark effluent during the first six months of the 1990 MISA monitoring (OMOE 1991c). Average concentrations for those parameters which had nondetectable values may be underestimated because nondetectable concentrations were treated as zero in calculating the mean. Those parameters which occurred in the mill effluent in 1990 and exceeded the concentration-based water, sediment or biota guidelines in Blackbird Creek (Station 5) or Moberly, Jackfish, or Tunnel Bays prior to 1989 are noted in Table 4.4.

In comparison to the concentrations measured during the earlier 1987/88 surveys (Tables 3.19 to 3.23), the mean concentrations of many parameters have decreased. These include several which exceeded guidelines prior to 1989. Mean concentrations of aluminum, BOD<sub>5</sub>, mercury, copper, five resin acids, one fatty acid (oleic acid) and pentachlorophenol were lower in the 1990 MISA monitoring than in either the 1987 or 1988 OMOE surveys. Conversely, mean concentrations of chromium, TKN, total phosphorus, total suspended solids and 2,3,4,5-tetrachlorophenol were higher in the more recent 1990 study. Ammonium, zinc and 2,4,6-trichlorophenol mean concentrations were comparable for both periods.

Chlorinated organic compounds, as measured by the Adsorbable Organic Halide (AOX) test, are limited through a Control Order and are to be reduced to (less than/equal to) 2.5 kg/ADT by Dec 31, 1991. Unpublished data reported since January of 1991 indicate that the company is already meeting this requirement.

Dioxins and furans were measured in the effluent during the MISA monitoring study and, as anticipated, the lower chlorinated congeners dominated. Although 2,3,7,8-TCDD was not specifically analyzed, total TCDD was detected in 67 percent of samples with a maximum concentration of 0.79 ng/L (Table 4.6).

Table 4.7 provides the results of a three day effluent sampling for selected nutrients, chlorophenols, and fatty and resin acids in 1990/91 (Beak Consultants 1991). Total phenol concentrations ranged from 9.4 to 18.6  $\mu$ g/L. Specific isomers of trichlorophenol and pentachlorophenol were detected only at trace levels, well below PWQOs and much less than reported for the first half of 1990 (Table 4.6) or in 1987/88 (Table 3.22). Resin and fatty acid concentrations were also much lower than during 1987/88 (Table 4.7). Most of the fatty acids and all resin acids were not detected in samples collected on December 12. Only four fatty acids were detected at concentration ranging between 0.019  $\mu$ g/L (oleic acid) and 0.046 mg/L (palmitic acid).

## 4.1.2.3 Summary

Kimberly-Clark Canada Inc. is currently meeting its Control Order requirements for BOD<sub>5</sub>, suspended solids, AOX, total phosphorus and effluent toxicity. The addition of the secondary treatment facility in October 1989 appeared to be particularly efficient with regard to biological oxygen demanding substances, phenolic compounds and resin and fatty acids. Lower effluent concentrations of resin and fatty acids has reduced the toxicity of the effluent (not acutely lethal in 1990) and resulted in lower concentrations of these acids in surface waters of Moberly Bay (1990 survey, Section 3.1). The PWQO for dehydroabietic acid was exceeded in Moberly Bay during 1987/88, however, in 1990, this acid was not detected.

Although significant reductions have been achieved in the loadings of BOD<sub>5</sub> from the Kimberly-Clark effluent, the occurrence of PWQO violations for dissolved oxygen as recently as 1990 (Section 3.1) suggests that further reductions may be required. Alternatively, there may be ongoing contributions of biological oxygen demanding substances, due to historical deposition in the Blackbird Creek System and/or Moberly Bay.

Most of the water, sediment and biota quality data were collected prior to the secondary treatment facility becoming operational and, hence, it is not known if there has been any improvement with regard to ambient guideline exceedences other than dissolved oxygen and dehydroabietic acid. Mean effluent concentrations of

Table 4.6 Ranges and means of priority pollutants detected in process effluent at Kimberly-Clark Canada Inc., Terrace Bay during the first six months of the 1990 MISA monitoring survey (OMOE 1991c). Units are noted for each parameter.

| Parameter                         | ĹΝ  | Minimum  | Maximum  | Average  | FD (%)      |
|-----------------------------------|-----|----------|----------|----------|-------------|
| 2,4,6 trichlorophenol* (µg/L)     | 6   | 1.80     | 8.80     | 6.75     | 100         |
| Adsorbable Organic Halide (mg/L)  | 78  | 12.20    | 29.40    | 20.49    | 100         |
| Aluminum* (µg/L)                  | 26  | 330.00   | 700.00   | 465.00   | 100         |
| COD (mg/L)                        | 181 | 104.00   | 1,774.40 | 553.27   | 100         |
| Chloroform (µg/L)                 | 6   | 8.30     | 24.30    |          | 100         |
| Chromium* (µg/L)                  | 6   | 80.00    | 300.00   | 163.33   | 100         |
| Hydrogen ion* (pH)                | 181 | 6.50     | 8.10     | 7.60     | 100         |
| Nickel* (µg/L)                    | 6   | 10.00    | 20.00    | 13.33    | 100         |
| Nitrate + Nitrite (mg/L)          | 26  | .10      | 3.23     | .41      | 100         |
| Specific conductance (µsiem/cm)   | 181 | 1,000.00 | 2,600.00 | 1,836.00 | 100         |
| Sulphide (mg/L)                   | 6   | .01      | 4.14     | .72      | 100         |
| Total Kjeldahl Nitrogen* (mg/L)   | 26  | 2.50     | 7.30     | 4.71     | 100         |
| Total TCDF (ng/L)                 | 6   | .21      | .66      | .36      | 100         |
| Total phosphorus* (mg/L)          | 26  | .33      | .60      | .51      | 100         |
| Total suspended solids (mg/L)     | 181 | 14.00    | 72.00    | 44.25    | 100         |
| VSS (mg/L)                        | 25  | 15.00    | 77.50    | 40.52    | 100         |
| BOD, 5 day, Total Demand (mg/L)   | 78  | ND       | 42.60    | 15.46    | 99          |
| Ammonia plus Ammonium* (mg/L)     | 26  | ND       | 2.02     | .78      | 96          |
| $Zinc^*(\mu g/L)$                 | 26  | ND       | 120.00   | 86.54    | 96          |
| 2,4 dichlorophenol (µg/L)         | 6   | ND       | 5.10     | 2.95     | 83          |
| Octachlorodibenzo-p-dioxin (ng/L) | 6   | ND       | 1.90     | .49      | 83          |
| Total H7CDD (ng/L)                | 6   | ND       | .05      | .02      | 67          |
| Total PCDF (ng/L)                 | 6   | ND       | .09      | .04      | 67          |
| Total TCDD (ng/L)                 | 6   | ND       | .79      | .18      | 67          |
| 2,3,4,5 tetrachlorophenol* (µg/L) | 2   | ND       | 1.80     | .90      | 50          |
| Dehydroabietic Acid (mg/L)        | 77  | ND       | .06      | .01      | 45          |
| 2,3,4,6 tetrachlorophenol (µg/L)  | 3   | ND       | 1.80     | .60      | 33          |
| Abietic Acid (mg/L)               | 6   | ND       | .11      | .02      | 33          |
| Mercury* (µg/L)                   | 6   | ND       | .10      | .03      | 33          |
| Dichlorodehydroabietic Ac. (mg/L) | 77  | ND       | .05      | .01      | 27          |
| 2 methylnaphthalene (µg/L)        | 6   | ND       | 2.90     | .48      | 17          |
| Cadmium* (µg/L)                   | 6   | ND       | 3.00     | .50      | 17          |
| Chlorodehydroabietic Acid (mg/L)  | 6   | ND       | .01      | .00      | 17          |
| Copper* (µg/L)                    | 6   | ND       | 10.00    | 1.67     | 17          |
| Hexachlorobutadiene (µg/L)        | 6   | . ND     | .01      | .00      | 17          |
| Lead* $(\mu_g/L)$                 | 6   | ND       | 30.00    | 5.00     | <u>17</u>   |
| Oleic Acid (mg/L)                 | 6   | ND       | .01      | .00      | <u>17</u>   |
| Pentachlorophenoi* (µg/L)         | 6   | ND       | 1.00     | .17      | 17          |
| Pimaric Acid (mg/L)               | 6   | ND       | .01      | .00      | . <u>17</u> |
| Total H6CDF (ng/L)                | 6   | ND       | .04      | .01      | 17          |
| Vanadium (\(\rho_g/L\)            | 6   | ND       | 20.00    | 3.33     | 17          |

FD Frequency above detection limit (%)

NOTE: Values less than the detection limit are treated as zero.

Minimum, maximum and average values are cited to two decimal places.

ND Not detected.

Parameters which exceeded sediment, water or biota guidelines in Blackbird Creek or Moberly, Jackfish or Tunnel Bays prior to 1989.

Table 4.7 Chemical analysis of final effluent, 1990/91 (Beak Consultants 1991).

| Parameter                       | December 12       | January 8 | January 23 | PWQO         |
|---------------------------------|-------------------|-----------|------------|--------------|
| Total Phenois* (µg/L)           | 18.6              | 16.0      | 9.4        | . 1          |
| Sodium (mg/L)                   | 323.7             |           |            |              |
| Particulate Residue (mg/L)      | 24.7              |           |            |              |
| Total Phosphorus* (mg/L)        | 0.50              |           |            |              |
| Total Kjeldahl Nitrogen* (mg/L) | 4.50              |           |            |              |
| Total Ammonium* (mg/L)          | 1.55              |           |            |              |
| BOD <sub>5</sub> (mg/L)         | 10.4              |           |            |              |
| Chlorophenols (ng/L):           |                   |           |            |              |
| 2,4,6 trichlorophenol*          | 3200 <sup>†</sup> |           |            | 18,000       |
| 2,4,5 trichlorophenol           | < 50              |           |            | (Total T3)   |
| 2,3,4 trichlorophenol           | <100              |           |            |              |
| 2,3,5,6 tetrachlorophenol       | 180 <sup>†</sup>  |           |            | 1,000        |
| 2,3,4,5 tetrachlorophenol*      | <50 <sup>↑</sup>  |           |            | (Total T4)   |
| Pentachlorophenol*              | 80                |           |            | 500          |
| Fatty Acids (µg/L):             |                   |           |            |              |
| Capric acid                     | <5                |           |            |              |
| Lauric acid                     | <5                |           |            |              |
| Myristic acid                   | <5                |           |            |              |
| Palmitic acid                   | 46                |           |            |              |
| Stearic acid                    | 24                |           |            |              |
| Oleic acid                      | 19                |           |            |              |
| Linoleic acid                   | <5                |           |            |              |
| Linolenic acid                  | <5                |           |            |              |
| Arachidic acid                  | <5                |           |            |              |
| Palustric acid                  | <5                |           |            |              |
| Total                           | 89                |           |            |              |
| Resin Acids (µg/L):             |                   |           |            |              |
| Pimaric acid                    | <5                |           |            | 45           |
| Sandaracopimaric acid           | <5                |           | <b>(T</b>  | otal @pH7.5) |
| Levopimaric acid                | <5                |           |            |              |
| Isopimaric acid                 | <5                |           |            |              |
| Neoabietic acid                 | <5                |           |            |              |
| Abietic acid                    | <5                |           |            |              |
| Dehydroabietic acid             | <5                |           |            |              |
| 9,10 dichlorostrearic acid      | <5                |           |            |              |
| Chlorodehydroabietic acid       | <5                |           |            |              |
| Dichlorodehydroabietic acid     | <5                |           |            |              |
|                                 |                   |           |            |              |
| Total                           | <5                |           |            |              |

Parameters which exceeded sediment, water or biota guidelines in Blackbird Creek or Moberly, Jackfish or Tunnel Bays prior to 1989.

<sup>†</sup> Trace amount.

aluminum, copper and mercury appear to have declined since 1988. However, the mill effluent is likely the main source of most conventional parameters, bacteria, nutrients, metals, organochlorine pesticides and phenolic compounds which have been found to exceed ambient guidelines.

The source of bacteria, particularly *Escherichia coli* and *Pseudomonas aeruginosa*, is of concern especially as these organisms have exceeded recommended health guidelines in Moberly and Jackfish Bays (Section 3.1). They may originate from domestic sewage within the mill.

The origin of organochlorine pesticides in the mill effluent is not known. These chemicals may be derived from logs which are processed in the mill. Contamination of the logs may reflect atmospheric sources including aerial spraying.

#### **4.2 NONPOINT SOURCES**

# 4.2.1 Atmospheric Deposition

Long range transport and atmospheric deposition are a significant pathway of persistent toxic substances into the Great Lakes (Chan and Perkins 1989, Nriagu 1986, 1990). As such, activities relating to research, monitoring and control are identified as an important component of the GLWQA (1978 as revised 1987, Annex 15). Atmospheric contamination of the lakes is poorly understood and quantified. The reason is that "estimation of atmospheric loadings of organic and inorganic toxic compounds to the Great Lakes requires information on atmospheric and precipitation concentrations, mass transfer coefficients and physical speciation in the atmosphere and water" (Strachan and Eisenreich 1988). Sufficient information for reliable estimates of atmospheric inputs is only available for PCBs and lead (Table 4.8), although less certain estimates have been attempted for other substances.

Even though they receive lower total loadings of lead and PCBs, the upper Great Lakes (Superior, Michigan, and Huron) receive a significantly greater percentage of their total inputs from the atmosphere than from point sources (Table 4.8). This is due to their large surface area and relative lack of local sources.

Table 4.8 PCB and lead loadings to the Great Lakes and the percentage of total loadings attributed to atmospheric pathways (Strachan and Eisenreich 1988)

|               |                       | PCB           | Lead                  |               |  |  |
|---------------|-----------------------|---------------|-----------------------|---------------|--|--|
|               | Total Input<br>(kg/d) | % Atmospheric | Total Input<br>(kg/d) | % Atmospheric |  |  |
| Lake Superior | 1.66                  | 90            | 0.66                  | 97            |  |  |
| Lake Michigan | 1.88                  | 58            | 1.49                  | 99.5          |  |  |
| Lake Huron    | 1.74                  | 78            | 1.18                  | 98            |  |  |
| Lake Erie     | 6.90                  | 13            | 1.55                  | 46            |  |  |
| Lake Ontario  | 6.96                  | 7             | 1.17                  | 73            |  |  |

Both lead and total PCBs were nondetectable in the Kimberly-Clark effluent during the 1987/88 surveys (Tables 3.19a and 3.20a). During the MISA monitoring study conducted in the first six months of 1990, lead concentrations averaged 5.0  $\mu$ g/L in effluent, however, it was detected in only 17 percent of samples (Table 4.6). Loadings have not been calculated for the MISA data, thus it is not known what the relative impact of the effluent is in comparison to atmospheric. However, the lead loading shown in Table 4.8 for Lake Superior represents the entire lake whereas the Kimberly-Clark effluent is much more localized with regard to the Jackfish Bay AOC.

Nriagu (1990) noted that "the atmosphere has become a key medium in the transfer of trace metals to remote aquatic ecosystems". In the case of the Great Lakes, he indicated that well over 50 percent of all trace metals were contributed via the atmosphere. Sources to the atmosphere include biogenic, wind-eroded soils and industrial pollution. Although there are no loading estimates available for metals other than lead, Nriagu (1990) identified the atmosphere as an important pathway for vanadium, mercury and cadmium.

Both tetrachlorodibenzofurans (4CDF) and octachlorodibenzo-p-dioxins (8CDD) were detected in sediments collected in Moberly Bay. There was a progression of significant differences in concentration from the mill effluent to stations in Moberly Bay for 4CDF mean values (Table 3.12). This suggests that the effluent was the main source of this congener. However, there were no significant differences between the stations for 8CDD within Jackfish Bay, indicating that the mill was not the source. Some other source, such as atmospheric deposition, may have been responsible for elevated 8CDD levels (Sherman et al. 1990, Section 3.2.5.3).

PAHs were found in sediments of Jackfish Bay (Section 3.2.5.4), at concentrations which are below the Lowest Effect Level of the Provincial Sediment Quality Guidelines. Chan and Perkins (1989) measured the concentration of various PAH compounds in precipitation samples from four locations in the Great Lakes Basin. The closest station to Jackfish Bay was at Sleeping Giant Provincial Park east of Thunder Bay. The concentration profile indicated that the most abundant PAHs at this station were phenanthrene, methylnaphalene, fluorene and pyrene (Chan and Perkins 1989). The PAHs with the highest concentrations in sediment of Jackfish Bay collected during the 1987/88 surveys were pyrene, flouranthene and chrysene (Table 3.14). Methylnaphalene in sediment was not measured and chrysene in precipitation was not measured. However, the concentration pattern of pyrene and flouranthene suggest that atmospheric deposition may account for the PAHs found in sediment in the Jackfish Bay AOC. Chan and Perkins (1989) noted that higher concentrations of PAHs were found in the upper lakes' stations, farther away from the industrial and urban centres in the lower lakes where consumption of fossil fuel is higher. They concluded that the higher PAHs at Sibley in Lake Superior represented localized effects from domestic wood burning. There are no data on emissions of PAH compounds from local sources in the Terrace Bay area with which to determine the significance of these sources to the local atmospheric depositional component.

The only local air quality monitoring data available for the Jackfish Bay AOC consists of the results of a one day survey conducted by the Air Quality Monitoring Branch of OMOE in the vicinity of the Kimberly-Clark Canada Inc. pulp mill (OMOE data files). Five, 30 minute samples were collected on July 25, 1985. The results of this survey indicated that concentrations of total reduced sulphur compounds off company property, downwind of the plant were less than the 30 minute provisional guideline of 0.027 ppm. The total hydrocarbon loadings for five samples taken on the mill property ranged between 168.9  $\mu$ g/m³ and 3,783.2  $\mu$ g/m³. These loadings were mainly comprised of aromatic compounds, primarily 1-isopropyl-4-methylbenzene which ranged between 64.5 and 2,637.0  $\mu$ g/m³. Chloroform was the most dominant chlorinated organic (5.2 to 236.6  $\mu$ g/m³), although it was well below guideline (1,500  $\mu$ g/m³). Since the time of the survey, the hypo stage in the #1 bleachery has been shut down at Kimberly-Clark and chloroform levels are likely much lower (J. Murphy, OMOE, pers. com.).

#### 4.2.2 Contaminated Sediments

Sediment contamination in Moberly, Jackfish and Tunnel Bays was discussed in Section 3.2 and Section 3.4 which presented data for Blackbird Creek and Moberly Lake. These sediments, although contaminated from a variety of sources, also serve as a source of contamination to biota and water. Remedial strategies for restoring beneficial uses within the Jackfish Bay AOC will need to consider the role of these sediments.

The availability and impact of chemicals in sediments with regard to water and biota in this area has not been thoroughly investigated. The only studies carried out to date are those by Beak Consultants (1991) on sediment from Blackbird Creek and Moberly Lake. Preliminary results of this study indicated that sediments from Moberly Lake were lethal to both Hyallela (LC34) and chironomid larvae (LC42). Chironomid growth was also inhibited. The authors concluded that the toxicants in the sediment of this lake would have to be reduced to at least 18 percent of present levels before the sediment would support benthic life (Beak Consultants 1991).

Body burdens of dioxin and furan congeners in benthic fauna (mussels and opossum shrimp) of Moberly Bay suggest that sediment concentrations, particularly of tetrachlorodibenzo-p-dioxins and tetrachlorodibenzofurans, may be impacting the benthos (Section 3.3). In addition, the draft Provincial Sediment Quality Guideline Lowest and Severe Effect Levels are biologically based. Exceedences of these levels results in impairment to the majority of benthic species.

Chromium, copper, iron and nickel concentrations in samples collected in 1987/88 at a station known to be outside the effect of the Kimberly-Clark mill discharge (Station 844) exceeded the Provincial Sediment Quality Guidelines Lowest Effect Levels. In addition, manganese exceeded the No Effect Level. The elevated concentrations of these five metals may, thus, be related to the geology of the area (Section 3.2.4).

However, each of these four metals are also found in the mill effluent. The effluent characterization study undertaken in 1987/88 indicated that chromium was detected in 48 to 100 percent of samples (mean 0.08 mg/L 1988), copper in 14 to 81 percent of samples (0.02 mg/L 1988); iron in 90 to 100 percent of samples (0.55 mg/L 1988); and nickel in 14 to 44 percent of samples (mostly near detection limits) (Table 3.19a). Chromium and copper were also detected in the effluent in 100 and 17 percent, respectively, of samples during the first six months of the 1990 MISA monitoring study (Table 4.6).

## 4.2.3 Spills

Kimberly-Clark had a Bunker Oil Spill in the mid-1970s which spread into Moberly Bay. This incident may explain the presence of oil in sediments at stations in Moberly Bay during the 1987 biological surveys (Beak Consultants 1988). The oil was not observed during the 1975 surveys.

Spill and effluent bypass events for 1989, 1990 and 1991 (to mid-September) are listed in Table 4.9. The date, substance spilled, amount of substance (where available) and medium spilled to is indicated.

Land spills are not generally a concern with regard to contamination of the Jackfish Bay AOC as the mill is located outside of the AOC. The only concern would be land based spills which may subsequently reach the effluent canal which connects to Blackbird Creek. Sulphuric acid is the substance most commonly spilled on the mill site.

Gaseous leaks occur and include blow tank gases and digester gases. It is not known which chemicals are vented with these incidents or whether they impact the AOC. Based on the records available (Table 4.9), this does not appear to be a significant concern.

Table 4.9 Spills and effluent bypasses at the Kimberly-Clark Canada Inc. mill during 1989, 1990 and 1991 (OMOE data files).

| Date         | Substance                     | Location |
|--------------|-------------------------------|----------|
|              | 1989                          |          |
| January 27   | ? tank car spill              | land     |
| February 14  | chloride gas leak             | air      |
| February 21  | effluent bypass of clarifiers | water    |
| May 4        | soap spill                    | water    |
| June 13      | fuel spill - vehicle accident | land     |
| July 4       | black liquor caustic sewers   | water    |
| July 13      | diesel fuel (114 L)           | water    |
| August 8     | acid line leak                | land     |
| August 9     | venting blow tank             | air      |
| September 29 | discharge to effluent ditch   | water    |
| December 29  | sulphuric acid (1,300 L)      | land     |
|              | 1990                          |          |
| January 24   | venting blow tank             | air      |
| January 25   | digester cooking gases vented | air      |
| March 19     | digester cooking gases vented | air      |
| December 13  | sulphuric acid (910 L)        | land?    |
| June 13      | diesel spill (100 L)          | ?        |
| August 23    | lime powder (15 tonnes)       | land     |
|              | 1991                          |          |
| January 26   | alkaline & acid sewers bypass | water    |
| March 6      | acid sewer effluent bypass    | water    |
| March 14     | acid sewer effluent bypass    | water    |
| April 20     | sulphuric acid (675 L)        | land     |
| April 28     | acid sewer effluent bypass    | water    |
| May 21       | acid sewer effluent bypass    | water    |
| July 1       | sulphuric acid (230 L)        | land     |

Table 4.9 (Cont'd)

Date

|             | Substance                     | Location |
|-------------|-------------------------------|----------|
| July 7      | alkaline & acid sewers bypass | water    |
| July 8      | acid sewer effluent bypass    | water    |
| July 16     | alkaline sewer bypass         | water    |
| July 30     | alkaline sewer bypass         | water    |
| August 2    | foam spill                    | land     |
| August 12   | alkaline & acid sewers bypass | water    |
| August 18   | alkaline & acid sewers bypass | water    |
| September 8 | acid sewer partial bypass     | water    |

Flows in the acid and alkaline sewers, on occasion, bypass the treatment system resulting in untreated effluent reaching Blackbird Creek. As of September 8, there were 12 bypass events during 1991 (Table 4.9). These events were primarily due to equipment failures (O-Rings, seized valves) and power outages which shut down the pumping equipment (P. Jordan, OMOE, pers. com.). Because the volume of effluent which bypasses the system is not known, it is not possible to determine the impact of these events on the AOC. However, it is expected that these events contribute to contamination of Jackfish Bay and, hence, their occurrence should be minimized.



|    | 2000年,1900年,1900年,1900年,1900年,1900年,1900年,1900年,1900年,1900年,1900年,1900年,1900年,1900年,1900年,1900年,1900年,1900年,1 |     |
|----|---------------------------------------------------------------------------------------------------------------|-----|
|    | 반도하는 회문의 경우 집에 가는 발생님이 그렇게 되었다. 이 전에는 전 아이를 보고 되었다. 그 집에 살아 되었다.                                              |     |
|    |                                                                                                               |     |
| ٠. |                                                                                                               |     |
|    |                                                                                                               |     |
|    |                                                                                                               |     |
|    |                                                                                                               |     |
|    |                                                                                                               |     |
|    |                                                                                                               |     |
|    | 영어 나는 아니라는 그는 나는 아이들은 아이들은 아이들은 아이들은 사람들이 되었다. 그렇게 그렇게 다른 사람들이 가는 것이 없다.                                      |     |
|    |                                                                                                               |     |
|    |                                                                                                               |     |
|    |                                                                                                               |     |
|    | 하는데 되는데 하는데 사람들은 사람들은 사람들이 하는데 하는데 하는데 하는데 하는데 그렇게 되었다.                                                       |     |
|    |                                                                                                               |     |
|    |                                                                                                               |     |
|    |                                                                                                               |     |
|    | 그는 그는 그는 그는 그는 그들은 사람이 많은 그들은 한 살이 없는 것은 것은 것은 사람이 되는 것은 그는 것이다.                                              |     |
|    | 인데 그 그렇게 그렇게 되는 그런 없이 어떤 이 등은 그리고의 그리는 아무를 통해 그리면 가는 이 아픈 아무를 받는다.                                            |     |
|    |                                                                                                               |     |
|    |                                                                                                               | 1.5 |
|    |                                                                                                               |     |
|    |                                                                                                               |     |
|    |                                                                                                               |     |
|    |                                                                                                               |     |
|    |                                                                                                               |     |
|    |                                                                                                               |     |
|    | 그들은 이 등은 경기에 보는 경기로 보는 것이 하는 것이 되었다. 그는 이 보인 도로로 하는 것이 되었다.                                                   |     |
|    |                                                                                                               |     |
|    |                                                                                                               |     |
|    | 그렇게 되는데는 이번의 이번 수 있다. 그는 그를 내고 하다 나는 이 점을 하는데 그를 들었다. 그는 것은 사람들이 없는데 없었다.                                     |     |
|    |                                                                                                               |     |
|    |                                                                                                               |     |
|    | 요즘 그렇는 프로마는 그리다 그러나 부모님이는 이 회사에서는 반으로 하면 되었다.                                                                 |     |
| •  | 어린다. 본 등 하고 그 등은 사일 시간 그러나 하고 있는 것 같아 되는 것은 사람들이 그리고 살아보고 있는 것이다.                                             |     |
|    |                                                                                                               |     |
|    |                                                                                                               |     |
|    |                                                                                                               |     |
|    | 공연 하늘 생님 사람은 아이들의 얼마를 하는데 하지만 되었다. 하는데 얼마는 사람들은 이번 생각을 다 했다.                                                  |     |
|    |                                                                                                               |     |
|    |                                                                                                               |     |
|    |                                                                                                               |     |
|    |                                                                                                               |     |
|    |                                                                                                               |     |
|    |                                                                                                               |     |
|    |                                                                                                               |     |
|    |                                                                                                               |     |
|    |                                                                                                               |     |
|    |                                                                                                               |     |
|    |                                                                                                               |     |
|    |                                                                                                               |     |
|    |                                                                                                               |     |
|    |                                                                                                               |     |
|    |                                                                                                               | 11. |
|    | (A)是这一种,大型,但是一种的一种,是是一种,我们就是一种,这种的一种,我们就是一种的人,也不是一种。                                                          |     |
|    |                                                                                                               |     |

## 5.0 ENVIRONMENTAL CONCERNS/USE IMPAIRMENT

#### 5.1 INTRODUCTION

The objective of this chapter is to summarize the use impairments and water, sediment and biota quality problems described in Chapter 3 (Environmental Conditions). Annex 2 of the Great Lakes Water Quality Agreement of 1978, as amended in 1987, defines 'Impairment of Beneficial Use(s)' as "...a change in the chemical, physical or biological integrity of the Great Lakes System sufficient to cause and of the following:

- (i) Restrictions on fish and wildlife consumption;
- (ii) Tainting of fish and wildlife flavour;
- (iii) Degradation of fish and wildlife populations;
- (iv) Fish tumours or other deformities:
- (v) Bird or animal deformities or reproduction problems;
- (vi) Degradation of benthos;
- (vii) Restrictions on dredging activities;
- (viii) Eutrophication or undesirable algae;
- (ix) Restrictions on drinking water consumption, or taste and odour problems;
- (x) Beach closings;
- (xi) Degradation of aesthetics;
- (xii) Added costs to agriculture or industry;
- (xiii) Degradation of phytoplankton and zooplankton populations; and
- (xiv) Loss of fish and wildlife habitat."

Several of these use impairment categories are divided into subcategories for discussion purposes in this chapter to more clearly define the scope of the problems in the Jackfish Bay AOC. For example, 'restrictions on fish and wildlife consumption' is divided into 'restrictions on fish consumption' and 'restrictions on wildlife consumption'.

A determination as to whether a specific use impairment exists in the Jackfish Bay AOC was made using the Listing/Delisting Guidelines for Great Lakes Areas of Concern (IJC 1991) in conjunction with applicable standards, guidelines and objectives where available. In the absence of standards, guidelines or objectives, impairment status is based on best professional judgement from the evidence available. The status of beneficial uses as well as exceedences of ambient standards, guidelines and objectives are summarized in Table 5.1.

#### **5.2 USE IMPAIRMENTS**

## 5.2.1 Restrictions on Fish and Wildlife Consumption

# 5.2.1.1 Restrictions on Fish Consumption: requires assessment

The 1989 "Guide to Eating Ontario Sport Fish" listed fish consumption restrictions for lake trout longer than 45 cm due to mercury concentrations between 0.5 and 1.0  $\mu$ g/g and/or PCBs greater than 2.0  $\mu$ g/g. The 1991 guide identified consumption of lake trout up to 65 cm in length as unrestricted with regard to mercury and PCB concentrations. The consumption of whitefish, cisco and white sucker to 45 cm in length was also unrestricted. However, the guide indicates that consumption of lake trout greater than 55 cm could be restricted due to concentrations of dioxins and furans expressed as toxic equivalents of 2,3,7,8-tetrachlorodibenzo-p-dioxin.

Table 5.1 Summary of impairments to Great Lakes Water Quality Agreement beneficial uses within the Jackfish Bay Area of Concern. Impairment status is defined as impaired (I), not impaired (NI) or requires further assessment (A) and is based on data collected during from 1987 to 1990.

| GLWQA Impairment of Beneficial<br>Use                                                                   | Status of<br>Impairment | Conditions In Jackfish Bay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Restrictions on Fish and Wildlife Consumption Restrictions on Fish Consumption  Consumption of Wildlife | A<br>NI                 | The 1991 "Guide to Eating Ontario Sport Fish" notes that the consumption of lake trout greater than 55 cm in size may need to be restricted due to concentrations of dioxins and furans expressed as toxic equivalents to 2,3,7,8-tetrachlorodibenzo-p-dioxin.  No restrictions exist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Tainting of Fish and Wildlife Flavour                                                                   | II                      | There have been no reports of tainting by the public or by fisheries/wildlife personnel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Degradation of Fish and Wildlife Populations Dynamics of Fish Populations  Body burdens of Fish         |                         | Lake trout populations have declined since the mid 1950s for a number of reasons including the accidental introduction of sea lamprey, the start-up of the Kimberly-Clark mill, over-harvesting and the introduction of exotic fish species. Blackbird Creek fish populations have been totally eliminated as a result of the pulp mill effluent. Similarly, fish populations in Moberly Bay, in the vicinity of Blackbird Creek, have been severely reduced.  White suckers have bioaccumulated TCDDs and TCDFs from water and sediment contaminated by the mill effluent. Lake trout have low concentrations of mercury, hexachlorobenzene and several chlorinated pesticides. The GLWGA Specific Objective for the protection of piscivorous wildlife from PCBs was exceeded in lake trout collected in 1989. |
| Dynamics of Wildlife Populations                                                                        |                         | Blackbird Creek may attract wildlife during the spring months as the moderating influence of warm creek water tends to accelerate greening of creek side vegetation. Moose activity in particular appears to be abnormally high along Blackbird Creek during the spring. There are no data on possible impacts to wildlife populations due to contaminants within the AOC.                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Body burdens of Wildlife                                                                                | •                       | Bioaccumulation of contaminants in wildlife may be occurring in portions of Jackfish Bay and the Blackbird Creek system, however, there are no data on contaminant burdens in wildlife. CWS plans a survey of gull populations for completion in 1993.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

Table 5.1 (Cont'd)

| GLWQA Impairment of Beneficial<br>Use                     | Status of<br>Impairment | Conditions In Jackfish Bay                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fish Tumours and Other Deformities                        |                         | Although incidences of external fish tumours or other deformities have not been reported, white suckers collected from Jackfish Bay in the summer of 1988, prior to secondary treatment, had an abnormal incidence of liver neoplasms (cancers). Also, greater than 20 percent of lake whitefish had unexplainable external lesions which may be associated with pollutants contributed from mill effluent. A study of tumours in white suckers was conducted by OMOE in 1988 and results are pending. |
| Bird and Animal Deformities or Reproductive<br>Problems   |                         | Incidents of bird or animal deformities have not been reported in the AOC. However, indications of reproductive dysfunction in white sucker, longnose sucker and lake whitefish populations in the Jackfish Bay AOC have been reported. CWS plans a survey of gull populations for completion in 1993.                                                                                                                                                                                                 |
| Degradation of Benthos<br>Dynamics of Benthic Populations | <b>i</b>                | The benthic fauna have been impacted in Moberly, Jackfish and Tunnel Bays as shown by the presence of impaired communities which have increased in number and extent between 1969 and 1987. During this period, pollution intolerant species ( <u>Pontoporea hoyi</u> ) have decreased in density and extent whereas pollution tolerant species (tubificids) have increased in density and extent. Sediments in Moberly Lake are acutely toxic to benthic fauna.                                       |
| Body burdens of Benthic Organisms                         |                         | Opposum shrimp (Mysis relicta) and introduced caged mussels (Elliptio complanata) collected in Moberly Bay had a dioxin and furan congener pattern similar to that of the mill effluent. 2,3,7,8-tetrachlorodibenzofuran was the dominant isomer in the shrimp with traces of other congeners including 2,3,7,8-tetrachlorodibenzo-p-dioxin.                                                                                                                                                           |
| Restrictions on Dredging Activities                       | 1                       | Sediments in the Jackfish Bay AOC, particularly within Moberly and Jackfish Bays contain concentrations of several contaminants which exceeded OMOE Open Water Dredged Material Disposal Guidelines and/or Provincial Sediment Quality Guidelines as of 1987/88. These include oil and grease, total organic carbon, TKN (1990), total phosphorus, arsenic, cadmium, chromium, copper, iron, lead, manganese, mercury, nickel, zinc, hexachlorobenzene and total PCBs.                                 |
| Eutrophication or Undesirable Algae                       | NI                      | No nuisance algal growths have not been reported.                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

Table 5.1 (Cont'd)

| GLWQA Impairment of Beneficial<br>Use                                                                              | Status of<br>Impairment | Conditions In Jackfish Bay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Restrictions on Drinking Water Consumption or<br>Taste and Odour Problems<br>Consumption, Taste and Odour Problems | NI                      | Drinking water for the Town of Terrace Bay is obtained from Lake Superior west of Jackfish Bay. There have been no consumption restrictions or reported taste and odour problems for treated drinking water. However, cottages are located in the old community of Jackfish, on Jackfish Bay. On occasion, the effluent drifts in this direction, making nontreated water unsuitable for consumption.                                                                                                                           |
| Beach Closings                                                                                                     | NI                      | Bacterial densities have periodically been elevated in the vicinity of the Terrace Bay Beach as a result of the mill discharge, however, this condition has not led to beach closings. There are no other public beaches within the Jackfish Bay AOC.                                                                                                                                                                                                                                                                           |
| Degradation of Aesthetics                                                                                          | 1                       | Conditions have improved since the early 1970s, however, concerns continue to be expressed regarding the presence of foam and dark colour in Blackbird Creek and Moberly Bay.                                                                                                                                                                                                                                                                                                                                                   |
| Added Cost to Agriculture and Industry                                                                             | NI                      | There are no agricultural or industrial activities which utilize water from the Jackfish Bay AOC.                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Degradation of Phytoplankton and Zooplankton<br>Populations                                                        | NI<br>NI                | There are no widespread effects within the AOC although community structures are likely altered in the immediate area of the discharge. No detailed information exists.                                                                                                                                                                                                                                                                                                                                                         |
| Loss of Fish and Wildlife Habitat                                                                                  |                         | Major take trout spawning grounds were tocated in Moberly Bay and along the shore of Lake Superior adjacent to Jackfish Bay and were impaired due to physical alteration (deposition of organic matter) and chemical contamination of sediments. Lake whitefish spawning grounds were identified along take Superior's shore immediately east and west of Jackfish Bay. The quality and use of these shoals has not been assessed. Blackbird Creek was noted as a brook trout stream prior to the start-up of the mill in 1948. |

As of 1991 fish consumption restrictions were in place for Jackfish Lake due to mercury (yellow perch) and mercury and/or PCBs (northern pike and walleye). However, this lake is considered to be outside the influence of the mill effluent and, hence, mercury concentrations >1.5  $\mu$ g/g in yellow perch between 35 and 45 cm in length is likely due to natural background sources.

#### 5.2.1.2 Restrictions on Wildlife Consumption: not impaired

There are currently no restrictions for the consumption of wildlife form the Jackfish Bay AOC.

#### 5.2.2 Tainting of Fish and Wildlife Flavour: not impaired

No reports of tainted fish or wildlife by the public or the fisheries/wildlife personnel.

#### 5.2.3 Degradation of Fish and Wildlife Populations

#### 5.2.3.1 Dynamics of Fish populations: impaired

Blackbird Creek fish populations have been totally eliminated as a result of the pulp mill effluent. Similarly, fish populations in Moberly Bay, in the vicinity of Blackbird Creek, have been severely reduced. Prior to installation of secondary effluent treatment by the mill, toxicity tests on surface waters up to 1.5 km from the creek mouth resulted in 100 percent fish mortality. Results from toxicity testing since this time indicated that mill effluent is no longer acutely lethal.

Degraded water quality, harvesting, the sea lamprey and introduction of exotic fish species have directly depressed fisheries production in Jackfish Bay. Species diversity and densities in the northern portion of Moberly Bay are among the lowest found in Lake Superior. The zone of influence, which radiates south from the mouth of Blackbird Creek, has diminished fisheries potential in the entire Jackfish Bay area, although the degree of impact has not been determined.

#### 5.2.3.2 Body Burdens of Fish: impaired

Lake trout collected in 1989 had low concentrations of mercury, hexachlorobenzene, p,p-DDE,  $\alpha$  and  $\tau$ -BHC,  $\alpha$  and  $\tau$ -chlordane, p,p-DDD, toxaphene, 2,3,7,8-TCDD (0.000029-0.0000113  $\mu$ g/g) and 2,3,7,8-TCDF (0.000020-0.000058  $\mu$ g/g). White suckers collected during 1988 also had low concentrations of 2,3,7,8-TCDD and 2,3,7,8-TCDF. The GLWQA Specific Objective for the protection of piscivorous wildlife were exceeded by maximum concentrations of total PCBs (0.44  $\mu$ g/g).

#### 5.2.3.3 Dynamics of Wildlife Populations: requires assessment

Blackbird Creek may attract wildlife during the spring months as the moderating influence of warm creek water tends to accelerate greening of creek side vegetation. Moose activity in particular appears to be high along Blackbird Creek during the spring. There are no data on possible impacts to wildlife populations due to contaminants within the AOC.

#### 5.2.3.4 Body Burdens of Wildlife: requires assessment

Bioaccumulation of contaminants in wildlife may be occurring in portions of Jackfish Bay and the Blackbird Creek system, however, there are no data on contaminant burdens in wildlife. CWS plans a survey of gull populations for completion in 1993.

#### 5.2.4 Fish Tumours or Other Deformities: impaired

Incidents of external fish tumours or other deformities have not been reported. However, the induction of MFO activity in white suckers collected from Jackfish Bay in the summer of 1988, prior to secondary treatment, was correlated with an "abnormal incidence of liver neoplasms (cancers)". Also, greater than 20 percent of lake whitefish caught in Jackfish Bay during August 1989 and August/September 1990 had unexplainable external lesions which did not appear to be related to predatory attack or infection. The presence of these lesions in an isolated, unpopulated bay which has received large volumes of pulp mill effluent, as well as the absence of reports of similar wounding in other lake whitefish, suggested to the authour that there may be an association between the lesions and the discharge of bleached kraft mill effluent.

Research is continuing on the sublethal effects of mill effluent on fish, as well as the cause of the skin lesions on lake whitefish. A study of tumours in white suckers was undertaken in 1988 by the Water Resources Branch of OMOE. Results are pending.

#### 5.2.5 Bird or Animal Deformities or Reproduction Problems: requires assessment

Bird or animal deformities have not been found in the Jackfish Bay AOC, nor have reproduction problems been specifically reported. However, reproductive dysfunction in white sucker, longnose sucker and lake whitefish populations in the Jackfish Bay AOC have been reported. Results from research into the sublethal effects of the pulp mill effluent indicated that these fish grow more slowly than reference fish, have smaller gonads, lower fecundity with age, an absence of secondary sex characteristics in males, failure of females to show an increase in egg size with age, reduced serum estradiol and testosterone concentrations, and greater hepatic mixed-function oxidase (MFO) activity.

A study to determine whether or not herring gulls in the Jackfish Bay AOC have deformities or experience reproductive problems is currently underway by the Canadian Wildlife Service. Results from this study will need to be evaluated when available.

#### 5.2.6 Degradation of Benthos

#### 5.2.6.1 Dynamics of Benthic Populations: impaired

The benthic fauna of the Jackfish Bay AOC have been impacted as a result of the mill effluent discharged through Blackbird Creek. Densities of benthic macroinvertebrates tend to be lowest along the western portion of Moberly and Jackfish Bays due to the influence of the effluent plume from Blackbird Creek. Between 1969 and 1987, maximum densities of pollution tolerant organisms (tubificids) increased by more

than six times while densities of pollution intolerant organisms (*Pontoporeia hoyi*) decreased dramatically. During this period the extent of tubificids also increased in concert with a decrease in the extent of *P. hoyi*. Whereas in 1969 only the central portion of Moberly Bay and the northwestern portions of Jackfish Bay were affected, by 1987 the density of *P. hoyi* had decreased in Tunnel Bay as well as the eastern and central portions of Jackfish Bay.

These trends were similar to those observed by the distribution and number of impaired benthic communities. The extent of communities identified as impaired increased between 1969 and 1975. Between 1975 and 1987 the extent increased further and an additional impaired community was identified. Impaired communities were found to occur in sediments which had the highest mean concentrations of cadmium, copper, lead, zinc and TKN as well as high levels of fibre (loss on ignition). The impact to benthic macroinvertebrates in the Jackfish Bay AOC have been attributed to the Kimberly-Clark mill effluent.

Although there have been no benthic surveys of Blackbird Creek, the toxicity of sediments in Moberly Lake indicates that the sediment is acutely lethal to certain benthic species and is likely severely impaired.

#### 5.2.6.2 Body Burdens of Benthic Organisms: impaired

The body burdens of native benthos (*Mysis relicta*) and introduced mussels (*Elliptio complanata*) from Jackfish Bay indicate a pattern of dioxin and furan bioaccumulation which suggests the mill effluent as the major source. This includes the bioaccumulation of tetrachlorodibenzo-p-dioxins and tetrachlorodibenzo-furans. Concentrations of the highly toxic 2,3,7,8-tetrachlorodibenzo-p-dioxin congener in *M. relicta* were 0.000009  $\mu$ g/g. Concentrations of tetrachlorodibenzo-furans ranged from 0.000034  $\mu$ g/g in introduced mussels to 0.000048  $\mu$ g/g in *M. relicta*.

#### 5.2.7 Restrictions on Dredging Activities: impaired

Dredging operations have not been undertaken in the Jackfish Bay AOC. However, the sediments of Jackfish Bay, especially Moberly Bay, contain levels of oil and grease, total organic carbon, total phosphorus, arsenic, cadmium, chromium, copper, iron, lead, manganese, mercury, nickel, zinc, hexachlorobenzene and total PCBs which exceeded the OMOE Open Water Dredged Material Disposal Guidelines and/or the Provincial Sediment Quality Guidelines Lowest Effect Levels in 1987/88. TKN measured in Moberly Lake sediments during 1990 also exceeded the PSQG Lowest Effect Level. In addition, high concentrations of certain phenolic compounds, resin and fatty acids, and dioxins and furans, for which no guidelines are available, contaminate sediments within the AOC.

#### 5.2.8 Eutrophication or Undesirable Algae: not impaired

There are no records or observations of nuisance algal growths in Jackfish Bay.

### 5.2.9 Restrictions on Drinking Water Consumption or Taste and Odour Problems: not impaired

The Town of Terrace Bay acquires its drinking water from Pumphouse Bay on the north shore of Lake Superior. There have been no consumption restrictions, or taste and odour problems reported with the treated drinking water. Cottages are located in the old community of Jackfish, on Jackfish Bay. On occasion, the effluent plume drifts in this direction, making nontreated water unsuitable for consumption.

#### 5.2.10 Beach Closings: not impaired

Bacteria levels have periodically been elevated in the vicinity of the Terrace Bay beach as a result of the mill discharge, however, this condition has not led to beach closings. There are no other public beaches within the Jackfish Bay AOC. However, exceedences of the fecal and total coliform PWQO have occurred as recently as 1987/88 and the IJC recommended guidelines for *Pseudomonas aeruginosa* and *Echerichia coli* were exceeded within Moberly and Jackfish Bays.

#### 5.2.11 Degradation of Aesthetics: impaired

Mill effluent flow in Blackbird Creek and into Jackfish Bay has deteriorated the aesthetic value of the entire system. Re-routing the effluent away from the highway during the early 1970s has improved the situation but concerns are still expressed. Although the area's scenic beauty, sheltered waters and the wreck of the Rappahanock represent an attraction for boaters and divers, the area receives limited recreational use due to the mill discharge and, to a lesser extent, limited access.

#### 5.2.12 Added Cost to Agriculture or Industry: not impaired

When additional costs are required to treat water prior to use for agricultural or industrial purposes, this use category is considered to be impaired. There are no agricultural or industrial activities which utilize water from the Jackfish Bay AOC.

#### 5.2.13 Degradation of Phytoplankton and Zooplankton Populations: not impaired

There are no widespread effects within the AOC although community structures are likely altered in the immediate vicinity of the discharge. No detailed information exists.

#### 5.2.14 Loss of Fish and Wildlife Habitat: impaired

Fish habitat in Jackfish Bay has not been fully described or mapped, nor has the relationship of various habitat types to fish production been evaluated. However, it is known that industrial pollutants have destroyed or significantly altered fisheries habitat in portions of Jackfish Bay.

Blackbird Creek no longer provides suitable habitat for most aquatic life and may affect the surrounding terrestrial habitat. The mill discharge into Jackfish Bay has degraded bottom sediments, fish habitat and potential spawning grounds. Organic sludge deposits cover most of the natural sediments in Moberly Bay. There are no data regarding the possible loss of wildlife habitat, particularly along the Blackbird Creek System.

| ļ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |      |         |               |            |                                          |                 |                               | 1.5 |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------|---------|---------------|------------|------------------------------------------|-----------------|-------------------------------|-----|------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      |         |               |            |                                          |                 |                               |     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      |         |               |            |                                          |                 |                               |     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      |         |               |            |                                          |                 |                               |     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      |         |               |            |                                          |                 |                               |     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      |         |               |            |                                          |                 |                               |     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      |         |               |            |                                          |                 |                               | 4.  | •    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      |         |               |            |                                          |                 |                               | •   |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      |         |               |            |                                          |                 |                               |     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      |         |               |            |                                          |                 |                               |     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      |         |               |            |                                          |                 |                               |     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      |         |               | 1<br>1     |                                          |                 |                               |     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      |         |               |            |                                          |                 |                               |     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      |         |               |            |                                          |                 |                               |     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      |         |               |            |                                          |                 |                               |     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      |         |               |            |                                          |                 |                               |     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      |         |               |            |                                          |                 |                               |     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      |         |               |            |                                          |                 |                               |     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      |         |               |            |                                          | Service Service | on Francisco                  |     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      |         |               |            |                                          |                 |                               |     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      |         |               |            |                                          |                 |                               |     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      |         |               | 17. A      |                                          |                 |                               |     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      |         |               |            |                                          |                 |                               |     | i la |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      |         |               |            |                                          |                 |                               |     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      |         |               |            |                                          |                 |                               |     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      |         |               |            |                                          |                 |                               |     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      |         |               |            |                                          |                 |                               |     |      |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |      |         |               |            |                                          |                 |                               |     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      |         |               |            |                                          |                 |                               |     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      |         |               |            | i Nisa.                                  | * 4.8 §         |                               |     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      |         |               |            |                                          |                 |                               |     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      |         |               |            |                                          |                 |                               |     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      |         |               |            |                                          |                 |                               |     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      | er er k |               |            | •                                        |                 |                               |     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      |         |               |            |                                          |                 |                               |     |      |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |      |         |               |            |                                          |                 |                               |     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      |         |               |            |                                          |                 |                               |     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      |         |               |            |                                          |                 | $(x_{i+1}, y_{i+1}, y_{i+1})$ |     |      |
| ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |      |         |               |            |                                          |                 |                               |     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      |         |               |            |                                          |                 |                               |     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      |         |               |            |                                          |                 |                               |     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      |         |               |            |                                          |                 |                               |     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      |         |               |            |                                          |                 |                               |     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      |         |               |            |                                          |                 |                               |     |      |
| and the same of th |                |      |         |               |            |                                          |                 |                               |     |      |
| or a constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |      |         |               | 1.4        |                                          |                 |                               |     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      |         |               |            |                                          |                 |                               |     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      |         |               |            |                                          |                 |                               |     | 7 1  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      |         |               |            |                                          |                 |                               |     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      |         |               | the stand  |                                          |                 |                               |     |      |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |      |         |               |            |                                          |                 |                               |     |      |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |      |         |               | it face of |                                          |                 |                               |     |      |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |      |         |               |            |                                          |                 |                               |     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      |         |               |            |                                          |                 |                               |     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      |         |               |            |                                          |                 |                               |     | *    |
| a property of the contract of  |                |      |         |               |            |                                          |                 |                               |     |      |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ja po nijelo i |      |         |               |            |                                          | • •             | 100                           |     |      |
| The same of the sa |                | 1170 |         |               |            |                                          |                 |                               |     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      |         |               |            |                                          |                 |                               |     |      |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |      |         |               | • •        |                                          |                 |                               |     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      |         |               |            | en e |                 |                               |     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      |         |               |            |                                          |                 |                               |     |      |
| and the same of th |                |      |         | in the second |            |                                          |                 |                               |     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | <br> |         |               |            |                                          |                 | •                             |     |      |

6.0 PUBLIC INVOLVEMENT



#### 6.0 PUBLIC INVOLVEMENT

The four Areas of Concern on the Canadian shore of Lake Superior (Peninsula Harbour, Jackfish Bay, Nipigon Bay and Thunder Bay) have been grouped together as the "North Shore of Lake Superior Remedial Action Plans". Although RAPS are being developed separately for each, a single logo was designed for the four Areas of Concern.

#### 6.1 ACTIVITIES TO DATE

The initial step in the public consultation program was identifying potential participants in order to establish a mailing list. The list included representatives from industry, government, labour, fisheries, environment, recreation, education and the general public.

The next step was to develop general information campaign material to promote the RAP. Materials included brochures, buttons, refrigerator magnets and presentation folders. In addition, a toll-free telephone number was set up for interested individuals to call for further information on the program. All people on the mailing list were contacted by letter to inform them about the RAP process, were provided with a copy of the RAP brochure and were invited to open houses organized as a "kick-off" for the program.

The Jackfish Bay open house was held in the Terrace Bay Recreation Centre on December 1, 1988. Materials developed for the open house included a mobile display, status reports and brochures. Advertisements were placed in the local and Thunder Bay newspapers (Appendix 6.1). Approximately 65 people attended the session. They were provided with information on the RAP process, the opportunity to become involved in the Jackfish Bay RAP and the importance that the federal and provincial governments place on public participation. Attendees were invited to sign a register and were added to the mailing list.

After the open house, all people on the mailing list received letters informing them of the success of the open house. The next step in the public consultation program was the formation of a public advisory committee (PAC). Suggestions as to representation on the PAC were solicited. A number of volunteers and nominations were received and the PAC was formed.

The thirteen PAC members include representatives from the public, Kimberly-Clark of Canada, Ltd., Charter Boat Services, the mill union, Jackfish Lake Cottagers, the Township of Terrace Bay, Ducks Unlimited, Minnova Mines, and the Ontario Underwater Council.

The purpose of the PAC is as follows: (1) act as a focal point for public consultation and thereby allow effective dissemination of information on the RAP process and environmental conditions; (2) provide an additional level of review for RAP documents and remedial options; (3) provide an efficient and effective means of ensuring stakeholder input as the RAP is being developed; and (4) provide a basis for broad community support for RAP implementation. The ultimate goal of the public involvement program is to ensure that the plan responds to community needs and enjoys a high level of community support for implementation.

The introductory PAC meeting was held on May 9, 1989 in Terrace Bay. Subsequent meetings were held monthly (Appendix 6.2). In addition, a tour of Jackfish Bay was conducted on June 22, 1989 a tour of Lake A was conducted on July 13, a mill tour was held on October 19, 1989 and a MISA presentation to all four North Shore of Lake Superior PACs was held on November 25, 1989.

PAC members were provided with a variety of information including PAC Terms of Reference (Appendix 6.3), a listing of library references for information on Lake Superior, relevant articles from the IJC publication "Focus", and summaries of available data and reports on Peninsula Harbour environmental

conditions. They were also given copies of The Great Lakes Water Quality Agreement, First Report under the 1987 Protocol to the 1978 Great Lakes Water Quality Agreement, A Citizens' Guide to the Great Lakes Water Quality Agreement, and various other documents.

On March 22-24, 1990, the "Making a Great Lake Superior" conference was held in Thunder Bay. This event brought together RAP teams and PACs from Ontario's, Minnesota's, Wisconsin's and Michigan's Lake Superior Areas of Concern, as well as, scientists, resource managers, industry people and environmentalists from Canada and the U.S. The conference provided an excellent opportunity to learn and to share thoughts and ideas on the clean up of Lake Superior and on the RAP process.

As part of the RAP process, the PAC developed a set of Water Use Goals (WUGs) (Appendix 6.4) which they presented to the public in September of 1990 (Appendix 6.4). A booth was set up at the Terrace Bay Fall Fair in order to illustrate the WUGs, and was manned by both PAC members and Environment Ontario staff. In addition, the WUGs and a questionnaire was mailed out to all households in Terrace Bay. Public comment from both the booth and the mail-out was incorporated into the finalized WUGs.

On March 23, 1991, after Stage One completion by all four northshore PACs, a remedial options workshop was held in Thunder Bay to introduce PAC members to Stage Two of the RAP process, and to begin introducing remedial options for rehabilitating AOCs.

Since the inception of the RAP process, public speaking engagements by PAC members and Environment Ontario RAP staff have been ongoing. Talks have been given to school groups and special interest groups, and displays on the RAP program have been set up at a variety of functions.

7.0 REFERENCES

| HE :                                                                  |
|-----------------------------------------------------------------------|
|                                                                       |
|                                                                       |
|                                                                       |
|                                                                       |
|                                                                       |
|                                                                       |
|                                                                       |
|                                                                       |
| 일본이 하는 전 한 한 학생들이 얼마 하는 것이 되는 것이 되고 있는데 그를 받는                         |
|                                                                       |
|                                                                       |
|                                                                       |
| 그리 그들은 하지요? 이상에 독실 전쟁이 다른다고 하는 것이 되었다. 등록 제                           |
|                                                                       |
|                                                                       |
|                                                                       |
|                                                                       |
|                                                                       |
| 요즘 나무를 하는 사람이다. 그는 그 그 이 하는 것은 그렇게 하는 것을 하는 것이다. 특별                   |
|                                                                       |
|                                                                       |
| 공기원 생각으로 한 집 시작으로 그 원산 바쁜 경우 하고 있다. 현실 출범                             |
|                                                                       |
| 사람이 되는 이 시민들은 얼마를 하는데 이 얼마가 살면서 얼마나 되었다.                              |
|                                                                       |
| 되는 그런 이번 하는 사람들이 살아 있는 그 가는 그들은 그들은 그를 살아갔다.                          |
|                                                                       |
|                                                                       |
| 그리는 그는 그가는 사람들이 되는 그는 함께 살으면 그렇게 되었다. 그 사람들은 그림을 받는 사람들이 나를 다 그리고 있다. |
|                                                                       |
|                                                                       |
|                                                                       |
|                                                                       |
|                                                                       |
|                                                                       |
|                                                                       |
|                                                                       |
|                                                                       |
|                                                                       |
|                                                                       |
|                                                                       |
|                                                                       |
|                                                                       |
|                                                                       |
|                                                                       |
|                                                                       |
|                                                                       |
|                                                                       |
|                                                                       |
|                                                                       |
|                                                                       |
|                                                                       |
|                                                                       |
|                                                                       |
|                                                                       |
|                                                                       |
|                                                                       |
|                                                                       |

#### 7.0 REFERENCES

ANDERSON, E.D. AND L.L. SMITH. 1971. Factors Affecting Abundance of Lake Herring (Coregonus artedii Lesueur) in Western Lake Superior. Trans. Am. Fish. Soc. 100: 691-707.

ANONYMOUS. 1986. Sea Lamprey Control in Lake Superior 1985. Presented to the Lake Superior Committee March 20, 1986. Department of Fisheries and Oceans, Unpublished Manuscript: 9 p.

B.A.R. ENVIRONMENTAL. 1987. Survey of Critical Fish Habitat within International Joint Commission designated Areas of Concern August - November, 1986. Prepared for Ontario Ministry of Natural Resources.

BEAK CONSULTANTS. 1977. Report on 1976 Biological Survey of Jackfish Bay. A Report for Kimberly Clark Ltd., Terrace Bay, Ontario

BEAK CONSULTANTS. 1984. Assessment of the Receiving Water Dispersion Characteristics of Mill Effluent: Feasibility Study of Outfall Alternatives. A Report for Kimberly-Clark of Canada Ltd., Terrace Bay, Ontario, Prepared by IEC Beak Consultants Ltd., December 1984.

BEAK CONSULTANTS. 1988. Benthic Community Evaluation of Jackfish Bay, Lake Superior - 1969, 1975, 1987. A Report to the Ontario Ministry of the Environment-Northwestern Region.

BEAK CONSULTANTS. 1991. Toxic Load of the Blackbird Creek System and Alternatives for Rehabilitation. Draft Report Prepared for the Ontario Ministry of the Environment, July 1991.

BOSTOCK, H.S. 1972. Physiographic Subdivisions of Canada. <u>In</u> Geology and Economic Minerals of Canada, R.J.W. Douglas (ed.), Geological Survey of Canada, Department of Energy, Mines and Resources, Economic Geology Report No. 1: 10-42.

BURNETT, J.A., C.T. DAUPHINE JR., S.H. McCRINDLE AND T. MOSQUIN. 1989. On the Brink: Endangered Species in Canada, Western Producer Prairie Books, Saskatoon, Saskatchewan: 192 p.

CALLAGHAN, M.A., M.W. SLIMAK, N.W. GABEL, I.P. MAY, C.F. FOWLER, J.R. FREED, P. JENNINGS, R.L. DURFEE, F.C. WHITMORE, B.MAESTRI, W.R. MABEY, B.R. HOLT AND C. GOULD. 1979. Water-related Environmental Fate of 129 Priority Pollutants. V2. U.S.EPA, Washington, D.C.

CANADIAN COUNCIL OF RESOURCE AND ENERGY MINISTERS (CCREM). 1987. Canadian Water Quality Guidelines. Task Force on Water Quality Guidelines, Water Quality Objectives Division, Inland Waters Directorate, Environment Canada, Ottawa, Ontario.

CHAN, C.H. AND L.H. PERKINS. 1989. Monitoring of trace organic contaminants in atmospheric precipitation. J. Great Lakes Res., 15(3): 465-475.

CHAPMAN, L. J. AND M. K. THOMAS. 1968. The Climate of Northern Ontario. Department of Transport Meteorological Branch, Climatological Studies Number 6, Toronto.

CHERWINSKY, C. AND D. MURRAY. 1986. Preliminary Investigation of Trace Contaminants in Pulp and Paper Mill Effluents. Ontario Ministry of the Environment: 136 p.

CZUCZWA, J.M. AND HITES, R.A. 1986. Environ. Sci. Technol. 20: 195-200.

DYMOND, J.R. AND LAPORTE, A.V. 1952. Pollution of the Spanish River. Ontario Department of Lands and Forests. Research Report #25.

FLOOD, K., D. HOLLINGER, M. THOMSON, W. WAGER AND W. BANAS. 1986. Jackfish Bay. Acute Lethality and Chlorophenol Bioconcentration in Fish Exposed to a Bleached Kraft Mill Effluent (BKME) Plume. Water Resources Branch, Ontario Ministry of the Environment: 44 p.

FLOOD, K. 1990. Interim Report: Kimberly Clark Jackfish Bay, 1990. Unpublished Manuscript.

FORSTNER AND WITTMAN. 1983. Metal Pollution in the Aquatic Environment. Second Edition. Springer-Verlag. Heitelberg, Germany

GARTNER, J.F. 1980. Northern Ontario Engineering Geology Terrain Study, Data Base Map, Heron Bay. Ontario Geological Survey, Map 5093: scale 1:100,000.

GERMAN, M.J. AND D.M. PUGH. 1969. Biological Evaluation of the Pollution Status of Jackfish Bay, Lake Superior. Ontario Water Resources Commission: 7 p. + appendices.

GOODIER, J.L. 1981. Native lake trout (Salvelinus namaycush) stocks in Canadian waters of Lake Superior prior to 1955. M.Sc. Thesis, University of Toronto.

GOODIER, J.L. 1982. The fish and fisheries of Canadian Lake Superior, University of Toronto.

GORE AND STORRIE LTD. 1990. Jackfish Bay Rand Model simulations. A Report for the Ontario Ministry of the Environment.

INTERNATIONAL JOINT COMMISSION. 1978 (revised 1987). Great Lakes Water Quality Agreement of 1978 as amended by Protocol signed November 18, 1987. Consolidated by the International Joint Commission, United States and Canada, Windsor, Ontario: 130 p.

KIRBY, M. 1986. Effect of Discharges From Kimberly-Clark Ltd. on the Water Quality of Jackfish Bay, Lake Superior, 1981. Ontario Ministry of the Environment: 50 p.

LAWRIE, A.H. 1978. The fish community of Lake Superior. J. Great Lakes Res. 4(3-4): 513-549.

LAWRIE, A.H. AND J.F. RAHRER. 1973. Lake Superior: A Case History of the Lake and its Fisheries. Great Lakes Fish. Com. Tech. Rep. No. 19; 69 p.

LOFTUS, K.H., AND H.A. REGIER [eds.]. 1972. Proceedings of the 1971 symposium on Salmonid Communities in Oligotrophic Lakes (SCOL). J. Fish. Res. Board Can. 29: 611-986.

MCLEAY, D.J., A.B. MCKAGUE AND C.C. WALDEN. 1986. Aquatic Toxicity of Pulp and Paper Mill Effluent: A Review prepared for Environment Canada, Fisheries and Oceans Canada, Canadian Pulp and Paper Association, and Ontario Ministry of the Environment by D.McLeay and Associates Ltd: 243 p.

McNEELY, R.N., V.P. NEIMANIS AND L. DWYER. 1979. Water Quality Sourcebook: A Guide to Water Quality Parameters. Inland Waters Directorate, Water Quality Branch, Environment Canada, Ottawa, Ontario: 88 p.

MCMASTER, M.E., C.B. PORT, K.R. MUNKITTRICK, AND D.G. DIXON. 1991a. Milt Characteristics, Reproductive Performance and Larval Survival and Development of White Sucker exposed to Bleached Kraft Mill Effluent. Unpublished Manuscript, submitted to Ecotox. Environ. Safety. 32 p.

MCMASTER, M.E., G.J. VAN DER KRAAK, C.B. PORTT, K.R. MUNKITTRICK, P.K. SIBLEY, I.R. SMITH, AND D.G. DIXON. 1991b. Changes in Hepatic Mixed-function Oxygenase (MFO) Activity, Plasma Steroid Levels and Age at Maturity of a White Sucker (*Catostomus commersoni*) Population exposed to Bleached Kraft Pulp Mill Effluent. Unpublished Manuscript, submitted to Aquatic Toxicol.: 27 p.

MINISTER OF SUPPLY AND SERVICES CANADA. 1986. <u>Great Lakes Climatological Atlas</u>. Supply and Services Canada, Ottawa, Ontario, ISBN 0-660-53211-5.

MUNKITTRICK, K.R. 1990. Impact of Bleached Kraft Mill Effluent on Population Characteristics, Liver MFO Activity, and Serum Steroid Levels of a Lake Superior White Sucker (*Catostomus commersoni*) Population. Can. J. Fish. Aquat. Sci. 48: 1-10.

MUNKITTRICK, D.R., M.E. MCMASTER, C.B. PORTT, G.J. VAN DER KRAAK, I.R. SMITH AND D.G. DIXON. 1991a. External Lesions and Changes in Maturity, MFO Activity and Plasma Sex Steroid Levels of Lake Whitefish exposed to Bleached Kraft Mill Effluent (BKME). Unpublished Manuscript, submitted to Can. J. Fish. Aquat. Sci.: 32 p.

MUNKITTRICK, G.J. VAN DER KRAAK, M.E. MCMASTER AND C.B. PORTT. 1991b. Longterm Studies of Bleached Kraft Mill Effluent (BFME) Impact on Fish: Response of Hepatic Mixed Function Oxygenase (MFO) Activity and Plasma Sex Steroids to Secondary Treatment and Mill Shutdown. Unpublished Manuscript, submitted to Environ. Toxicol. Chem.: 29 p.

MUNKITTRICK, G.J. VAN DER KRAAK, M.E. MCMASTER AND C.B. PORTT. 1991c. Reproductive Dysfunction and MFO Activity in three Species of Fish exposed to Bleached Kraft Mill Effluent. Unpublished Manuscript, submitted to Water Poll. Res. J. Can.: 11 p.

NEVILLE, C. undated. Estimate of sublethal, chronic toxicity in aerated surface water samples using the 7 day Fathead Minnow Larval Growth Test. Unpublished Manuscript, Water Resources Branch, Ontario Ministry of the Environment, Rexdale, Ontario: 7 p.

NRIAGU, J.O. 1986. Metal Pollution in the Great Lakes in Relation to their Carrying Capacity. In G. Kullenberg (ed), The Role of the Oceans as a Waste Disposal Option, Reidel, Dordrecht: 441-468.

NRIAGU, J.O. 1990. Global Sources, Pathways and Sinks of Metals. National Water Research Institute, Digest, Spring-Summer 1990, Issue 9: 6-7.

ONTARIO GEOLOGICAL SURVEY. 1991. Bedrock Geology of Ontario, west-central sheet. Ontario Geological Survey, Map 2542: scale 1:1 million.

ONTARIO INSTITUTE OF PEDOLOGY. 1981. Soils of the Thunder Bay Area, Ontario. Ontario Institute of Pedology, Guelph, Ontario, Map Accompanying Soil Report No. 48: scale 1:250,000.

ONTARIO MINISTRY OF THE ENVIRONMENT (OMOE). 1972. Water Quality Investigation of Jackfish Bay, Lake Superior. Water Quality Branch, OMOE, Toronto, Ontario: 27 p.

OMOE. 1983. Township of Terrace Bay Bacteria Isolation Survey. Municipal and Private Abatement Section, Northwestern Region, Ontario Ministry of the Environment: 10p. + figures and tables.

OMOE. 1984. Water Management: Goals, Policies, Objectives and Implementation Procedures of the Ontario Ministry of the Environment: 67 p.

OMOE. 1986. Municipal-Industrial Strategy for Abatement (MISA). A Policy and Program Statement of the Government of Ontario on Controlling Municipal and Industrial Discharges into Surface Waters.

OMOE. 1987. Report on the 1986 Industrial Direct Discharges in Ontario. Ontario Ministry of the Environment, ISSN 0835-7552.

OMOE. 1988a. Kraft Mill Effluents in Ontario. Unpublished Report, MISA Office, Toronto, Ontario.

OMOE. 1988b. Report on the 1987 Industrial Direct Discharges in Ontario. Ontario Ministry of the Environment, ISSN 0838-519-X.

OMOE. 1989. Report on the 1988 Industrial Direct Discharges in Ontario. Water Resources Branch, Ontario Ministry of the Environment, ISSN 0838-519X.

OMOE. 1991a. Report on the 1989 Discharges from Municipal Sewage Treatment Plants in Ontario. Water Resources Branch, Ontario Ministry of the Environment, PIBS 1598, ISSN 8407-142.

OMOE. 1991b. Report on the 1989 Industrial Direct Discharges in Ontario. Water Resources Branch, Ontario Ministry of the Environment, PIBS 1597, ISSN 0830-519-X.

OMOE. 1991c. Preliminary report on the First Six Months of Process Effluent Monitoring in the MISA Pulp and Paper Sector (January 1, 1990 to June 30, 1990). Municipal-Industrial Strategy for Abatement Office, Ontario Ministry of the Environment: 176 p.

ONTARIO MINISTRY OF THE ENVIRONMENT AND ONTARIO MINISTRY OF NATURAL RESOURCES (OMOE/OMNR). 1989, 1990, 1991. Guide to Eating Ontario Sport Fish.

ONTARIO MINISTRY OF NATURAL RESOURCES. 1980. Terrace Bay Land Use Plan, Background Information.

ONTARIO MINISTRY OF NATURAL RESOURCES. 1991. Northern Wetlands Evaluation. Draft Manual Prepared by the Northern Wetlands Evaluation Working Group, ONMR and Mosquin Bio-Information Ltd., June 1991.

PERSAUD, D, R. JAAGUMAGI AND A. HAYTON. 1991. The Provincial Sediment Quality Guidelines. The Ontario Ministry of Natural Resources.

ROWE, J.S. 1972. Forest Regions of Canada. Canadian Forestry Service, Publication No. 1300: 172 p.

SAFE, S. 1990. Polychlorinated Biphenyls, Dibenzo-p-dioxins, Dibenzofurans and Related Compounds: Environmental and Mechanistic Considerations which Support the Development of Toxic Equivalency Factors. Critical Reviews in Toxicology 21: 51-88.

SHERMAN, R.K. 1991. Report on the Jackfish Bay Environmental Survey, 1987/88. Water Resources Branch, Great Lakes Section, Ontario Ministry of the Environment, Toronto, Ontario.

SHERMAN, R.K., R.E. CLEMENT, C. TASHIRO. 1990. The Distribution of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans in Jackfish Bay, Lake Superior, in Relation to a Kraft Pulp Mill Effluent. Chemosphere 20: 1641-1648.

SHERMAN, R.K. and K. McMILLAN. 1988. Sediment Conditions in Jackfish Bay, Lake Superior as indicated by Sonar Survey. Prep. by Water Resources Branch, Ontario Ministry of the Environment and McQuest Marine Research Ltd. Presented as a poster paper at the 1988 International Association for Great Lakes Research, 31st Conference on Great Lakes Research, Hamilton, Ontario. May 17-20, 1989.

SHUMWAY, D.F. AND J.R. PALENSKY. 1973. Impairment of the Flavour of Fish by Water Pollutants. U.S. Environmental Protection Agency, EPA-R3-73-010.

SMITH, I.R., C. PORTT, AND D.A. ROKOSH. 1990. Induced Levels of Hepatic Mixed Function Oxidases in White Suckers (*Catostomus commersoni*) as a Biomarker for Contamination of the Sediments in Jackfish Bay, and the Kaministiquia and St. Mary's Rivers. Ontario Ministry of the Environment.

SMITH, I.R., C. PORTT, AND D.A. ROKOSH. 1991. Hepatic Mixed Function Oxidases are Induced in Populations of White Sucker, *Catostomus commersoni*, from Areas of Lake Superior and the St. Mary's River. J. Great Lakes Research, (in press).

STRACHAN, W.M.J. AND S.J. EISENREICH. 1988. Mass Balancing of Toxic Chemicals in the Great Lakes: The Role of Atmospheric Deposition. International Joint Commission.

SUNS, K., G. HITCHIN, D. TONER. 1991. Spatial and Temporal Trends of Organochlorine Contaminants in Spottail Shiners (*Notropis hudsonius*) from the Great Lakes and their Connecting Channels (1975-1988). Water Resources Branch, Ontario Ministry of the Environment, Toronto, Ontario, ISBN 0-7729-8411-5, 43p.

TAYLOR, B.R., K.L. YEAGER, S.G. ABERNETHY, G.F. WESTLAKE. 1988. Scientific Criteria Document for Development of Provincial Water Quality Objectives and Guidelines: Resin Acids. Ontario Ministry of the Environment, Toronto, Ontario.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |   | and the state of the state of |     |                  |                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---|-------------------------------|-----|------------------|---------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |   |                               |     |                  |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |   |                               |     |                  |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |   |                               |     |                  |                     |
| 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |   |                               |     |                  | •                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |   |                               |     |                  |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |   |                               |     |                  |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |   |                               |     |                  | ta, ji              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |   |                               |     |                  |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |   |                               |     |                  |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |   |                               |     | January Commence |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |   |                               |     |                  |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |   |                               |     |                  |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |   |                               |     |                  |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |   |                               |     |                  |                     |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |   |                               |     |                  |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |   |                               |     |                  |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |   |                               |     |                  |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |   |                               |     |                  |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |   |                               |     |                  |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |   |                               |     |                  |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |   |                               |     |                  |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |   |                               |     |                  |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 3 |                               |     |                  |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |   |                               |     |                  |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |   |                               |     |                  | 1.5                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |   |                               |     |                  | 4                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |   |                               |     |                  |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |   |                               |     |                  |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |   |                               |     |                  |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |   |                               |     |                  |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |   |                               |     |                  |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |   |                               |     |                  |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |   |                               |     |                  |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |   |                               |     |                  |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 그 사람은 그는 얼마를 가지 않는 |   |                               |     |                  |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |   |                               |     |                  |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |   |                               |     |                  | 100                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |   |                               | •   |                  | • • • • • • • • • • |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |   |                               | · . |                  |                     |
| and the same of th |                    |   |                               |     |                  |                     |
| Phone Amount on the Control of the C |                    |   |                               |     |                  |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |   |                               |     |                  |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |   |                               |     |                  |                     |
| The state of the s |                    |   |                               |     |                  |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |   |                               |     |                  |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |   |                               |     |                  |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |   |                               |     |                  |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |   |                               |     |                  |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |   |                               |     |                  |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |   |                               |     |                  |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |   |                               |     |                  |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |   |                               |     |                  |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |   |                               |     |                  |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |   |                               |     |                  |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |   |                               |     |                  |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |   |                               |     |                  |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |   |                               |     |                  |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |   |                               |     |                  |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |   |                               |     |                  |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |   |                               |     |                  |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |   |                               |     |                  |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |   |                               |     |                  |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |   |                               |     |                  |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |   |                               |     |                  |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |   |                               |     |                  |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |   |                               |     |                  |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |   |                               |     |                  |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |   |                               |     |                  |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |   |                               |     |                  |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |   |                               |     |                  |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |   |                               |     |                  |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |   |                               |     |                  |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |   |                               |     |                  |                     |





#### **COMMONLY USED TERMINOLOGY**

#### Measurements and Units

 $\mu g/g$  = micrograms per gram = parts per million (ppm)

mg/L = milligrams per litre = parts per million (ppm)

 $\mu_g/L$  = microgram per litre = parts per billion (ppb)

ng/L = nanogram per litre = parts per trillion (ppt)

pg/L = picograms per litre = parts per quadrillion (ppq)

mg/kg = milligram per kilogram = parts per million (ppm)

 $\mu g/kg = microgram per kilogram = parts per billion (ppb)$ 

ng/kg = nanogram per kilogram = parts per trillion (ppt)

L/d = litres per day

 $m^3/d$  = cubic metres per day

kg/ann (kg/yr) = kilograms per year

t/ann (kg/yr) = tonnes per year

 $\mu$ s/cm = microsiemens per centimetre (conductivity)

mgd = millions of gallons per day

cfs = cubic feet per second

#### **ACRONYMS**

AOC Area of Concern: An area recognized by the International Joint Commission where

water uses are impaired or where objectives of the Great Lakes Water Quality

Agreement or local environmental standards are not being achieved.

AOX Adsorbable organic halides, including chlorinated organics.

BOD Biochemical Oxygen Demand: The amount of dissolved oxygen required for the

bacterial decomposition of organic waste in water. Obtained by measuring the amount of oxygen consumed by a sample under controlled conditions over a

specified time period.

COA Canada-Ontario Agreement Respecting Great Lakes Water Quality: The 1986

agreement whereby the governments of Canada and Ontario recognize their shared

responsibility to maintain the aquatic ecosystem of the Great Lakes Basin.

COD Chemical Oxygen Demand: The amount of oxygen required to completely oxidize

any oxidizable compounds present by chemical reagents.

DDT Dichlorodiphenyltrichloroethane: A widely used, very persistent pesticide (now

banned from production and use in many countries) in the chlorinated hydrocarbon

group.

FTU Formazin Turbidity Units: A measure of turbidity.

Eh A measure of the potential to transfer electrons from one atom, ion or molecule to

another in an oxidation-reduction reaction (redox potential).

IJC International Joint Commission: A binational organization established in 1909 by

the Boundary Waters Treaty. Through the IJC, Canada and the United States cooperatively resolve problems along their common border, including water and air

pollution, lake levels, power generation and other issues of mutual concern.

LC50 The concentration of a toxicant or effluent which is lethal to 50% of the test

organisms over a specified time period.

LD50 That dose which is lethal to 50% of the test organisms over a specified time period.

LOI Loss On Ignition: a measure (percentage) of organic fibre contained in sediment.

MISA Municipal-Industrial Strategy for Abatement: The principal goal of this program is

to clean up Ontario's waterways. It represents a new approach to controlling point source water pollution. MISA will control and reduce the amount of toxic contaminants in all industrial and municipal effluents discharged into Ontario's surface waters. The ultimate goal of MISA is the virtual elimination of toxic contaminants from all municipal and industrial discharges into the province's

waterways.

MNR/OMNR Ontario Ministry of Natural Resources

MOE/OMOE Ontario Ministry of the Environment

OWDG Open Water Disposal Guidelines (for dredged material)

PTS Persistent Toxic Substance: Any toxic substance with a half-life in water of greater

than eight weeks.

PSQG Provincial Sediment Quality Guidelines

RAP Remedial Action Plan: This is a plan to be developed with citizen involvement to

restore and protect water quality of the Great Lakes. There are 42 Areas of

Concern in the Great Lakes Basin which will develop a RAP.

U.S. EPA United States Environmental Protection Agency

STP/WPCP Sewage Treatment Plant/Water Pollution Control Plant

TEQ Toxic Equivalency: the sum of dioxin and furan congeners expressed as being

equivalent to 2,3,7,8-tetrachlorodibenzo-p-dioxin, the most toxic congener.

WWIP Waste Water Treatment Plan

**GLOSSARY** 

ALGA (Algae) - Simple one-celled or many-celled micro-organisms capable of carrying on

photosynthesis in aquatic ecosystems; a form of aquatic plant.

ANOXIA The absence of oxygen which is necessary for sustaining most life. In aquatic

ecosystems this term refers to the absence of dissolved oxygen.

BENTHIC/BENTHOS Aquatic bottom living organisms.

BIOMASS Total dry weight of all living organisms in a given area.

BIOMONITORING The use of organisms to test the acute toxicity of substances in effluent discharges

as well as the chronic toxicity of low-levels pollutants in the ambient aquatic

environment.

CARCINOGEN Cancer-causing chemicals, substances or radiation.

CHLORINATED An organic compound which includes chemically bound

ORGANICS chlorine. Thousands exist but only a small proportion of those formed in the kraft

mill bleaching process (whenever chlorine is used) have been identified.

DISSOLVED The amount of oxygen dissolved in water. See BIOCHEMICAL OXYGEN

OXYGEN DEMAND.

DRAINAGE BASIN A body of water and the land area drained by it.

DROGUE A device used for measuring current speed and direction

ECOSYSTEM The interacting complex of living organisms and their non-living environment; the

biotic community and its abiotic environment.

EFFLUENT Any liquid and associated material discharged from industrial or municipal sewage

treatment plants directly or indirectly to any waters.

EPILIMNION The warm, upper layer of water in a lake that occurs with summer stratification.

EROSION The wearing away and transportation of soils, rocks and dissolved minerals from the

land surface or along shorelines by rainfall, running water, or wave and current

action.

EUTROPHICATION The process of fertilization that causes high productivity and biomass in an aquatic

ecosystem. Eutrophication can be a natural process or it can be a cultural process

accelerated by an increase of nutrient loading to a lake by human activity.

EXOTIC SPECIES Species that are not native to an area and have been intentionally introduced or

have inadvertently infiltrated the system.

FOOD CHAIN The process by which organisms in higher trophic levels gain energy by consuming

organisms at lower trophic levels.

GREAT LAKES
WATER QUALITY
AGREEMENT

A joint agreement between Canada and the United States which commits the two countries to develop and implement

a plan to restore and maintain the many desirable uses of the Great Lakes Basin.

**GROUNDWATER** 

Water entrained and flowing below the surface which supplies water to wells and springs.

HYDROLOGIC CYCLE The natural cycle of water on earth, including precipitation as rain and snow, runoff from land, storage in lakes, streams, and oceans, and evaporation and transpiration (from plants).

**HYPOLIMNION** 

The cold, dense, lower layer of water in a lake that occurs with summer stratification.

**LEACHATE** 

Materials suspended or dissolved in water and other liquids usually from waste sites that percolate through soils and rock layers.

LITTORAL

Productive shallow-water zone of lake in which light penetrates to the bottom, allowing vegetative growth.

NON-POINT SOURCE

Source of pollution in which pollutants are discharged over a widespread area or from a number of small inputs rather than from distinct, identifiable sources.

NUTRIENT

A chemical that is an essential raw material for the growth and development of organisms.

**OLIGOTROPHIC** 

Oligotrophic waters support low levels of plant and animal life, as they are not high in nutrients. For this reason they usually contain high levels of dissolved oxygen. See TROPHIC STATUS

**PATHOGEN** 

A disease-causing agent such as bacteria, viruses, and parasites.

**PCBs** 

Polychlorinated biphenyls: A class of persistent organic chemicals that bioaccumulate.

pH

A measure of the acidIC or basic nature of water or some other medium. Values of pH below 7 represent acidic conditions and values above 7 are basic. A change of one unit, for example from 7 to 6, represents a ten-fold increase in acidity.

**PHOTOSYNTHESIS** 

A process occurring in the cells of green plants and some microorganisms in which solar energy is transformed into stored chemical energy.

**PHYTOPLANKTON** 

Minute, microscopic aquatic vegetative life.

**PLUME** 

Due to temperature differences between effluent and the receiving waters, an effluent discharge will form a surface plume/bottom plume when it is warmer/cooler than the receiving waters.

POINT SOURCE

A source of pollution that is distinct and identifiable, such as an outfall pipe from an industrial plant.

PRIMARY TREATMENT Stage of effluent treatment in which suspended solids are removed from effluent. Normally includes de-watering the recovered settled solids to facilitate landfilling or incineration.

RESUSPENSION The remixing of sediment particles and pollutants (of sediment)back into the water

by storms, currents, organisms and human activities such as dredging.

SECONDARY TREATMENT Stage of waste treatment in which decompose organics constituents in effluent

and reduce toxicity.

SEDIMENT The fines or soils on the bottom of a body of water.

STRATIFICATION The tendency for deep lakes to form distinct (or layering) layers of water as a result

of vertical change in temperature and therefore in water density.

THERMOCLINE A layer of water in deep lakes separating the cool hypolimnion (lower layer) from

the warm epilimnion (surface layer).

TOXIC SUBSTANCE As defined in the Great Lakes Agreement, any substance that adversely affects the

health or well-being of any living organism.

TROPHIC STATUS A measure of the biological productivity in a body of water. Aquatic ecosystems

are characterized as oligotrophic (low productivity), mesotrophic (medium

productivity) or eutrophic (high productivity).

APPENDIX 3.1 WATER QUALITY DATA FROM THE 1970, 1981 AND 1987/88 OMOE SURVEYS

|   | ang kalangganggan pagangganggan kalanggan pagangganggangganggan kalanggan kalanggan kalanggan sa kalanggan kal |                                       |
|---|----------------------------------------------------------------------------------------------------------------|---------------------------------------|
| - |                                                                                                                |                                       |
|   |                                                                                                                | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
|   |                                                                                                                |                                       |
|   |                                                                                                                |                                       |
| - |                                                                                                                |                                       |
|   |                                                                                                                |                                       |
|   |                                                                                                                |                                       |
|   |                                                                                                                |                                       |
|   |                                                                                                                |                                       |
|   |                                                                                                                |                                       |
|   |                                                                                                                |                                       |
|   |                                                                                                                |                                       |
|   |                                                                                                                |                                       |
|   |                                                                                                                | 10                                    |
|   |                                                                                                                |                                       |
|   |                                                                                                                |                                       |
|   |                                                                                                                |                                       |
|   | [마마마마 그림 회원] 그 레마마 그는 사는 게임에 들어가 하고 있는 사람이 되는 때문에 되었다.                                                         |                                       |
|   |                                                                                                                |                                       |
|   |                                                                                                                |                                       |
|   |                                                                                                                |                                       |
|   |                                                                                                                |                                       |
|   |                                                                                                                |                                       |
|   |                                                                                                                | A Pa                                  |
|   |                                                                                                                |                                       |
|   |                                                                                                                |                                       |
|   |                                                                                                                |                                       |
|   |                                                                                                                |                                       |
|   | 공연하다 하는 사람들이 되었다. 이 사람들은 학생들에 가는 하는 사람들이 되었다면 하는 사람들이 되었다면 하는 사람들이 되었다.                                        |                                       |
|   |                                                                                                                |                                       |
|   |                                                                                                                |                                       |
|   |                                                                                                                |                                       |
| • |                                                                                                                |                                       |
|   |                                                                                                                |                                       |
|   |                                                                                                                |                                       |
|   |                                                                                                                |                                       |
|   |                                                                                                                |                                       |
|   |                                                                                                                |                                       |
|   |                                                                                                                |                                       |
|   |                                                                                                                |                                       |
| - |                                                                                                                |                                       |
|   | 되는 사람이 되는 나는 이 사람들은 한 경우를 하면 이렇게 하는 것을 때 들어 들었다. 는 것 같아요. 전 생각을 하는 것                                           |                                       |
|   | 등에서 아들은 많이 불고했다. 그리는 농가에 만든 살았다고 보면 하는데, 이 그는 그는 것이 보다 하셨다.                                                    |                                       |
|   |                                                                                                                |                                       |
|   |                                                                                                                |                                       |
|   |                                                                                                                |                                       |
|   |                                                                                                                |                                       |
|   | 이번 회의 요즘 어떻게 하는 아름다면 하는 것이다. 그렇게 하는 사람이 가장하는 것도 모든 사람들이다.                                                      |                                       |
|   |                                                                                                                |                                       |
|   |                                                                                                                |                                       |
|   |                                                                                                                |                                       |
|   |                                                                                                                |                                       |
|   |                                                                                                                |                                       |
|   |                                                                                                                | a Sylvina                             |
|   |                                                                                                                |                                       |
|   |                                                                                                                |                                       |
|   |                                                                                                                |                                       |
|   |                                                                                                                |                                       |
|   |                                                                                                                |                                       |
|   |                                                                                                                |                                       |
|   |                                                                                                                |                                       |
|   |                                                                                                                |                                       |
|   |                                                                                                                |                                       |
|   |                                                                                                                |                                       |
|   |                                                                                                                |                                       |
|   |                                                                                                                |                                       |
|   |                                                                                                                |                                       |
|   | [발문사] 사람들 사람들 사람들 사람들 하는 사람들 사람들 사람들 사람들이 가장 하는 사람들이 되었다. 그 사람들은 사람들이 살아 없는 사람들이 살아 없다.                        |                                       |

### APPENDIX 3.1 WATER QUALITY DATA FROM THE 1970 OMOE SURVEY (OMOE 1972)

(Station locations are shown in Figure 3.1)

| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | and the state of the control of the state of | (5       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| ľ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| ŀ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| - 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 311.2    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Į.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 어느님이 되었어요. 아이에 어디에 가는 사람들은 사람들은 경험을 하셨다고 되었다고 되어 그리는 어머니님은 살로 모르는데 다른데 되었다.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 그런데 하나 되는 어디 아내는 그는 그들은 사람들이 살아 하는 사람들이 아내는 것이 없는 것이다.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 당하는 일반 등에는 이 기가 되었는데 일반 모양이 됐다는 일반 가는 하고 있는데 말하고 있다. 그 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 요마 아이들 이 경우 아이들 때문에 가는 사람들은 학생님들은 학생들은 사람들은 학생들이 되었다.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| ŀ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 는 소리는 생활하다면서 생활 있는 것이라면서 보고 있다면 중요한다고 있다면 살라면 살아 있는데 그렇게 되는 것이다.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S 15.    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | : 17     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 그는 이 하는 경기 가는 것이 그렇게 되는 것이 하는 사람들이 가는 사람들이 가는 것은 것이 하는 것이 되었다.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ·        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 그 모고는 그리즘에 환경에 가게 되었다. 그들은 말을 모르는 데 얼마를 가지 않는데 가지 않는데 말로 다짐한다. 그리다                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
| l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 되면, 전문 기계는 경험을 가지 하기를 받을까 보고 있는 사람들은 이 회문이를 모든 것 같아. 전문 전문 등에 가장 없는 살아보다는 것이다.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4        |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Ì                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 그러지가 하는 경우 하는데 그는 그리고 그리고 하는데 그는 데 그는 가면 그는 말이라는 것 같아. 그리고 그리고 있다.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 하는 그리는 일을 하는 하는 것은 말이 되고 있다. 그리고 있는 사람들은 사람들은 그는 것이 되었다.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
| Company to Appare                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.49     |
| 7.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| - Indiana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 실험은 작업 어린이 얼굴하다 하지 않아. 그 이 그 사람들이 있었다는 그의 전 하는 것이 되었다. 그 사람들이 바라를 받는데 이 모든데                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 그 없지 못하면 하는 이 없는 이 이 그 것도하고 않았다. 그는 이 이는 이 나는 그를 맞고 나가 한 한 사람이 되었다. 그는 이 사람이 되었다.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3 +1 -61 |
| de la constitue de la constitu |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | : 37     |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| - Transcriptor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Management of Property                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| injustrations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Page 100 Children                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Mohmmun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Periodical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1        |

|                         |                               | SUMMAR           | Y OF W    | ATER QUALITY          | DATA         | , 1970, - J       | ACKFISH                | ВЛҮ                     |                                    |            |                     |          |
|-------------------------|-------------------------------|------------------|-----------|-----------------------|--------------|-------------------|------------------------|-------------------------|------------------------------------|------------|---------------------|----------|
| Station<br>Location     | Dissolved Oxygen 1 Saturation | BOD <sub>5</sub> |           | Solids Suspended ng/l | mg/1         | Sulphates<br>mg/l | Pheno<br>Substa<br>ug/ | nces                    | Colour<br>Hazen<br>Colour<br>Units | pti        | Turbidi<br>(Jackson |          |
| Blackbird<br>Creek      |                               | 175              | 1,100     | 105                   | 695          | 15                | 55(                    | 0                       | 1,375                              | 6.2        | > 150               |          |
| Moberly Ba<br>(Station) | <b>y</b>                      |                  |           |                       |              |                   |                        |                         |                                    |            |                     |          |
| 1                       | 60<br>71                      | 240<br>3.9       | 1,300     | 26<br>4               | 845<br>23    | 11                | 676<br>1               | )<br>S                  | 2,500<br>46                        | 6.7        | > 150<br>4          |          |
| 3                       | 75                            | 2.5              | 79        | 7                     | 19           |                   | 1:                     | 3                       | 45                                 | 7.3        | 3                   |          |
| \$                      | 75<br>75                      | 3.1<br>2.7       | 80<br>75  | 3.5<br>2.7            | 24           | 4.2<br>2.1        | 1                      |                         | 56<br>36                           | 7.3        | 4.5<br>3.1          |          |
| 6                       | 77<br>77                      | 2.6              | 76<br>75  | 3.5                   | 16           | 2.7               | 17<br>14               |                         | 31<br>40                           | 7.2<br>7.3 | 4.9                 |          |
| 8                       | 77                            | 2.9              | 80        | 6.6                   | 21           | 2.2               | 11                     |                         | 28                                 | 7.3        | 2.5                 |          |
| 9<br>10                 | 80<br>78                      | 2.1              | 74<br>69  | 4.6                   | 12.5         | 2<br>1            | 10                     |                         | 23<br>15                           | 7.2<br>7.4 | 3<br>2              |          |
| 11<br>12                | 75<br>76                      | 1.8              | 67<br>79  | 8 6                   | < 10<br>< 10 | 1.5               | 3.3                    |                         | 11<br>< 10                         | 7.2<br>7.1 | 1.7<br>1.8          |          |
| 13                      | 75                            | 1.4              | 75        | 5<br>5                | < 10         | i                 | 1                      | l .                     | < 10                               | 7.2        | 4.1                 |          |
| 14<br>15                | 81<br>77                      | 1.3              | 76<br>70  | 7                     | < 10<br>< 10 | 1                 | < 1                    |                         | < 10<br>< 10                       | 7.2<br>7.2 | 1.6<br>1.8          |          |
| 16<br>17                | 72<br>90                      | 1.4              | 60<br>83  | 7.5                   | < 10<br>< 10 | 2                 | < 1<br>7.5             |                         | 10<br>< 10                         | 7.3<br>7.0 | 1.5<br>2.5          |          |
| 18                      | 90                            | 1.2              | 78        | 5                     | < 10         | •                 |                        | )                       | < 5                                | 7.2        | 1.8                 |          |
| 19<br>20                | 94<br>86                      | 1.3              | 90<br>80  | 5                     | < 10<br>< 10 | 1                 | Ç                      |                         | < 5<br>< 5                         | 7.1<br>7.3 | 1.3<br>1.8          |          |
| 21<br>22                | 96<br>82                      | 1.3              | 83<br>105 | 5                     | < 10<br>< 10 | 1                 | 0                      |                         | < 5<br>< 5                         | 7.0<br>6.9 | 1.8<br>1.5          |          |
|                         | Bacteriol                     | oofool           | Fnuner    | •                     |              |                   |                        |                         |                                    |            |                     | <u> </u> |
|                         |                               |                  |           |                       | \$ 75        | Phosphorus        |                        |                         | and the state of                   | trogen     |                     |          |
| Station<br>Location     | Total<br>Coliforms            | Fecal<br>Colifor |           | Fecal<br>treptococci  | Tot          | al Solu           | ble                    | Free<br>NH <sub>2</sub> | Total Kjel.                        | Nitrite    | Nitrate             |          |
|                         |                               |                  | 00 ml     |                       |              | mg/1              |                        | ं                       | m                                  | g/l        |                     |          |
|                         |                               |                  |           |                       |              |                   |                        | er<br>North             |                                    |            |                     |          |
| Blackbird<br>Creek      |                               | _                |           |                       | 0.1          | 0.1               | 10                     | 0.38                    | 1.2                                | 0.07       | 0.03                |          |
| Moberly Ba<br>(Station) | y                             |                  |           |                       |              |                   |                        |                         |                                    |            |                     |          |
| 1 2                     | 3.900                         | - 4              |           | 36                    | 0.2          |                   |                        | 0.33<br>0.01            | 2.06<br>0.25                       | 0.11       | 0.04<br>0.16        |          |
| 3                       | 2,200                         | 3                |           | 12                    | 0.0          | 0.0               | 06 <                   | 0.01                    | 0.17                               | 0.006      | 0.21                |          |
| <b>4</b><br>5           | 2,400<br>2,200                | < 4              |           | 14                    | 0.0          |                   |                        | 0.01<br>0.01            | 0.23                               | 0.006      | 0.20<br>0.20        |          |
| 6                       | 800<br>1,200                  | < 4              |           | < 4                   | 0.0          | 21 0.0            | 1 <                    | 0.01                    | 0.20<br>0.20                       | 0.006      | 0.22<br>0.21        |          |
| 8                       | 2,000                         | < 4              |           | 16                    | 0.01         | 0.0               | 05 <                   | 0.01                    | 0.18                               | 0.006      | 0.19                |          |
| 9<br>10                 | 484<br>168                    | < 4              |           | 20<br>4               | 0.00         | 0.0<br>8 0.0      |                        | 0.01<br>0.01            | 0.16                               | 0.004      | 0.21<br>0.21        | •        |
| 11<br>12                | 220<br>86                     | < 4              |           | 6                     | 0.00         | 9 0.0             |                        | 0.01                    | 0.15                               | 0.004      | 0.26<br>0.24        |          |
| 13                      | 72                            | < 4              |           | < 4                   | 0.01         | 1 0.0             | 06 < (                 | 0.03                    | 0.24                               | 0.003      | 0.26                |          |
| 14<br>15                | 26<br>46                      | < 4              |           | < 1<br>< 1            | 0.00         |                   |                        | 0.01<br>0.06            | 0.11<br>0.22                       | 0.003      | 0.28<br>0.20        |          |
| 16                      | 250                           | < 4              |           | < 8<br>< 4            | 0.01         |                   | 1 (                    | 0.04                    | 0.10                               | 0.004      | 0.26<br>0.25        | - j      |
| 17<br>18                | N.A.<br>12                    | < 4              |           | < 4                   | 0.01         | 2 0.0             | 05 . (                 | 0.02                    | 0.15                               | 0.003      | 0.27                |          |
| 19                      | 16                            | 6                |           | 12                    | 0.00         |                   |                        | 0.01                    | 0.18                               | 0.003      | 0.28                |          |
| 20                      | 40                            | · < 4            |           | < 4                   | 0.01         | .3 0.0            | UD' - 1                | 0.01                    | 0.14                               | 0.003      | 0.28                | 1.7      |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |          |       | 5 4 4            |         |                                         | and the said      |                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------|-------|------------------|---------|-----------------------------------------|-------------------|----------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                | 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |          |       | the transfer for |         | • • • • • • • • • • • • • • • • • • • • |                   |                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | and the second |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |          |       |                  |         |                                         | 1                 |                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | Section 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | 22 - Eur | 1.5   | • 1              |         |                                         |                   |                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |          |       | # 1 T            |         | 14 15                                   |                   |                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |          |       |                  |         |                                         |                   |                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |          |       |                  |         |                                         |                   |                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |          |       |                  |         | 4                                       |                   |                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |          |       |                  |         |                                         |                   |                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |          |       |                  |         | A Section 1                             |                   |                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |          |       |                  |         |                                         |                   | i                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |          | ** ** | Carlo Carlo      |         |                                         |                   |                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |          |       |                  |         |                                         |                   |                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |          |       |                  |         |                                         |                   |                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •     |          |       |                  |         |                                         |                   |                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |          |       |                  |         |                                         |                   |                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |          |       |                  |         |                                         |                   |                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |          |       |                  |         |                                         |                   |                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |          |       |                  |         |                                         |                   |                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | A STATE  |       |                  |         |                                         |                   |                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |          |       |                  |         |                                         |                   |                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |          |       | 1.1              |         |                                         | -                 | ,                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |          | ·     |                  |         |                                         | · 1.5 (1)         |                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |          |       |                  | · . · · |                                         |                   |                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |          |       |                  |         |                                         |                   |                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |          |       |                  |         | 1                                       |                   |                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |          |       |                  |         |                                         |                   |                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1. 1. |          |       |                  |         |                                         |                   | i                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                | e de la companya del companya de la companya del companya de la co |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |          |       |                  |         |                                         |                   |                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Selection of the |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |          |       |                  |         |                                         |                   |                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |          |       |                  |         |                                         |                   |                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |          |       |                  |         |                                         |                   |                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |          |       |                  |         |                                         |                   | i                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |          |       |                  |         |                                         | ti filozofi       |                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |          |       |                  |         |                                         |                   |                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |          |       |                  |         |                                         |                   | ċ                                                                                      |
| The State of the Control of the Cont |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |          |       |                  |         |                                         |                   |                                                                                        |
| 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | The state of the s |       |          |       |                  |         |                                         | The second of the |                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |          |       |                  |         |                                         |                   | :                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |          |       |                  |         |                                         |                   |                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |          |       |                  |         |                                         |                   |                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |          |       |                  |         |                                         |                   |                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |          |       |                  |         |                                         |                   |                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |          |       |                  |         |                                         |                   |                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |          |       |                  |         |                                         |                   | 人名 医迷迷症 人名英格兰                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |          |       |                  |         |                                         |                   | 新 医多种结合 人名英格兰克                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |          |       |                  |         |                                         |                   | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |          |       |                  |         |                                         |                   | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |          |       |                  |         |                                         |                   |                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |          |       |                  |         |                                         |                   | 人名法法格 人名英格兰英语英语                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |          |       |                  |         |                                         |                   | 一起一点一点,还是有一个人的人对话,对话说:"我们还是我们的人的人,                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |          |       |                  |         |                                         |                   | 一起一点,说:"这是人,一只是人想是我们的是我们的话看了一个女子,是是了                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |          |       |                  |         |                                         |                   | 一起一点,这一样的人,一个就是有一个情况,这是一个的话,我们也不是一个人,是是一个人的人                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |          |       |                  |         |                                         |                   |                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |          |       |                  |         |                                         |                   | 一起一点,这一样还有一个一点的人对话的话,是一个时间的是一个人,是这一时的时候,也可以                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |          |       |                  |         |                                         |                   |                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |          |       |                  |         |                                         |                   |                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |          |       |                  |         |                                         |                   |                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |          |       |                  |         |                                         |                   | 一起一点,这一点,我们也不是我们就是我们的,我们就是一个一个时间,我们就会们的人们的,也可以不是一个人们                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |          |       |                  |         |                                         |                   |                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |          |       |                  |         |                                         |                   |                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |          |       |                  |         |                                         |                   |                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |          |       |                  |         |                                         |                   |                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |          |       |                  |         |                                         |                   |                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |          |       |                  |         |                                         |                   |                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |          |       |                  |         |                                         |                   | 一种 化多角线 医人名 化多位性多位性 医骶韧带 医多种 医多种 经有限的 化阿拉克 医阿拉克氏 化二甲基甲基二甲基甲基二甲基甲基                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |          |       |                  |         |                                         |                   |                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |          |       |                  |         |                                         |                   | 一起,这一块,这是一个一个就是有一个的,就是一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |          |       |                  |         |                                         |                   |                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |          |       |                  |         |                                         |                   | 一种 "这一是,这是我们,我们就是有什么,这种,我们的一个一个,我们的人们的人们的人们的,我们们的一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |          |       |                  |         |                                         |                   |                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |          |       |                  |         |                                         |                   |                                                                                        |

## APPENDIX 3.1 WATER QUALITY DATA FROM THE 1981 OMOE SURVEY (KIRBY 1986)

(Station locations are shown in Figure 3.2)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 医乳腺 医神经性病 医感性皮肤 建二二甲基甲酚 医水肿 医高温温度 医二氏管 医二二氏性 医大胆 医乳腺 医乳腺 医红色性白色质性                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [Hander with All 2015] 이 1942년 - 1일 12일 14일 12일 12일 12일 12일 12일 12일 12일 12일 12일 12          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [현] 본 사이 사람이 가는데 아직장에 다 됐다. 이 측도 하는 것이라면서 그 사람이 되었다. 남화가 그런 하다는 하는 것이 나를 받는 것으로 가능했다. 그렇지 뿐 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [발발화] 아니아 등 그들은 그리면 그렇게 되었다. 그는 어느가 되었다면 하는 회에 하는 그들은 그리고 있다면 하는 것 같아요? 그리고 함께 하는 것 같아.     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [2008] 보고 보고 있는 하는 사람들은 사람들이 되었다면 하고 있다. 사람들은 사람들은 사람들은 사람들은 사람들은 사람들이 되었다. [22] [22]       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 보험에 참 어행되었다. 내고 한 요리는 학교 교회 나는 사람 가는 사람들 보험 그 남자 같아 하는 사람들이 가능하는 사람들이 가는 지원에 들어 없다.         |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 하지 않고 그는 그는 그는 사람들은 사람들이 가는 사람들이 되고 있다. 그는 사람들이 가는 사람들이 되었다면 하는 것이 나는 사람들이 되었다.             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 경기 그리는 전에 하다면 되었다. 그런 전에 가장 하나 그는 방법에도 있으니까 그래 그래요? 그리는 그리는 것이다.                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |
| 0000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |
| - Completed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 등도 보는 아이들이 되면 아이들 아이들은 사람들이 들었다는 그 이 이 사람들이 하는 살이 되는 사람들이 가능하는 것                            |
| o contract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |
| column (Fish                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                             |
| - Contraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                             |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                             |
| A CONTRACTOR OF THE PERSON OF |                                                                                             |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                             |
| of constants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 大"大",一点一块,一点一点点,大点,一点点,大点点,一点点点,一点点点,一点大块的一块,一点点,一点点,一点点,一点点,一点点,一点点,一点点,一点点点,一             |

# Summary of the Water Quality at Stations 701-726 in Jackfish Bay, 1981

|                                            | JUNE            | SEPTEMBER        |
|--------------------------------------------|-----------------|------------------|
| DOC (mg/L) median range                    | 4.1<br>1.2-88.5 | 1.6<br>0.5-57.5  |
| COD (mg/L)<br>median<br>range              | 20<br><10-510   |                  |
| BOD (mg/L)<br>median<br>range              | 1.8<br>0.1-75   | 0.6<br>0.1-50    |
| COND (us/cm)<br>median<br>range            | 155<br>100-1190 | 106<br>93-790    |
| Suspended solids (mg/L)<br>median<br>range | 1<br>1-120      | 1<br>1-30        |
| Colour (hazen units)<br>median<br>range    | 29<br>1-931     | 10<br>4-855      |
| Turbidity (FTU) median range               | 0.6<br>0.15-3.4 | 0.30<br>0.15-9.5 |
| Temperature (°C)<br>median<br>range        | 10<br>6-14      | 13.5<br>12-14.5  |

#### Summary of the Water Quality at Stations Used in 1970 and 1981

|                                         | 1970             | 1981               |
|-----------------------------------------|------------------|--------------------|
| COD (mg/L) median range                 | <10<br><10-845   | 34.2<br>6.7-421.6  |
| BOD (mg/L)<br>median<br>range           | 1.6<br>1.2-240.6 | 3.9<br>0.1-71.9    |
| Sulphate (mg/L)<br>median<br>range      | 1.3<br>1-11      | 6.4<br>3.6-20.0    |
| Colour (Hazen Units)<br>median<br>range | 10.5<br>2-2500   | 72.2<br>10.7-921.3 |
| pH<br>median<br>range                   | 7.2<br>1 6.7-7.4 | 7.6<br>7.5-8.1     |
| Reactive Phenolics (ug/L) median range  | 10<br><1-670     | 33.5<br>3-344.2    |

#### Concentrations (mg/L) of Metals Detected at Station 701 in Jackfish Bay - 1981 -

|       |      |         |         | Cadmium                               | Chromium     | Copper                                 | <u>Nickel</u>                         | Lead     | Zinc  |
|-------|------|---------|---------|---------------------------------------|--------------|----------------------------------------|---------------------------------------|----------|-------|
| June  | 23   | 9:00    | am      |                                       |              |                                        | · · · · · · · · · · · · · · · · · · · | _        |       |
|       |      | 11:00   | am      | 0.003                                 | 0.015        | 0.010                                  | 0.005                                 | 0.042    | 0.050 |
|       |      | 1:00    | pm :    | 0.002                                 | 0.020        | 0.009                                  | 0.007                                 | 0.039    | 0.060 |
|       |      | 3:00    | pm      | 0.002                                 | 0.011        | 0.010                                  | 0.004                                 | 0.048    | 0.050 |
| June  | 24   | 9:00    |         | 0.002                                 | 0.009        | 0.040                                  | _                                     |          | 0.050 |
|       | •    | 11:00   |         | 0.002                                 | 0.008        | 0.008                                  |                                       | -        | 0.030 |
| •     |      | 1:00    | •       | 0.003                                 | 0.009        | 0.006                                  | <del>.</del>                          | -        | 0.040 |
|       |      | 3:00    | pm      | 0.003                                 | 0.011        | 0.020                                  | •                                     | -        | 0.040 |
| June  | 25   | 9:00    | am      | 0.003                                 | 0.012        | •                                      | =                                     | •        | 0.050 |
|       |      | 11:00   | am      | 0.003                                 | 0.011        | <u>-</u>                               |                                       |          | 0.050 |
|       |      | 1:00    | • • • • | 0.002                                 | 0.007        | - i                                    | - ·                                   |          | 0.050 |
|       |      | 3:00    | pm      | 0.002                                 | 0.009        | •••••••••••••••••••••••••••••••••••••• | -                                     |          | 0.040 |
| Sept. | 14   | 9:00    |         | 0.007                                 | 0.023        | 1.000                                  | 0.028                                 | 0.004    | 0.046 |
|       |      | 11:00   |         | 0.002                                 | 0.017        | 1.200                                  | 0.012                                 | 0.002    | 0.042 |
|       |      | 1:00    | pm      | 0.002                                 | 0.013        | 2.000                                  | 0.017                                 | 0.001    | 0.090 |
|       |      | 3:00    | pm      | 0.002                                 | 0.011        | 0.008                                  | 0.015                                 | 0.001    | 0.038 |
| Sept. | 15   | 9:00    |         | 0.002                                 | 0.011        | 0.072                                  | 0.014                                 | 0.001    | 0.040 |
|       |      | 11:00   |         | 0.002                                 | 0.013        | 0.047                                  | 0.014                                 | 0.001    | 0.031 |
|       | ,    | 1:00    | pm      | 0.002                                 | 0.011        | 0.008                                  | 0.017                                 | 0.001    | 0.028 |
|       |      | 3:00    | pm      | 0.002                                 | 0.011        | 0.008                                  | 0.015                                 | 0.001    | 0.029 |
| Sept. | 16   | 9:00    |         | -                                     | 0.015        | 0.003                                  | 0.016                                 | 0.001    | -     |
|       |      | 11:00   | am      | -                                     | 0.009        | . · · · · · · · ·                      | 0.016                                 | 0.001    |       |
|       |      | 1:00    | pm      |                                       | <del>-</del> | -                                      |                                       | -        | =     |
|       |      | 3:00    | pm      | • • • • • • • • • • • • • • • • • • • |              | <u>-</u>                               |                                       | <b>-</b> |       |
|       |      | Water   |         |                                       |              |                                        |                                       |          |       |
| Quali | ty O | bjectiv | е       | 0.0002                                | 0.100        | 0.005                                  | 0.025                                 | 0.005    | 0.030 |

<sup>-</sup> Not Sampled

## Concentrations (ug/L) of Mercury in Jackfish Bay - 1981 -

| Station | <u>1</u> | June 23 | June 24 | June 25 | Sept.14   | Sept.15 | Sept.16 |
|---------|----------|---------|---------|---------|-----------|---------|---------|
| 701     | 9:00 am  |         | 0.14    | -       | <0.05     | <0.05   | 0.08    |
|         | 11:00 am | 3.3     | 0.08    | _       | <0.05     | <0.05   | <0.05   |
|         | 1:00 pm  | 1.1     | <0.05   |         | 0.07      | <0.05   | <0.05   |
|         | 3:00 pm  | 3.0     | <0.05   |         | 0.05      | <0.05   | <0.05   |
| 702     |          | 3.0     | 0.05    | 0.11    | <0.05     | <0.05   | <0.05   |
| 704     |          | 1.7     |         | 0.15    | 0.39      | <0.05   | <0.05   |
| 707     |          | 1.2     | <0.05   | 0.16    | <0.05     | <0.05   | <0.05   |
| 709     |          | 1.1     | <0.05   | <0.05   | <0.05     | <0.05   | <0.05   |
| 710     |          | 1.2     | <0.05   | <0.05   | <0.05     | <0.05   | <0.05   |
| 711     |          | 1.6     | <0.05   | <0.05   | _         | <0.05   | _       |
| 712     |          | -       |         |         | <u> -</u> | <0.05   | <0.05   |
| 713     |          | 0.73    | <0.05   | <0.05   | <b>-</b>  |         |         |
| 714     |          | 0.92    | 0.05    | <0.05   | <0.05     | <0.05   | <0.05   |
| 719     |          | 1.7     |         | 0.10    | <0.05     | <0.05   | <0.05   |

- Not sampled. Provincial Water Quality Objective = 0.2 ug/L

#### Concentrations (ug/L) of Phenolic Compounds Detected in Jackfish Bay - 1981

|       |       |    | 2,3,4 TCP | 2,4,6 TCP <sup>2</sup> | 2,3.5,6<br>TTCP | PCP1     | Pheno1 | Homovanillic<br>Acid | Vanillin | Guaiacol | Aceto-<br>vanillin |
|-------|-------|----|-----------|------------------------|-----------------|----------|--------|----------------------|----------|----------|--------------------|
| 701   | June  | 23 | 1.30      | 3.30                   | 0.60            | 0.54     | ND     |                      |          | _        | -                  |
| 1     |       | 24 | ND        | 1.85                   | 0.25            | 0.25     | ND     | 263                  | 100      | 235      | -                  |
| 1 - 1 |       | 25 | 0.23      | 0.70                   | 0.13            | -        | ND     | 212                  | 106      | 265      | -                  |
| 702   | June  | 23 | ND        | 2.00                   | 0.30            | 0.25     | ND     | 158                  | 55       | 119      | -                  |
|       | 1.5   | 24 | ND        | 1.60                   | 0.25            | DN D     | ND     | 79                   | 36       | 77       | -                  |
| 704   | June  | 23 | 0.08      | 0.52                   | 0.08            | 0.11     | ND     | 40                   | 19       | 48       | -                  |
| 1     |       | 24 | 0.08      | 0.45                   | 0.08            | 0.19     | ND     | ND                   | 8        | 24       | -                  |
| 705   | June  | 23 | ND        | 0.24                   | ND              | 0.06     | -      | _                    | -        | _        | -                  |
| 1     |       | 24 | ND        | ND                     | ND              | ND_      | -      | _                    | -        |          | •                  |
| 706   | June  | 24 | ND        | 0.45                   | 0.07            | 0.05     | -      |                      | -        |          | -                  |
| 707   | June  | 23 | ND        | 0.43                   | 0.06            | 0.07     | ND     | 19                   | 8        | 18       | -                  |
| 710   | June  | 23 | ND        | 0.20                   | ND              | ND       |        | -                    | -        | -        | -                  |
| 713   | June  | 23 | •         |                        | -               | <u> </u> | ND     | ND                   | ND       | ND       | <b>.</b>           |
| 701   | Sept. | 14 | ND        | ND                     | ND              | 0.40     | 21.1   | ND                   | ND       | ND       | 5.2                |
|       |       | 15 | ND        | ND                     | ND              | 0.15     | 150.0  | DND                  | 18.4     | 139.2    | 84.0               |
| 1     |       | 16 | ND        | ND                     | ND              | ND       | 42.2   | ND                   | 12.8     | 149.4    | 62.2               |
| 702   | Sept. | 14 | ND        | ND ND                  | ND              | ND       | ND     | ND                   | ND       | ND       | ND                 |
| 704   | Sept. | 14 | ND        |                        | ND              | ND       | ND     | ND                   | ND       | ND       | ND                 |
| 707   | Sept. | 14 | ND        | ND                     | ND              | ND       | ND     | ND                   | ND       | ND       | ND                 |
| 709   | Sept. | 14 | ND        | ND                     | ND              | ND       | ND     | ND                   | ND       | ND       | ND                 |
| 710   | Sept. | 14 | ND        | ND                     | ND              | ND       | ND     | ND                   | ND       | ND<br>ND | ND                 |
| 712   | Sept. | 14 | ND        | ND                     | ND              | ND       | ND     | ND                   | ND       |          | ND                 |
| 714   | Sept. | 14 | ND        | ND                     | ND              | ND       | ND     | ND                   | ND       | ND       | ND                 |

TTCP - tetrachlorophenol
TCP - trichlorophenol
PCP - pentachlorophenol
ND = Not Detected
- = Not Sampled
1Provincial Water Quality Objective for PCP = 0.5 ug/L
2Provincial Water Quality Objective for total TCP = 18 ug/L

## Concentrations (mg/L) of Aromatic, Resin and Fatty Acids in Jackfish Bay, 1981

|     |          | Fatty Acid | <u>ls</u> |                 |                |                |                | Aromatic Acids |                 |  |
|-----|----------|------------|-----------|-----------------|----------------|----------------|----------------|----------------|-----------------|--|
|     |          | Lauric     | Myristic  | <u>Palmitic</u> | Stearic        | <u>Oleic</u>   | Arachidic      | Benzoic        | <u>Phthalic</u> |  |
| 701 | June 25  |            | ND<br>ND  | 0.08<br>0.079   | 0.036<br>0.041 | 0.140<br>0.131 | 0.105<br>0.205 | 0.064<br>0.098 | 0.034<br>0.0411 |  |
| 701 | Sept. 14 | ND ND      | ND        | 0.02            | ND             | ND.            | ND             | ND             | ND              |  |
|     | Sept. 15 | S ND       | 0.05      | 0.04            | ND             | ND             | ND             | ND             | ND              |  |
|     | Sept. 16 | i ND       | ND        | 0.003           | ND             | ND             | ND             | ND             | ND              |  |
| 702 | Sept. 14 | ND ND      | ND        | ND              | ND             | ND             | ND             | ND             | ND              |  |
| 704 | Sept. 14 | ND         | ND        | ND              | ND             | ND             | ND             | ND             | ND              |  |
| 709 | Sept. 14 | ND ND      | ND ND     | ND              | ND             | ND             | ND             | ND             | ND              |  |
| 710 | Sept. 14 |            | ND        | ND              | ND             | ND             | ND             | ND             | ND              |  |
| 712 | Sept. 14 |            | ND        | ND              | ND             | ND             | ND             | ND             | ND              |  |
| 714 | Sept. 14 |            | ND        | ND              | ND             | ND             | ND             | ND             | ND              |  |

| ٠ | <b>~</b> . |   |   |     | 1   |  |
|---|------------|---|---|-----|-----|--|
|   | vac        | n | n | ~ 4 | ae. |  |
|   | Res        | H | л |     | us  |  |
|   |            |   |   |     |     |  |

|     |          | Sar<br><u>Pimaric</u> | ndaraco-<br>pimaric | Levopimaric | Isopimaric | Neoabietic | Abietic |
|-----|----------|-----------------------|---------------------|-------------|------------|------------|---------|
| 701 | June 24  | 0.324                 | 0.32                | ND          | 0.54       | 0.5        | 1.36    |
|     | June 25  | 0.072                 | 0.74                | ND          | 1.21       | 1.2        | 2.27    |
| 701 | Sept. 14 | 0.43                  | ND                  | 0.06        | 0.15       | ND         | 2.87    |
|     | Sept. 15 | 0.61                  | ND                  | 0.49        | 0.38       | 0.09       | 2.62    |
|     | Sept. 16 | 0.48                  | ND                  | 0.01        | 0.24       | 0.01       | 1.80    |
| 702 | Sept. 14 | ND                    | ND                  | 0.43        | 0.04       | ND         | 0.36    |
| 704 | Sept. 14 | ND                    | ND                  | ND          | ND         | ND         | ND      |
| 709 | Sept. 14 | ND                    | ND                  | ND          | ND         | ND         | ND      |
| 710 | Sept. 14 | ND                    | ND                  | ND          | ND         | ND         | ND      |
| 712 | Sept. 14 | ND                    | ND                  | ND          | ND         | ND         | ND      |
| 714 | Sept. 14 | ND                    | ND                  | ND          | ND         | ND         | ND      |

## APPENDIX 3.1 WATER QUALITY DATA FROM THE 1987/88 OMOE SURVEY (SHERMAN 1991)

(Station locations are shown in Figure 3.3)

|   | "真然","我们的我们,我们会会会说,我们还是这个人,我们会会说,我们还是这个人的,我们也会会说,我们就是这样,我们就是这个人的人,我们就是一个人,我们就是一个           | The second second                                                                                                                                                                                                                |      |
|---|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|   | 그들은 그렇게 그렇게 그렇게 하는 그들이 그리고 하는 사람들이 하는 것이 되는 것이 되는 것이 되었다. 그는 그 그 그를 가는 그는 모든 것이다.          |                                                                                                                                                                                                                                  |      |
|   | 그리는 사람들은 그리고 있는 전략 하십시오 다른 학생들은 사람들이 되는 사람들이 되었다. 그는 사람들은 사람들이 되었다.                        |                                                                                                                                                                                                                                  |      |
|   | 를 가게 그는 길이 되었다. 그는 선생에 남자 그 모양 가장 한 문에 가게 되는 그는 동안과 그리는 살이 생각하여 가고 있다면 되었다면 되었다.           |                                                                                                                                                                                                                                  |      |
|   | "我没有,我没有人的,我没有有效,我们就会说话,我没有一点好的。""我们,我们还有一个人的。""我们,我们就是这样的,我们就是这个人。""我们,我们就是这一个人           |                                                                                                                                                                                                                                  | - ;  |
|   |                                                                                            |                                                                                                                                                                                                                                  |      |
|   |                                                                                            |                                                                                                                                                                                                                                  |      |
|   | 클러스 사용한 문제 하는 문제 회에 가득하는 것으로 가득하는 일 때 하는 사람들이 생각하는 점점 모든 것으로 가득하는 것이다.                     |                                                                                                                                                                                                                                  |      |
|   | 그들이 가지 하고 있다. 그는 사람들은 하는 그리고 사용한 회원이 되어 그는 생각이 되는 생각을 하는 사람들이 되었다.                         |                                                                                                                                                                                                                                  | ,    |
|   | 를 되어 있는 그 이 점심 사람들에게 되는 이 어느 하어도 되는 것 같아요. 하는 이 이 등 이 가고 있는 어느 하는 데 등을 다 하다고 되는 어머니는 것 같다. | •                                                                                                                                                                                                                                |      |
|   | 를 있는 하는 것 같은 하셨다. 그 전에 그를 모든 눈이 가지하는 것 같습니다. 그는 바람이 되고 있는 하는 것이 되었다. 그 하는 것 같습니다.          |                                                                                                                                                                                                                                  |      |
|   |                                                                                            |                                                                                                                                                                                                                                  | 1.   |
| • | 를 하면 하는 것이 하는 사람들이 하지만 되었다. 그는 사람들이 하는 사람들이 하는 것이 하는 것이 되었다.                               |                                                                                                                                                                                                                                  | ( )  |
|   | 그렇게 있는 그 아버지는 그리는 그래요 그런 그는 이름에 이를 하는 것이 되었다. 그는 그리는 사람들은 그는 그를 하는 것이 되었다.                 | 10 mg 10<br>10 mg 10 |      |
|   | 발표 내 생님들이 한 시문에 가는 사람들은 사람들은 사람들이 가장 하는 사람들이 되었다. 그들은 본 사람들이 되었다.                          |                                                                                                                                                                                                                                  |      |
|   | 그는 하는 이 사람들이 있는 사람들이 하는 사람들이 되고 있다. 그리고 하는 이 나는 사람들이 가는 사람들이 가는 사람들이 되었다.                  |                                                                                                                                                                                                                                  | 1.7  |
|   |                                                                                            |                                                                                                                                                                                                                                  | ķ.   |
|   |                                                                                            |                                                                                                                                                                                                                                  |      |
|   | 그렇게 있는 장에는 그런 그 사이가 되었다. 그는 그들은 그들은 그들은 그들은 그들은 사람들은 그들은 그들은 그들은 그들은 그들은 그들은 그들은 그들은 그들은 그 |                                                                                                                                                                                                                                  |      |
|   | 그는 사람들이 많아 되었다면 가장 하는 것이 나는 생생님이 가장 하는 것이 하지만 하는 것 같은 하는 것이다.                              |                                                                                                                                                                                                                                  |      |
|   | 그런 이 집에 나는 보고 있는데 아이들 그리는 것이 하는 것이다. 그 그는 그는 그를 하는데 그를 다 가는 것이라고 있는데 어디를 다 되었다.            |                                                                                                                                                                                                                                  | 1.1  |
|   | 그렇게 되었다면 하는 것 같은 그렇게 되었다. 그 그 어때는 그 생생님은 한다고 있는데 그는 이 이 가장 하는데 그 사람들이 되었다. 그 사람들이 되었다.     |                                                                                                                                                                                                                                  |      |
|   | 를 가는 사람들은 수준의 한잔 수 없는 사람들은 사람들은 사람들은 항상하다는 것 같다. 하는 그는 사람들은 그를 가는 사용하는 기술은                 |                                                                                                                                                                                                                                  |      |
|   |                                                                                            |                                                                                                                                                                                                                                  |      |
|   |                                                                                            |                                                                                                                                                                                                                                  |      |
|   |                                                                                            |                                                                                                                                                                                                                                  | ÷.   |
|   |                                                                                            |                                                                                                                                                                                                                                  |      |
|   |                                                                                            |                                                                                                                                                                                                                                  |      |
|   |                                                                                            | 31 J. 32                                                                                                                                                                                                                         |      |
|   | 네트리트 프로그 회문에 된 그는 그는 물가 하는 그렇게 하고 있었다. 후 그렇게 하셨다는 후 하는 그는 그를 하는 것 같아.                      |                                                                                                                                                                                                                                  | 1    |
|   | 建成化物 医乳腺 医乳腺性病 医高克克氏 化对抗性溶液 医脓肿 美国大学 医克克氏管 法国际 医乳管                                         |                                                                                                                                                                                                                                  |      |
|   | 하는 어머니는 마다 하다는 사람들이 나는 아내는 사람들이 되는 사람들이 아내는 사람들이 나는 사람들이 가는 사람들이 다른 사람들이 나를 받는다.           |                                                                                                                                                                                                                                  |      |
|   | 可是的 医乳腺性 医乳腺性 医乳腺性 医氯化二氯化物 医二氏性 医二氏性 医乳腺性 医二氏性 医二氏性 医多种 医二氏管 化二二烷基                         |                                                                                                                                                                                                                                  |      |
|   |                                                                                            |                                                                                                                                                                                                                                  |      |
|   | 그들이 많은 사람들이 되었다. 그런 회에 지어 있는 사람들은 이 사람들은 사람들은 사람들은 사람들이 되는 사람들이 가득하는 것이다.                  |                                                                                                                                                                                                                                  |      |
|   | 그림에 가로 살아 가는 이 가는 눈이 가지 않아 있는데 이렇게 가까지 못하는데 하는데 되었다. 그 전에 살아 가는 살아갔다면 되고 이어난               |                                                                                                                                                                                                                                  | asi. |
|   | "自己是'自己我,也是'有意思我,是我们',"自己的'也是',"我,我没有一句,我也不知识,我会不能在我看了' <b>"</b> "的是否语句来说了话,"这             |                                                                                                                                                                                                                                  |      |
|   | 발표하다 되는 사람들이 하다 하다 그런 사람들이 가려지 않는 사람들이 되었다면 가장 하는 것이 되었다면 되었다.                             |                                                                                                                                                                                                                                  |      |
|   | 를 통하면 되는 말을 하고 있다. 하는 사람들은 다른 사람들은 한 경우를 하는 것들은 그는 것을 하는 것이 살아보고 있다. 살아보는 하는 것이다.          |                                                                                                                                                                                                                                  |      |
|   | 클러스 그 회사님 그는 작업을 받는 사람들이 되었다. 이 전문에 하는 아니라 하는 이 회사를 받는 것 같아. 그는 것 같아 나는 사람들이 되었다.          |                                                                                                                                                                                                                                  | 1    |
|   | 발생 보다 되는 것 같아요. 하는 아이들은 사람들이 가는 그 사람들이 되었다. 그 사람들이 가는 것이 되었다. 그는 사람들이 가는 사람들이 되었다.         | od smooth 150<br>John More Common States                                                                                                                                                                                         | 1    |
|   | 를 표하하다는 문학으로 가는 문학문학 한번으로 가는 문학을 받아 그 수 있는 학자들이 하지만 하다고 되었다.                               |                                                                                                                                                                                                                                  |      |
|   | 그들은 사람들이 되는 것이 되었다. 그 사람들은 사람들은 사람들이 가득하는 것이 가득하는 것이 되었다. 그 사람들이 나를 가지 않는 것이다.             |                                                                                                                                                                                                                                  |      |
|   |                                                                                            |                                                                                                                                                                                                                                  |      |
|   |                                                                                            |                                                                                                                                                                                                                                  |      |
|   |                                                                                            |                                                                                                                                                                                                                                  |      |
|   |                                                                                            |                                                                                                                                                                                                                                  |      |
|   |                                                                                            |                                                                                                                                                                                                                                  |      |
|   |                                                                                            |                                                                                                                                                                                                                                  |      |
|   |                                                                                            |                                                                                                                                                                                                                                  |      |
|   |                                                                                            |                                                                                                                                                                                                                                  |      |
|   |                                                                                            |                                                                                                                                                                                                                                  |      |
|   |                                                                                            |                                                                                                                                                                                                                                  |      |
|   |                                                                                            |                                                                                                                                                                                                                                  |      |
|   |                                                                                            |                                                                                                                                                                                                                                  |      |
|   |                                                                                            |                                                                                                                                                                                                                                  |      |
|   |                                                                                            |                                                                                                                                                                                                                                  |      |
|   |                                                                                            |                                                                                                                                                                                                                                  |      |
|   |                                                                                            |                                                                                                                                                                                                                                  |      |
|   |                                                                                            |                                                                                                                                                                                                                                  |      |
|   |                                                                                            |                                                                                                                                                                                                                                  |      |
|   |                                                                                            |                                                                                                                                                                                                                                  |      |
|   |                                                                                            |                                                                                                                                                                                                                                  |      |
|   |                                                                                            |                                                                                                                                                                                                                                  |      |
|   |                                                                                            |                                                                                                                                                                                                                                  |      |
|   |                                                                                            |                                                                                                                                                                                                                                  |      |
|   |                                                                                            |                                                                                                                                                                                                                                  |      |
|   |                                                                                            |                                                                                                                                                                                                                                  |      |
|   |                                                                                            |                                                                                                                                                                                                                                  |      |
|   |                                                                                            |                                                                                                                                                                                                                                  |      |
|   |                                                                                            |                                                                                                                                                                                                                                  |      |
|   |                                                                                            |                                                                                                                                                                                                                                  |      |
|   |                                                                                            |                                                                                                                                                                                                                                  |      |
|   |                                                                                            |                                                                                                                                                                                                                                  |      |
|   |                                                                                            |                                                                                                                                                                                                                                  |      |
|   |                                                                                            |                                                                                                                                                                                                                                  |      |
|   |                                                                                            |                                                                                                                                                                                                                                  |      |
|   |                                                                                            |                                                                                                                                                                                                                                  |      |
|   |                                                                                            |                                                                                                                                                                                                                                  |      |
|   |                                                                                            |                                                                                                                                                                                                                                  |      |
|   |                                                                                            |                                                                                                                                                                                                                                  |      |
|   |                                                                                            |                                                                                                                                                                                                                                  |      |

|           | · -                                                                                         |                                           | RSP                                                                                                                 |                                                                                                                            | bidity                                                                                                                               | *                                                                                                | 005                                                                                                                                 |                                           | DOC                                 | Ta                                                          | nnins.                       | Amm                                                                                                       | ontum                                                                                                | Nit                                                                                                     | rates                                                                                                                | -                                                                                                                | idehi<br>rogen                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | otal D<br>phorous                                                               |                                                          | ved Reactiv                                                      |
|-----------|---------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------|-------------------------------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------|
| Bay       | Stn                                                                                         | , N                                       | Mean                                                                                                                | , N                                                                                                                        | Hean                                                                                                                                 | N                                                                                                | Mean                                                                                                                                | Ħ                                         | Hean                                | N                                                           | Mean                         | Ň                                                                                                         | Hean                                                                                                 | i N                                                                                                     | Hean                                                                                                                 | N                                                                                                                | Hean                                                                                         | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mean                                                                            |                                                          | Hean                                                             |
| MB        | 704                                                                                         |                                           | 70.50                                                                                                               |                                                                                                                            |                                                                                                                                      | -                                                                                                |                                                                                                                                     | •                                         |                                     | -                                                           |                              | •                                                                                                         |                                                                                                      | •                                                                                                       |                                                                                                                      |                                                                                                                  |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                 |                                                          | ****                                                             |
| MB        | 701<br>803                                                                                  | 3                                         | 32.50                                                                                                               | 4                                                                                                                          | 27.30                                                                                                                                | 4                                                                                                | 85.00                                                                                                                               |                                           | 115.00                              | 3                                                           | 68.30                        | 0                                                                                                         | •                                                                                                    | 0                                                                                                       | 4                                                                                                                    | 4                                                                                                                | 2.67                                                                                         | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.54                                                                            | 0                                                        | •                                                                |
|           | 805                                                                                         | 3                                         | 28.30                                                                                                               | 3                                                                                                                          | 26.30                                                                                                                                | 3                                                                                                | 93.70                                                                                                                               |                                           | 134.00                              | .2                                                          | 67.50                        | . 0                                                                                                       | •                                                                                                    | . 0                                                                                                     | •                                                                                                                    | 3                                                                                                                | 2.67                                                                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.57                                                                            | 0                                                        |                                                                  |
|           | 702                                                                                         |                                           |                                                                                                                     | 3                                                                                                                          | 10.50                                                                                                                                | 3                                                                                                | 30.90                                                                                                                               | 3                                         | 37.30                               | 2                                                           | 13.00                        | . 1                                                                                                       | 0.02                                                                                                 | 1                                                                                                       | 0.28                                                                                                                 | 3                                                                                                                | 1.12                                                                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.25                                                                            | - 1                                                      | 0.00                                                             |
|           | 806                                                                                         | 3                                         | 8.67                                                                                                                | 3                                                                                                                          | 8.63                                                                                                                                 | 3                                                                                                | 28.80                                                                                                                               | 2                                         | 73.50                               | . 2                                                         | 8.50                         | 2                                                                                                         | 0.02                                                                                                 | 2                                                                                                       | 0.13                                                                                                                 | 3                                                                                                                | 0.96                                                                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.19                                                                            | 2                                                        | 0.02                                                             |
| ••.       | 807                                                                                         | 3                                         | 18.30                                                                                                               | 3                                                                                                                          | 17.00                                                                                                                                | 3                                                                                                | 69.70                                                                                                                               |                                           | 110.00                              | 2                                                           | 50.00                        | 0                                                                                                         |                                                                                                      | , 0                                                                                                     | •                                                                                                                    | 3                                                                                                                | 2.03                                                                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.43                                                                            | 0                                                        |                                                                  |
|           | 808                                                                                         | 2                                         | 7.00                                                                                                                | 2                                                                                                                          | 3.05                                                                                                                                 | 2                                                                                                | 8.60                                                                                                                                | 2                                         | 21.00                               | . 2                                                         | 12.00                        | 2                                                                                                         | 0.02                                                                                                 | 2                                                                                                       | 0.08                                                                                                                 | 2                                                                                                                | 0.58                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.10                                                                            | 2                                                        | 0.01                                                             |
|           | 809                                                                                         | 3                                         | 7.00                                                                                                                | 3                                                                                                                          | 6.37                                                                                                                                 | . 3                                                                                              | 16.10                                                                                                                               | . 3                                       | 32.80                               | 2                                                           | 12.50                        | . 2                                                                                                       | 0.02                                                                                                 | 2                                                                                                       | 0.13                                                                                                                 | 3                                                                                                                | 0.88                                                                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.17                                                                            |                                                          |                                                                  |
|           |                                                                                             | 3                                         | 6.67                                                                                                                | 3                                                                                                                          | 4.20                                                                                                                                 | 3                                                                                                | 6.80                                                                                                                                | 3                                         |                                     | 3.                                                          | 7.00                         | 3                                                                                                         | 0.02                                                                                                 | 3                                                                                                       | 0.09                                                                                                                 | 3                                                                                                                | 0.63                                                                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.09                                                                            |                                                          |                                                                  |
|           | 810                                                                                         | 3                                         | 3.67                                                                                                                | 3                                                                                                                          | 3.17                                                                                                                                 | 3                                                                                                | 4.13                                                                                                                                | 3                                         | 13.20                               | . 2                                                         | 7.00                         | 3                                                                                                         | 0.03                                                                                                 | 3                                                                                                       | 0.09                                                                                                                 | 3                                                                                                                | 0.52                                                                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.07                                                                            | 3                                                        |                                                                  |
|           | 811                                                                                         | 3                                         | 3.67                                                                                                                | 3                                                                                                                          | 2.57                                                                                                                                 | . 3                                                                                              | 3.17                                                                                                                                | 2                                         | 10.00                               | 2                                                           | 5.50                         | - 3                                                                                                       | 0.02                                                                                                 | 3                                                                                                       | 0.11                                                                                                                 | 3                                                                                                                | 0.42                                                                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.05                                                                            | ,-                                                       | ,                                                                |
|           | 812                                                                                         | . 4                                       | 2.25                                                                                                                | 4                                                                                                                          | 2.15                                                                                                                                 | 4                                                                                                | 4.03                                                                                                                                | - 4                                       | 11.40                               | 3                                                           | 2.00                         | 4                                                                                                         | 0.02                                                                                                 | 4                                                                                                       | 0.18                                                                                                                 | 4                                                                                                                | 0.38                                                                                         | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.05                                                                            | . 4                                                      | 0.01                                                             |
| •         | 813                                                                                         | 3                                         | 3.67                                                                                                                | . 3                                                                                                                        | 3.13                                                                                                                                 | 3                                                                                                | 4.13                                                                                                                                | 3                                         | 14.60                               | 2                                                           | 8.50                         | 3                                                                                                         | 0.03                                                                                                 | 3                                                                                                       | 0.09                                                                                                                 | 3                                                                                                                | 0.50                                                                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.06                                                                            |                                                          |                                                                  |
|           | 814                                                                                         | 3                                         | 2.33                                                                                                                | 3                                                                                                                          | 2.30                                                                                                                                 | 3                                                                                                | 2.83                                                                                                                                | 3                                         | 10.20                               | 2                                                           | 7.00                         | 3                                                                                                         | 0.03                                                                                                 | 3                                                                                                       | 0.11                                                                                                                 | 3                                                                                                                | 0.46                                                                                         | . 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.04                                                                            | 3                                                        |                                                                  |
|           | 815                                                                                         | 3                                         | 3.33                                                                                                                | 3                                                                                                                          | 2.52                                                                                                                                 | 3                                                                                                | 3.33                                                                                                                                | 3                                         | 10.20                               | . 1                                                         | 2.00                         | 3                                                                                                         | 0.02                                                                                                 | 3                                                                                                       | 0.11                                                                                                                 | 3                                                                                                                | 0.42                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.05                                                                            | 3                                                        |                                                                  |
|           | 703                                                                                         | 5                                         | 2.60                                                                                                                | 5                                                                                                                          | 2.02                                                                                                                                 | 5                                                                                                | 2.64                                                                                                                                | 3                                         | 8.30                                | 3                                                           | 4.33                         | 5                                                                                                         | 0.03                                                                                                 | . 5                                                                                                     | 0.16                                                                                                                 | 5                                                                                                                | 0.39                                                                                         | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                 | 5                                                        |                                                                  |
|           | 704                                                                                         | 6                                         | 2.83                                                                                                                | - 6                                                                                                                        | 2.15                                                                                                                                 | . 6                                                                                              | 2.88                                                                                                                                | 3                                         | 9.53                                | 4.                                                          | 4.25                         | 6                                                                                                         | 0.02                                                                                                 | 6                                                                                                       | 0.18                                                                                                                 | 6                                                                                                                | 0.34                                                                                         | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.04                                                                            | _                                                        |                                                                  |
|           | 705                                                                                         | 3                                         | 1.33                                                                                                                | 3                                                                                                                          | 1.95                                                                                                                                 | 3                                                                                                | 3.97                                                                                                                                | 3.                                        | 10.60                               | 2                                                           | 1.50                         | 3                                                                                                         | 0.02                                                                                                 | 3                                                                                                       | 0.18                                                                                                                 | 3                                                                                                                |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.03                                                                            | 6                                                        |                                                                  |
| · • .     | 816                                                                                         | 3                                         | 3.00                                                                                                                | 3                                                                                                                          | 2.33                                                                                                                                 | 3                                                                                                | 3.00                                                                                                                                | Ž                                         | 7.50                                | 1                                                           | 5.00                         |                                                                                                           | 0.04                                                                                                 | 3                                                                                                       |                                                                                                                      |                                                                                                                  | 0.36                                                                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.04                                                                            | 3                                                        |                                                                  |
|           | 817                                                                                         | 3                                         | 2.33                                                                                                                | 3                                                                                                                          | 1.62                                                                                                                                 | 3                                                                                                | 2.27                                                                                                                                | . 1                                       | 11.30                               | Ó                                                           | J.00                         | 3                                                                                                         | 0.02                                                                                                 | 3                                                                                                       | 0.11                                                                                                                 | 3                                                                                                                | 0.46                                                                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.05                                                                            | 3                                                        |                                                                  |
|           | 818                                                                                         | 3                                         | 1.67                                                                                                                | 3                                                                                                                          | 1.10                                                                                                                                 | 3                                                                                                | 1.60                                                                                                                                | 1                                         | 2.80                                |                                                             | 1.00                         | 3                                                                                                         | 0.02                                                                                                 | 3                                                                                                       | 0.15                                                                                                                 | . 3                                                                                                              | 0.37                                                                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.04                                                                            | 3                                                        |                                                                  |
|           | 819                                                                                         | 3                                         | 1.33                                                                                                                | 3                                                                                                                          | 0.95                                                                                                                                 | 3                                                                                                | 1.37                                                                                                                                | ė                                         | E.00                                | ี่ก่                                                        | 1.00                         | 3                                                                                                         |                                                                                                      |                                                                                                         | 0.21                                                                                                                 | 3                                                                                                                | 0.28                                                                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.02                                                                            | _                                                        | 0.00                                                             |
| • •       | 706                                                                                         | 3                                         | 2.67                                                                                                                | 3                                                                                                                          | 1.77                                                                                                                                 | 3                                                                                                | 2.33                                                                                                                                | 3                                         | 0 07                                | . •                                                         | 7.00                         | -                                                                                                         | 0.02                                                                                                 | 3                                                                                                       | 0.23                                                                                                                 | 3                                                                                                                | 0.23                                                                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.02                                                                            | _                                                        |                                                                  |
| ,         | 707                                                                                         | 4                                         | 2.25                                                                                                                | 4                                                                                                                          | 1.67                                                                                                                                 | 4                                                                                                | 1.77                                                                                                                                | 2                                         | 8.83                                | 3                                                           | 7.00                         | 3                                                                                                         | 0.03                                                                                                 | 3                                                                                                       | 0.15                                                                                                                 | 3                                                                                                                | 0.40                                                                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.04                                                                            | 3                                                        |                                                                  |
|           | 708                                                                                         | 3                                         | 1.00                                                                                                                | -                                                                                                                          |                                                                                                                                      | 3                                                                                                |                                                                                                                                     | 3                                         | 6.90                                | 3                                                           | 3.00                         | . 4                                                                                                       | 0.01                                                                                                 | 4                                                                                                       | 0.20                                                                                                                 | 4                                                                                                                | 0.32                                                                                         | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.03                                                                            | 4                                                        |                                                                  |
|           |                                                                                             |                                           |                                                                                                                     |                                                                                                                            |                                                                                                                                      |                                                                                                  |                                                                                                                                     |                                           |                                     |                                                             |                              |                                                                                                           |                                                                                                      |                                                                                                         |                                                                                                                      |                                                                                                                  |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                 |                                                          |                                                                  |
|           |                                                                                             |                                           | 1.00                                                                                                                | 3                                                                                                                          | 0.83                                                                                                                                 |                                                                                                  | 1.07                                                                                                                                |                                           | 3.77                                | 2                                                           | 1.50                         | - 3                                                                                                       | 0.02                                                                                                 | . 3                                                                                                     | 0.25                                                                                                                 | 3                                                                                                                | 0.22                                                                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.02                                                                            | 3                                                        | 0.00                                                             |
|           |                                                                                             | <u>.</u>                                  |                                                                                                                     |                                                                                                                            |                                                                                                                                      |                                                                                                  |                                                                                                                                     |                                           |                                     |                                                             |                              |                                                                                                           |                                                                                                      | •                                                                                                       |                                                                                                                      | Kje                                                                                                              | idahi                                                                                        | To                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | otal D                                                                          | issol                                                    | ved Reactiv                                                      |
| Bay       |                                                                                             |                                           | RSP                                                                                                                 | Tur                                                                                                                        | bidity                                                                                                                               |                                                                                                  | 005                                                                                                                                 |                                           | DOC                                 | Ta                                                          | nnins                        | Arm                                                                                                       | onium                                                                                                | •                                                                                                       | rates                                                                                                                | Kje<br>Nit                                                                                                       | ldah l<br>rogen                                                                              | T(<br>Phos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | otal D<br>phorous                                                               | issol<br>P                                               | ved Reactiv                                                      |
| Bay       | Stn                                                                                         | . H                                       |                                                                                                                     |                                                                                                                            |                                                                                                                                      |                                                                                                  |                                                                                                                                     | N                                         |                                     |                                                             |                              |                                                                                                           |                                                                                                      | •                                                                                                       |                                                                                                                      | Kje                                                                                                              | idahi                                                                                        | To                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | otal D                                                                          | issol                                                    | ved Reactiv                                                      |
|           |                                                                                             | N                                         | RSP<br>Mean                                                                                                         | Tur<br>N                                                                                                                   | bidity<br>Hean                                                                                                                       | B<br>N                                                                                           | 005<br>Mean                                                                                                                         | N                                         | DOC<br>Hean                         | Ta<br>N                                                     | nnins<br>Mean                | Amm<br>N                                                                                                  | onium<br>Mean                                                                                        | Wit<br>N                                                                                                | rates<br>Hean                                                                                                        | Kje<br>Nit<br>N                                                                                                  | idahi<br>rogen<br>Hean                                                                       | T(<br>Phos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | otal D<br>phorous<br>Mean                                                       | issol<br>P<br>N                                          | ved Reactiv<br>hosphate<br>Hean                                  |
| Bay<br>JB | Stn<br>                                                                                     | N<br>-<br>3                               | RSP<br>Mean<br>2.33                                                                                                 | Tur<br>N                                                                                                                   | bidity<br>Hean<br>0.98                                                                                                               | B1                                                                                               | 005<br>Mean<br>1.67                                                                                                                 | N<br>3                                    | DOC                                 | Ta<br>N<br>-                                                | nnins                        | Arm<br>H<br>-<br>3                                                                                        | onium<br>Mean<br>0.04                                                                                | Nit<br>N<br>-<br>3                                                                                      | rates<br>Hean<br>0.17                                                                                                | Kje<br>Hit<br>H                                                                                                  | Idahl<br>rogen<br>Hean<br>0.33                                                               | Phos<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | otal D<br>phorous<br>Mean<br>0.03                                               | issol<br>P<br>N                                          | ved Reactive hosphate Hean                                       |
|           | Stn<br><br>709<br>710                                                                       | N                                         | RSP<br>Hean<br>2.33<br>1.67                                                                                         | Tur<br>N<br>-<br>3                                                                                                         | bidity<br>Hean<br>0.98<br>1.33                                                                                                       | B<br>N<br>-<br>3<br>3                                                                            | 005<br>Mean<br>1.67<br>1.17                                                                                                         | N                                         | DOC<br>Hean                         | Ta<br>N<br>-<br>2<br>0                                      | nnins<br>Mean                | Arm<br>H<br>-<br>3                                                                                        | Mean<br>0.04<br>0.02                                                                                 | Wit<br>N<br>3                                                                                           | 7ates<br>Hean<br>0.17<br>0.24                                                                                        | Kje<br>Nit<br>N                                                                                                  | ridahi<br>rogen<br>Hean<br>0.33<br>0.24                                                      | Phosp<br>N<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | otal D<br>phorous<br>Mean<br>0.03<br>0.02                                       | issol<br>P<br>N<br>-<br>3                                | ved Reactive hosphate Hean 0.00 0.00                             |
|           | Stn<br><br>709<br>710<br>711                                                                | N                                         | RSP<br>Hean<br>2.33<br>1.67<br>1.00                                                                                 | Tur<br>N -<br>3<br>3                                                                                                       | 0.98<br>1.33<br>0.48                                                                                                                 | 8<br>N<br>-<br>3<br>3                                                                            | 1.67<br>1.17<br>0.63                                                                                                                | N - 3 0 0 0                               | DOC<br>Mean<br>7.33                 | Ta<br>N<br>-<br>2<br>0<br>0                                 | nnins<br>Mean<br>7.00        | Amn<br>H<br>-<br>3<br>3                                                                                   | 0.04<br>0.02<br>0.01                                                                                 | Wit<br>H<br>-<br>3<br>3                                                                                 | 0.17<br>0.24<br>0.28                                                                                                 | Kje<br>Hit<br>H<br>-<br>3                                                                                        | ridahi<br>rogen<br>Hean<br>0.33<br>0.24<br>0.18                                              | Phosp<br>N<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | otal D<br>phorous<br>Mean<br>0.03<br>0.02<br>0.01                               | issol<br>P<br>N<br>-<br>3<br>3                           | ved Reactive hosphate Hean 0.00 0.00 0.00                        |
|           | Stn<br><br>709<br>710<br>711<br>732                                                         | N                                         | RSP<br>Hean<br>2.33<br>1.67<br>1.00<br>2.33                                                                         | Tur<br>N -<br>3<br>3<br>3                                                                                                  | 0.98<br>1.33<br>0.48<br>1.38                                                                                                         | 8<br>N<br>-<br>3<br>3<br>3<br>3                                                                  | 1.67<br>1.17<br>0.63<br>1.83                                                                                                        | N - 3 0 0 0 3                             | DOC<br>Hean                         | Ta<br>N -<br>2<br>0<br>0                                    | nnins<br>Mean                | Arm<br>H<br>-<br>3                                                                                        | 0.04<br>0.02<br>0.01                                                                                 | Nit<br>N<br>3<br>3<br>3                                                                                 | 0.17<br>0.24<br>0.28<br>0.19                                                                                         | Kje<br>Nit<br>N                                                                                                  | 0.33<br>0.24<br>0.32                                                                         | Phose N 3 3 3 3 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.03<br>0.02<br>0.03<br>0.02                                                    | issol<br>P<br>N<br>-<br>3<br>3<br>3                      | ved Reactive Mean 0.00 0.00 0.00 0.00                            |
|           | Stn<br><br>709<br>710<br>711<br>732<br>714                                                  | N . 3 3 3 3 3 3 3                         | RSP<br>Hean<br>2.33<br>1.67<br>1.00<br>2.33<br>1.00                                                                 | Tur<br>N -<br>3<br>3<br>3<br>3                                                                                             | 0.98<br>1.33<br>0.48<br>1.38<br>1.40                                                                                                 | 8<br>N<br>3<br>3<br>3<br>3                                                                       | 1.67<br>1.17<br>0.63<br>1.83<br>0.77                                                                                                | N - 3 0 0 3 0                             | DOC<br>Mean<br>7.33                 | Ta<br>N -<br>2<br>0<br>0<br>2                               | nnins<br>Mean<br>7.00        | Arm N - 3 3 3 3 3 3 3 5                                                                                   | 0.04<br>0.02<br>0.04<br>0.02                                                                         | Wit<br>N<br>3<br>3<br>3<br>3<br>3                                                                       | 0.17<br>0.24<br>0.28<br>0.19<br>0.26                                                                                 | Kje<br>Nit<br>H<br>-<br>3<br>3<br>3<br>3                                                                         | 0.33<br>0.24<br>0.18<br>0.32<br>0.22                                                         | T(Phosp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.03<br>0.01<br>0.03<br>0.02<br>0.01<br>0.03                                    | 1ssol<br>P<br>N<br>-<br>3<br>3<br>3<br>3                 | ved Reactive hosphate Hean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0. |
|           | Stn<br><br>709<br>710<br>711<br>732<br>714<br>733                                           | N - 3 3 3 3 3 3 3 3                       | RSP<br>Hean<br>2.33<br>1.67<br>1.00<br>2.33<br>1.00<br>1.00                                                         | Tur<br>N -<br>3<br>3<br>3<br>3<br>3                                                                                        | 0.98<br>1.33<br>0.48<br>1.38<br>1.40<br>0.38                                                                                         | 8<br>N<br>-<br>3<br>3<br>3<br>3<br>3                                                             | 1.67<br>1.17<br>0.63<br>1.83<br>0.77<br>0.80                                                                                        | N - 3 0 0 3 0 :0                          | 7.33                                | Ta<br>N<br>-<br>2<br>0<br>0<br>2<br>0                       | 7.00                         | Arm N - 3 3 3 3 3 3 3 3 3 3 3                                                                             | 0.04<br>0.02<br>0.01<br>0.04<br>0.02                                                                 | Wit<br>N -<br>3<br>3<br>3<br>3<br>3                                                                     | 0.17<br>0.24<br>0.28<br>0.19<br>0.26<br>0.30                                                                         | Kje<br>Nit<br>N<br>-<br>3<br>3<br>3<br>3<br>3                                                                    | 0.33<br>0.24<br>0.18<br>0.32<br>0.22<br>0.16                                                 | T(Phospinal States of the Phospinal States of the Phos | 0.03<br>0.02<br>0.03<br>0.02                                                    | 1ssol<br>P<br>N<br>-<br>3<br>3<br>3<br>3                 | ved Reactive Hean                                                |
|           | Stn<br>709<br>710<br>711<br>732<br>714<br>733<br>715                                        | N • 3 3 3 3 3 3 3 3 3                     | RSP<br>Hean<br>2.33<br>1.67<br>1.00<br>2.33<br>1.00<br>1.00                                                         | Tur<br>N -<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                              | 0.98<br>1.33<br>0.48<br>1.38<br>1.40<br>0.38                                                                                         | 3<br>3<br>3<br>3<br>3<br>3                                                                       | 1.67<br>1.17<br>0.63<br>1.83<br>0.77<br>0.80<br>1.50                                                                                | N - 3 0 0 3 0 0 0 2                       | DOC<br>Mean<br>7.33                 | Ta<br>N<br>-<br>2<br>0<br>0<br>2<br>0<br>0                  | 7.00<br>6.00                 | Arm<br>N -<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                             | 0.04<br>0.02<br>0.01<br>0.04<br>0.02<br>0.01                                                         | Hit<br>N -<br>3<br>3<br>3<br>3<br>3<br>3                                                                | 0.17<br>0.24<br>0.28<br>0.19<br>0.26                                                                                 | Kje<br>Nit<br>H<br>-<br>3<br>3<br>3<br>3                                                                         | 0.33<br>0.24<br>0.18<br>0.32<br>0.22                                                         | T(Phospinal States of the Phospinal States of the Phos | 0.03<br>0.01<br>0.03<br>0.02<br>0.01<br>0.03                                    | 1 ssol<br>P<br>N<br>-<br>3<br>3<br>3<br>3<br>3           | ved Reactive Hean                                                |
|           | 709<br>710<br>711<br>732<br>714<br>733<br>715<br>716                                        | N · 3 3 3 3 3 3 6                         | RSP<br>Hean<br>2.33<br>1.67<br>1.00<br>2.33<br>1.00<br>1.00<br>1.67                                                 | Tur<br>N -<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>6                                                                         | 0.98<br>1.33<br>0.48<br>1.38<br>1.40<br>0.38<br>1.13<br>0.54                                                                         | 8<br>N -<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>6                                                 | 1.67<br>1.17<br>0.63<br>1.83<br>0.77<br>0.80<br>1.50<br>0.68                                                                        | N - 3 0 0 3 0 0 2 0                       | 7.33                                | Ta<br>N -<br>2<br>0<br>0<br>2<br>0<br>0<br>1<br>1           | 7.00                         | Arm<br>N -<br>3 3<br>3 3<br>3 3<br>3 3<br>3 6                                                             | 0.04<br>0.02<br>0.01<br>0.04<br>0.02<br>0.01<br>0.04<br>0.02                                         | Wit<br>N -<br>3<br>3<br>3<br>3<br>3                                                                     | 0.17<br>0.24<br>0.28<br>0.19<br>0.26<br>0.30                                                                         | Kje<br>Nit<br>N<br>-<br>3<br>3<br>3<br>3<br>3                                                                    | 0.33<br>0.24<br>0.18<br>0.32<br>0.22<br>0.16                                                 | T(Phospinal States of the Phospinal States of the Phos | 0.03<br>0.02<br>0.01<br>0.03<br>0.01<br>0.03                                    | 1880l<br>P<br>N<br>-<br>3<br>3<br>3<br>3<br>3            | ved Reactive Hean                                                |
|           | Stn<br><br>709<br>710<br>711<br>732<br>714<br>733<br>715<br>716<br>735                      | N - 3 3 3 3 3 3 6 3                       | RSP<br>Hean<br>2.33<br>1.67<br>1.00<br>2.33<br>1.00<br>1.00<br>1.67<br>1.00                                         | Tur<br>N -<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>6                                                                         | 0.98<br>1.33<br>0.48<br>1.40<br>0.38<br>1.13<br>0.54                                                                                 | B<br>N -<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>6                                            | 1.67<br>1.17<br>0.63<br>1.83<br>0.77<br>0.80<br>1.50<br>0.68<br>0.60                                                                | N - 3 0 0 3 0 0 2 0 0 0                   | 7.33                                | Ta<br>N -<br>2<br>0<br>0<br>2<br>0<br>0<br>1<br>1           | 7.00<br>6.00                 | Arm<br>N -<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                             | 0.04<br>0.02<br>0.01<br>0.02<br>0.01<br>0.04<br>0.02<br>0.01                                         | Hit<br>H<br>-<br>3<br>3<br>3<br>3<br>3<br>3<br>6<br>3                                                   | 0.17<br>0.24<br>0.28<br>0.19<br>0.26<br>0.30<br>0.21                                                                 | Kje<br>Nit<br>N<br>-<br>3<br>3<br>3<br>3<br>3<br>3                                                               | 0.33<br>0.24<br>0.18<br>0.32<br>0.22<br>0.16                                                 | T(Phosp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.03<br>0.03<br>0.02<br>0.01<br>0.03<br>0.01<br>0.00                            | 1 ssol<br>P<br>N<br>-<br>3<br>3<br>3<br>3<br>3<br>3      | ved Reactive Hean                                                |
|           | Stn<br><br>709<br>710<br>711<br>732<br>714<br>733<br>715<br>716<br>735<br>718               | N - 3 3 3 3 3 6 3 3                       | RSP<br>Mean<br>2.33<br>1.67<br>1.00<br>2.33<br>1.00<br>1.00<br>1.67<br>1.00<br>2.00                                 | Tur<br>N -<br>3<br>3<br>3<br>3<br>3<br>3<br>6<br>3                                                                         | bidity<br>Mean<br>                                                                                                                   | B<br>N -<br>3<br>3<br>3<br>3<br>3<br>3<br>6<br>3                                                 | 1.67<br>1.17<br>0.63<br>1.83<br>0.77<br>0.80<br>1.50<br>0.68<br>0.60<br>1.43                                                        | N - 3 0 0 3 0 0 0 0 0 0 0 0 0             | 7.33                                | Ta<br>N -<br>2<br>0<br>0<br>2<br>0<br>0<br>1<br>1           | 7.00<br>6.00                 | Arm H - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 6 3 3                                                           | 0.04<br>0.02<br>0.01<br>0.04<br>0.02<br>0.01<br>0.04<br>0.02                                         | Hit<br>N -<br>3<br>3<br>3<br>3<br>3<br>3<br>6                                                           | 0.17<br>0.24<br>0.28<br>0.19<br>0.26<br>0.30<br>0.21<br>0.28                                                         | Kje<br>Hit<br>H<br>-<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>6                                                     | 0.33<br>0.24<br>0.18<br>0.32<br>0.22<br>0.16<br>0.29                                         | T(Phosp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Otal D<br>bhorous<br>Mean<br>0.03<br>0.02<br>0.01<br>0.03<br>0.01<br>0.00       | 1 s s o l<br>P<br>N<br>3<br>3<br>3<br>3<br>3<br>6<br>6   | ved Reactive hosphate Hean                                       |
|           | Stn<br>                                                                                     | N · 3 3 3 3 3 3 6 3 3 3 3 3 3 3 3 3 3 3 3 | RSP<br>Mean<br>2.33<br>1.67<br>1.00<br>2.33<br>1.00<br>1.00<br>1.00<br>1.00<br>2.00<br>1.00                         | Tun<br>1 -<br>3 3 3 3 3 3 3 3 6 3 3 3 5 6 3 3 3                                                                            | 0.98<br>1.33<br>0.48<br>1.38<br>1.40<br>0.38<br>1.13<br>0.54<br>0.43<br>1.08                                                         | 8<br>N<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | 005<br>Mean<br>1.67<br>1.17<br>0.63<br>1.83<br>0.77<br>0.80<br>1.50<br>0.60<br>1.43<br>0.67                                         | N - 3 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 7.33                                | Ta<br>N -<br>2<br>0<br>0<br>2<br>0<br>0<br>1<br>1<br>0<br>0 | 7.00<br>6.00                 | Arm<br>N -<br>3 3<br>3 3<br>3 3<br>3 3<br>6 3                                                             | 0.04<br>0.02<br>0.01<br>0.02<br>0.01<br>0.04<br>0.02<br>0.01                                         | Hit<br>H<br>-<br>3<br>3<br>3<br>3<br>3<br>3<br>6<br>3                                                   | 0.17<br>0.24<br>0.28<br>0.19<br>0.26<br>0.30<br>0.21<br>0.28                                                         | Kje<br>Hit<br>H<br>-<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>6<br>3                                           | 0.33<br>0.24<br>0.18<br>0.32<br>0.22<br>0.16<br>0.29<br>0.18                                 | T(Phospin N 3 3 3 3 3 3 3 6 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Otal Dishorous Mean 0.03 0.02 0.01 0.03 0.01 0.00 0.02 0.01                     | 1 ssol<br>P<br>N<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | ved Reactive hosphate Hean                                       |
|           | Stn<br><br>709<br>710<br>711<br>732<br>714<br>733<br>715<br>716<br>735<br>718<br>719<br>720 | N · 3 3 3 3 3 3 6 3 3 3 3 2               | RSP<br>Mean<br>                                                                                                     | Tur<br>N -<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                | 0.98<br>1.33<br>0.48<br>1.38<br>1.40<br>0.38<br>1.13<br>0.54<br>0.43<br>1.08<br>0.45                                                 | 8<br>N<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | 005<br>Mean<br>1.67<br>1.17<br>0.63<br>1.83<br>0.77<br>0.80<br>1.50<br>0.68<br>0.60<br>1.43<br>0.67<br>0.95                         | N - 3 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 7.33                                | Ta<br>N -<br>2<br>0<br>0<br>2<br>0<br>0<br>1<br>1           | 7.00<br>6.00                 | Arm H - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 6 3 3                                                           | 0.04<br>0.02<br>0.01<br>0.04<br>0.02<br>0.01<br>0.04<br>0.02                                         | Nit<br>N -<br>3 3 3 3 3 3 6 3 3 3                                                                       | 0.17<br>0.24<br>0.28<br>0.19<br>0.26<br>0.30<br>0.21<br>0.28<br>0.29                                                 | Kje<br>Nit<br>H<br>-<br>3<br>3<br>3<br>3<br>3<br>3<br>6<br>3<br>3                                                | 0.33<br>0.24<br>0.18<br>0.32<br>0.22<br>0.16<br>0.29<br>0.18                                 | T(Phosp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.03<br>0.03<br>0.02<br>0.01<br>0.03<br>0.01<br>0.00<br>0.02<br>0.01            | 1 seol P N 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3           | ved Reactive hosphate Hean                                       |
|           | Stn 709 710 711 732 714 733 715 716 735 718 719 720 721                                     | H - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3   | RSP<br>Hean<br>2.33<br>1.67<br>1.00<br>2.33<br>1.00<br>1.00<br>1.00<br>1.00<br>2.00<br>1.00<br>1.00<br>1.00         | Tur<br>N -<br>3 3 3 3 3 3 3 6 3 3 3 2 3                                                                                    | 0.98<br>1.33<br>0.48<br>1.38<br>1.40<br>0.38<br>1.13<br>0.54<br>0.43<br>1.08<br>0.45<br>0.92                                         | 8 N - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                        | 005<br>Mean<br>1.67<br>1.17<br>0.63<br>1.83<br>0.77<br>0.80<br>1.50<br>0.68<br>0.60<br>1.43<br>0.67<br>0.95<br>0.37                 | N - 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 7.33                                | Ta<br>N -<br>2<br>0<br>0<br>2<br>0<br>0<br>1<br>1<br>0<br>0 | 7.00<br>6.00                 | Arm H - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                               | 0.04<br>0.02<br>0.01<br>0.04<br>0.02<br>0.01<br>0.04<br>0.01<br>0.03                                 | Nit<br>N -<br>3<br>3<br>3<br>3<br>3<br>6<br>3<br>3                                                      | 0.17<br>0.24<br>0.28<br>0.19<br>0.26<br>0.30<br>0.21<br>0.29<br>0.29                                                 | Kje<br>Nit<br>N<br>3<br>3<br>3<br>3<br>3<br>3<br>6<br>3<br>3                                                     | 0.32<br>0.24<br>0.18<br>0.32<br>0.22<br>0.16<br>0.29<br>0.18<br>0.17                         | T(Phospin N - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.03<br>0.03<br>0.02<br>0.01<br>0.03<br>0.01<br>0.00<br>0.02<br>0.01            | 1 seol P N 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3           | ved Reactive hosphate Hean                                       |
|           | Stn 709 710 711 732 714 733 715 716 735 718 720 721 737                                     | H - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3   | RSP<br>Mean<br>2.33<br>1.67<br>1.00<br>2.33<br>1.00<br>1.00<br>1.00<br>2.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | Turn N - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                                               | 0.98<br>1.33<br>0.48<br>1.38<br>1.40<br>0.38<br>1.13<br>0.54<br>0.43<br>1.08<br>0.45<br>0.45<br>0.92<br>0.25                         | BN 1 - 3 3 3 3 3 3 3 6 3 3 3 2 3 3 3 3 3 3 3 3                                                   | 005<br>Mean<br>1.67<br>1.17<br>0.63<br>1.83<br>0.77<br>0.80<br>1.50<br>0.68<br>0.60<br>1.43<br>0.67<br>0.95<br>0.37<br>0.43         | N - 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 7.33                                | Ta N - 2 0 0 2 0 0 1 1 0 0 0 0 0 0                          | 7.00<br>6.00                 | Amm<br>N -<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>6<br>3<br>3<br>3<br>2                                    | 0.04<br>0.02<br>0.01<br>0.02<br>0.01<br>0.04<br>0.02<br>0.01<br>0.04<br>0.01                         | N(t) N 3 3 3 3 3 6 3 3 3 2                                                                              | 0.17<br>0.24<br>0.28<br>0.19<br>0.26<br>0.30<br>0.21<br>0.28<br>0.29<br>0.22                                         | Kje<br>Nit<br>N<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3        | 0.33<br>0.24<br>0.18<br>0.32<br>0.22<br>0.16<br>0.29<br>0.18                                 | T(Phosp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0:01 D D D D D D D D D D D D D D D D D D D                                      | 1 ssol P N 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3           | ved Reactive Hean 0.00 0.00 0.00 0.00 0.00 0.00 0.0              |
|           | Stn 709 710 711 732 714 733 715 716 735 718 720 721 737 723                                 | N - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3   | RSP Mean 2.33 1.67 1.00 2.33 1.00 1.00 1.67 1.00 2.00 1.00 1.50 1.00 1.00 1.00 1.00                                 | Turn N - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                                               | 0.98<br>1.33<br>0.48<br>1.38<br>1.40<br>0.38<br>1.13<br>0.54<br>0.43<br>1.08<br>0.45<br>0.92                                         | BN - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                         | 005<br>Mean<br>1.67<br>1.17<br>0.63<br>1.83<br>0.77<br>0.80<br>1.50<br>0.68<br>0.60<br>1.43<br>0.67<br>0.95<br>0.37                 | N - 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 7.33                                | Ta N - 2 0 0 0 0 1 1 0 0 0 0 0 0 0                          | 7.00<br>6.00                 | Amm<br>N -<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | 0.04<br>0.02<br>0.01<br>0.04<br>0.02<br>0.01<br>0.04<br>0.01<br>0.03<br>0.03<br>0.03                 | N1t<br>N<br>3<br>3<br>3<br>3<br>3<br>3<br>6<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | 0.17<br>0.24<br>0.28<br>0.19<br>0.26<br>0.30<br>0.21<br>0.28<br>0.29<br>0.29<br>0.29<br>0.23<br>0.30                 | Kje<br>Nit<br>N<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3        | 0.32<br>0.24<br>0.32<br>0.22<br>0.16<br>0.29<br>0.18<br>0.16<br>0.27<br>0.17                 | 70 Phosp N 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0:01 D D D D D D D D D D D D D D D D D D D                                      | 11sol PP N 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3             | ved Reactive Hean                                                |
|           | Stn 709 710 711 732 714 733 715 716 735 718 720 721 737                                     | H - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3   | RSP<br>Mean<br>2.33<br>1.67<br>1.00<br>2.33<br>1.00<br>1.00<br>1.00<br>2.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | Turn N - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                                               | 0.98<br>1.33<br>0.48<br>1.38<br>1.40<br>0.38<br>1.13<br>0.54<br>0.43<br>1.08<br>0.45<br>0.45<br>0.92<br>0.25                         | BN 1 - 3 3 3 3 3 3 3 6 3 3 3 2 3 3 3 3 3 3 3 3                                                   | 005<br>Mean<br>1.67<br>1.17<br>0.63<br>1.83<br>0.77<br>0.80<br>1.50<br>0.68<br>0.60<br>1.43<br>0.67<br>0.95<br>0.37<br>0.43         | N - 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 7.33                                | Ta N - 2 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0                      | 7.00<br>6.00                 | Amm<br>H -<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | 0.04<br>0.02<br>0.01<br>0.04<br>0.02<br>0.01<br>0.04<br>0.01<br>0.03<br>0.01<br>0.03                 | Hit<br>H -<br>3 3 3 3 3 6 3 3 3 6 3 3 3 2 3 3                                                           | 0.17<br>0.24<br>0.28<br>0.19<br>0.26<br>0.30<br>0.21<br>0.28<br>0.29<br>0.22<br>0.29<br>0.23<br>0.30<br>0.23         | Kje<br>Hit<br>H -<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | 0.32<br>0.24<br>0.18<br>0.32<br>0.22<br>0.16<br>0.29<br>0.17<br>0.25<br>0.17                 | 70 Phosp N 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0:00 Deborous Mean                                                              | 1ssol P N 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3            | ved Reactive Hean                                                |
|           | Stn                                                                                         | N - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3   | RSP Mean                                                                                                            | Turn N - 3 3 3 3 3 3 3 3 6 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 0.98<br>1.33<br>0.48<br>1.38<br>1.40<br>0.38<br>1.13<br>0.54<br>0.43<br>1.08<br>0.45<br>0.45<br>0.92<br>0.25<br>0.40<br>0.28<br>0.32 | BN 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                         | 005<br>Mean<br>                                                                                                                     | N - 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | DOC<br>Mean<br>7:33<br>6.97<br>2.30 | Ta N - 2 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0              | 7.00<br>6.00                 | Amm<br>N -<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>33                  | 0.04<br>0.02<br>0.01<br>0.04<br>0.02<br>0.01<br>0.04<br>0.01<br>0.01<br>0.03<br>0.01<br>0.03         | Mit N - 33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                              | 0.17<br>0.24<br>0.28<br>0.19<br>0.26<br>0.30<br>0.21<br>0.28<br>0.29<br>0.22<br>0.29<br>0.23<br>0.30<br>0.28<br>0.30 | Kje Hit H - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                                  | 0.32<br>0.32<br>0.16<br>0.32<br>0.16<br>0.29<br>0.16<br>0.27<br>0.17<br>0.25<br>0.14         | T(Phose) N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.03 0.02 0.01 0.03 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00           | 33 33 33 33 33 33 33 33 33 33 33 33 33                   | ved Reactive hosphate Hean  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 |
| JB        | Stn                                                                                         | H - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3   | RSP  Mean  2.33 1.67 1.00 2.33 1.00 1.00 1.67 1.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00                               | Turn N - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                                               | bidity<br>Mean<br>1.33<br>0.48<br>1.38<br>1.40<br>0.38<br>1.13<br>0.54<br>0.43<br>1.08<br>0.45<br>0.92<br>0.25<br>0.45<br>0.42       | 8 N - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                        | 005<br>Mean<br>1.67<br>1.17<br>0.63<br>1.83<br>0.77<br>0.80<br>1.50<br>0.60<br>1.43<br>0.67<br>0.95<br>0.37<br>0.43<br>0.55<br>0.53 | N - 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 7.33                                | Ta N - 2 0 0 2 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0              | 7.00<br>6.00                 | Amm H 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                                   | 0.04<br>0.02<br>0.01<br>0.04<br>0.02<br>0.01<br>0.04<br>0.01<br>0.03<br>0.01<br>0.03<br>0.01<br>0.01 | Nie N                                                                                                   | 0.17<br>0.24<br>0.28<br>0.19<br>0.26<br>0.30<br>0.21<br>0.28<br>0.29<br>0.22<br>0.29<br>0.23<br>0.30<br>0.28         | Kje Hit H                                                                                                        | 0.33<br>0.24<br>0.18<br>0.32<br>0.22<br>0.16<br>0.29<br>0.18<br>0.17<br>0.15<br>0.14<br>0.15 | To Phose N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.03 0.02 0.01 0.03 0.01 0.00 0.02 0.01 0.00 0.02 0.01 0.00 0.02 0.01 0.00 0.02 | 1ssol PP                                                 | ved Reactive hosphate Hean                                       |
| JB        | Stn                                                                                         | N - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3   | RSP Mean                                                                                                            | Turn N - 3 3 3 3 3 3 3 3 6 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 0.98<br>1.33<br>0.48<br>1.38<br>1.40<br>0.38<br>1.13<br>0.54<br>0.43<br>1.08<br>0.45<br>0.45<br>0.92<br>0.25<br>0.40<br>0.28<br>0.32 | BN 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                         | 005<br>Mean<br>                                                                                                                     | N - 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | DOC<br>Mean<br>7:33<br>6.97<br>2.30 | Ta N - 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                | 7.00<br>6.00<br>1.00<br>0.00 | Arm H 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                                   | 0.04<br>0.02<br>0.01<br>0.04<br>0.02<br>0.01<br>0.04<br>0.01<br>0.03<br>0.01<br>0.03<br>0.01<br>0.03 | Hit N                                                                                                   | Pates Hean 0.17 0.24 0.28 0.19 0.26 0.30 0.21 0.28 0.29 0.22 0.29 0.23 0.30 0.28 0.30 0.29                           | Kje Hit H - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                                  | 0.33<br>0.24<br>0.18<br>0.32<br>0.22<br>0.16<br>0.29<br>0.18<br>0.17<br>0.17<br>0.17         | To Phose N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.03 0.02 0.01 0.03 0.01 0.00 0.02 0.01 0.00 0.02 0.01 0.00 0.02 0.01 0.00 0.02 | 15sol PP                                                 | ved Reactive hosphate Hean                                       |

<sup>\*</sup> all units mg/L except Turbidity (ftu)
MB - Moberly Bay JB - Jackfish Bay proper TB - Tunnel Bay

| Bay       | Stn                                                                                                                 | C N                                     | elcium<br>Mean                                                                                                             | Mag<br>N                                  | nesium<br>Hean                                                                                                                               | N                                        | Sodium<br>Mean                                                                                   | Pot                                       | assium<br>Mean                                                                                               | Alk                                               | alinity                                                                                                                    |                                         | Ilphate                                                                                                                      | Chi                                     | oride                                                                                                                              | Conductivity                                                                                                                                                           | . ,                                     | pH                                                                                                           |
|-----------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------|
|           | •••                                                                                                                 |                                         |                                                                                                                            | •                                         |                                                                                                                                              | -                                        |                                                                                                  |                                           | ****                                                                                                         | -                                                 | Mean                                                                                                                       | H                                       | Mean                                                                                                                         | N                                       | Mean                                                                                                                               | N Mean                                                                                                                                                                 | N                                       | Hean                                                                                                         |
| MB        | 701                                                                                                                 | - 1 <b>4</b> 0                          | 46.70                                                                                                                      | . 4                                       | 5.72                                                                                                                                         | 4                                        | 228.00                                                                                           | 4                                         | 7.35                                                                                                         | 4                                                 | 44.70                                                                                                                      | 4                                       | 52.10                                                                                                                        |                                         | 341.00                                                                                                                             | 4 1405.00                                                                                                                                                              |                                         | 6.3                                                                                                          |
|           | 803                                                                                                                 | . 3                                     | 46.30                                                                                                                      | 3                                         | 5.63                                                                                                                                         |                                          | 193.00                                                                                           | 3                                         | 7.27                                                                                                         | 3                                                 | 37.30                                                                                                                      | 3                                       | 50.80                                                                                                                        |                                         | 362.00                                                                                                                             | 3 1450.00                                                                                                                                                              | . 3                                     | 6.10                                                                                                         |
|           | 805                                                                                                                 | 3                                       | 26.00                                                                                                                      | 3                                         | 4.03                                                                                                                                         | 3                                        | 98.70                                                                                            | 3                                         | 3.57                                                                                                         | 3                                                 | 39.00                                                                                                                      | 3                                       | 24.00                                                                                                                        |                                         | 155.00                                                                                                                             |                                                                                                                                                                        | 3                                       | 6.80                                                                                                         |
|           | 702                                                                                                                 | 3                                       | 26.70                                                                                                                      | 3                                         | 3.87                                                                                                                                         | . 3                                      | 92.00                                                                                            | 3                                         | 3.17                                                                                                         | 3                                                 | 39.70                                                                                                                      | . 3                                     | 22.70                                                                                                                        |                                         | 137.00                                                                                                                             | 3 626.00                                                                                                                                                               | 3                                       | 6.9                                                                                                          |
|           | 806                                                                                                                 | . 3                                     | 37.70                                                                                                                      | 3                                         | 4.83                                                                                                                                         | . 3                                      | 167.00                                                                                           | 3                                         | 5.73                                                                                                         | 3                                                 | 37.00                                                                                                                      | 3                                       | 37.20                                                                                                                        |                                         | 272.00                                                                                                                             | 3 1120.0                                                                                                                                                               | 3                                       | 6.40                                                                                                         |
|           | . 807                                                                                                               | 2                                       | 19.50                                                                                                                      | 2                                         | 3.35                                                                                                                                         | 2                                        | 46.50                                                                                            | 2                                         | 1.90                                                                                                         | 2                                                 | 45.00                                                                                                                      | 2                                       | 13.70                                                                                                                        |                                         | 70.50                                                                                                                              |                                                                                                                                                                        | 2                                       |                                                                                                              |
|           | 808                                                                                                                 | 3                                       | 21.00                                                                                                                      | 3                                         | 3.50                                                                                                                                         | 3                                        | 57.30                                                                                            | 3                                         | 2.31                                                                                                         | 3                                                 | 41.00                                                                                                                      | 3                                       | 16.10                                                                                                                        | 3                                       | 89.30                                                                                                                              | 3 451.00                                                                                                                                                               | 3                                       | 7.0                                                                                                          |
|           | 809                                                                                                                 | 3                                       | 19.00                                                                                                                      | 3                                         | 3.30                                                                                                                                         | 3                                        | 43.70                                                                                            | 3                                         | 1.87                                                                                                         | . 3                                               | 43.00                                                                                                                      | 3                                       | 13.30                                                                                                                        | . 3                                     | 67.30                                                                                                                              |                                                                                                                                                                        | -                                       | 7.0                                                                                                          |
|           | 810                                                                                                                 | 3                                       | 16.70                                                                                                                      | 3                                         | 3.10                                                                                                                                         | 3                                        | 28.30                                                                                            | 3                                         | 1.33                                                                                                         | 3                                                 | 43.00                                                                                                                      | 3                                       | 9.10                                                                                                                         | 3                                       | 43.00                                                                                                                              | 3 259.00                                                                                                                                                               | 3                                       | 7.10                                                                                                         |
|           | 811                                                                                                                 | . 3                                     | 16.70                                                                                                                      | . 3                                       | 3.10                                                                                                                                         | . 3                                      | 24.30                                                                                            | 3                                         | 1.19                                                                                                         | . 3                                               | 44.70                                                                                                                      | 3                                       | 8.54                                                                                                                         | 3                                       | 35.30                                                                                                                              |                                                                                                                                                                        | 3                                       | 7.17                                                                                                         |
|           | 812                                                                                                                 | 4                                       | 16.00                                                                                                                      | . 4                                       | 3.08                                                                                                                                         | 4                                        | 23.80                                                                                            | 4                                         | 1.17                                                                                                         | 4                                                 | 43.20                                                                                                                      | 4                                       | 8.37                                                                                                                         | 4                                       | 35.00                                                                                                                              |                                                                                                                                                                        | 3                                       | 7.30                                                                                                         |
| 100       | 813                                                                                                                 | 3                                       | 17.30                                                                                                                      | 3                                         | 3.17                                                                                                                                         | 3                                        | 30.70                                                                                            | 3                                         | 1.43                                                                                                         | 3                                                 | 43.30                                                                                                                      | 3                                       | 9.72                                                                                                                         | 3                                       | 45.00                                                                                                                              |                                                                                                                                                                        | 4                                       | 7.3                                                                                                          |
|           | 814                                                                                                                 | 3                                       | 16.00                                                                                                                      | 3                                         | 3.03                                                                                                                                         | . 3                                      | 21.70                                                                                            | 3                                         | 1.11                                                                                                         | 3                                                 | 43.70                                                                                                                      | 3                                       |                                                                                                                              | 3                                       | 31.00                                                                                                                              |                                                                                                                                                                        | 3                                       | 7.13                                                                                                         |
|           | 815                                                                                                                 | 3                                       | 16.30                                                                                                                      | 3                                         | 3.10                                                                                                                                         | 3                                        | 24.70                                                                                            | 3                                         | 1.26                                                                                                         | . 3                                               | 44.70                                                                                                                      | 3                                       | 8.76                                                                                                                         | . 3                                     | 35.00                                                                                                                              |                                                                                                                                                                        | 3                                       | 7.30                                                                                                         |
| •         | 703                                                                                                                 | . 5                                     | 15.80                                                                                                                      | 5                                         | 3.00                                                                                                                                         | 5                                        | 18.60                                                                                            | 5                                         | 1.02                                                                                                         | 5                                                 | 43.40                                                                                                                      | 5                                       |                                                                                                                              | 5                                       | 28.60                                                                                                                              | 3 234.00                                                                                                                                                               | 3                                       | 7.3                                                                                                          |
|           | 704                                                                                                                 | 6                                       | 16.00                                                                                                                      | 6                                         | 3.05                                                                                                                                         | 6                                        | 20.70                                                                                            | 6                                         | 1.10                                                                                                         | 6                                                 | 44.20                                                                                                                      | 6                                       | 7.85                                                                                                                         | 6                                       |                                                                                                                                    | 5 206.00                                                                                                                                                               | 5                                       | 7.3                                                                                                          |
|           | 705                                                                                                                 | 3                                       | 16.70                                                                                                                      | 3                                         | 3.07                                                                                                                                         | 3                                        | 23.10                                                                                            | 3                                         | 1.15                                                                                                         |                                                   | 42.70                                                                                                                      | 3                                       | 8.17                                                                                                                         |                                         | 31.00                                                                                                                              | 6 215.00                                                                                                                                                               | . 6                                     | 7.4                                                                                                          |
|           | 816                                                                                                                 | . 3                                     | 16.00                                                                                                                      | 3                                         | 3.00                                                                                                                                         | · 3                                      | 22.70                                                                                            | 3                                         | 1.16                                                                                                         | 3.                                                | 43.70                                                                                                                      | 3                                       | 8.20                                                                                                                         | 3                                       | 35.10                                                                                                                              | 3 228.00                                                                                                                                                               | 3                                       | 7.4                                                                                                          |
|           | 817                                                                                                                 | 3                                       | 15.70                                                                                                                      | 3                                         | 3.00                                                                                                                                         | 3                                        | 16.70                                                                                            | 3                                         | 1.00                                                                                                         | . 3                                               | 44.30                                                                                                                      | 3                                       | 6.92                                                                                                                         | 3                                       | 32.00                                                                                                                              |                                                                                                                                                                        | 3                                       | 7.3                                                                                                          |
| ٠         | 818                                                                                                                 | . 3                                     | 14.70                                                                                                                      | 3                                         | 2.90                                                                                                                                         | 3                                        | 11.40                                                                                            | 3                                         | 0.80                                                                                                         | 3                                                 | 43.70                                                                                                                      |                                         | 5.59                                                                                                                         |                                         | 23.70                                                                                                                              |                                                                                                                                                                        | 3                                       | 7.4                                                                                                          |
|           | 819                                                                                                                 | - 3                                     | 14.30                                                                                                                      | 3                                         | 2.90                                                                                                                                         | 3                                        | 9.67                                                                                             | 3                                         | 0.72                                                                                                         | 3                                                 | 43.70                                                                                                                      | 3                                       |                                                                                                                              | 3                                       | 16.40                                                                                                                              |                                                                                                                                                                        | 3                                       | 7.5                                                                                                          |
|           | 706                                                                                                                 | 3                                       | 15.70                                                                                                                      | 3                                         | 3.00                                                                                                                                         | 3                                        | 18.80                                                                                            | 3                                         | 1.04                                                                                                         | 3                                                 |                                                                                                                            | . 3                                     | 5.12                                                                                                                         | 3                                       | 13.70                                                                                                                              | 3 147.00                                                                                                                                                               | . 3                                     | 7.6                                                                                                          |
|           | 707                                                                                                                 | 4                                       | 14.80                                                                                                                      |                                           | 2.95                                                                                                                                         | 4                                        | 13.20                                                                                            | 4                                         | 0.84                                                                                                         |                                                   | 43.30                                                                                                                      | _                                       | 7.69                                                                                                                         | 3                                       | 27.70                                                                                                                              |                                                                                                                                                                        | 3                                       | 7.4                                                                                                          |
|           | 708                                                                                                                 | 3                                       | 14.30                                                                                                                      | 3                                         | 2.87                                                                                                                                         | 3                                        | 7.57                                                                                             | 3                                         | 0.67                                                                                                         | 3                                                 | 43.70                                                                                                                      | 4                                       | 6.13<br>4.83                                                                                                                 | . 4<br>. 3                              | 18.50<br>11.10                                                                                                                     | 4 174.00                                                                                                                                                               | 4                                       | 7.4                                                                                                          |
|           | 4.0                                                                                                                 | Ca                                      | leium                                                                                                                      | Mac                                       | nesium                                                                                                                                       | N                                        |                                                                                                  |                                           |                                                                                                              |                                                   |                                                                                                                            | * : :                                   |                                                                                                                              |                                         |                                                                                                                                    |                                                                                                                                                                        |                                         |                                                                                                              |
| BAY       | Stn                                                                                                                 |                                         | Mean                                                                                                                       |                                           |                                                                                                                                              |                                          | Sodium                                                                                           | Pot                                       | essium                                                                                                       | Alk                                               | alinity                                                                                                                    |                                         | Iphate                                                                                                                       | Chl                                     | oride                                                                                                                              | Conductivity                                                                                                                                                           | -                                       | рĦ                                                                                                           |
| BBY       | Stn                                                                                                                 | N                                       | Hean                                                                                                                       |                                           | Hean                                                                                                                                         | N                                        | Sodium<br>Mean                                                                                   | Pot<br>N                                  | assium<br>Mean                                                                                               | Alk                                               | al inity<br>Hean                                                                                                           | Su                                      | Ilphate<br>Hean                                                                                                              | Ch (                                    | oride<br>Hean                                                                                                                      | N Hean                                                                                                                                                                 | N                                       | pH<br>Mean                                                                                                   |
|           | \$tn<br>709                                                                                                         |                                         |                                                                                                                            | N                                         | Mean                                                                                                                                         |                                          | Mean                                                                                             | N                                         | Hean                                                                                                         | H                                                 | Mean                                                                                                                       | N                                       | Hean                                                                                                                         | N                                       | Mean                                                                                                                               | H Hean                                                                                                                                                                 | N                                       | Mean                                                                                                         |
|           | •••                                                                                                                 | N                                       | 15.00                                                                                                                      |                                           | Mean<br>2.97                                                                                                                                 | 3                                        | Mean<br>16.70                                                                                    | N<br>3                                    | Mean<br>0.98                                                                                                 | N<br>3                                            | Hean<br>44.00                                                                                                              | N                                       | Hean<br>6.93                                                                                                                 | N<br>3                                  | Mean<br>23.00                                                                                                                      | M Hean<br>3 181.00                                                                                                                                                     | N - 3                                   | <b>Hean</b> 7.50                                                                                             |
| ,         | 709                                                                                                                 | N<br>3                                  | 15.00<br>14.30                                                                                                             | N<br>3<br>3                               | 2.97<br>2.90                                                                                                                                 | N<br>3<br>3                              | 16.70<br>8.80                                                                                    | H<br>3<br>3                               | 0.98<br>0.72                                                                                                 | #<br>3<br>3                                       | Hean<br>44.00<br>43.70                                                                                                     | N . 3                                   | 6.93<br>4.95                                                                                                                 | N<br>3<br>3                             | 23.00<br>11.40                                                                                                                     | 3 181.00<br>3 139.00                                                                                                                                                   | 3                                       | 7.5<br>7.6                                                                                                   |
|           | 709<br>710<br>711                                                                                                   | N<br>-<br>3<br>3                        | 15.00<br>14.30<br>13.30                                                                                                    | N<br>3<br>3<br>3                          | 2.97<br>2.90<br>2.83                                                                                                                         | N . 3 3 3                                | 16.70<br>8.80<br>3.33                                                                            | N<br>3<br>3<br>3                          | 0.98<br>0.72<br>0.52                                                                                         | 3<br>3<br>3                                       | Hean<br>44.00<br>43.70<br>43.70                                                                                            | N                                       | 6.93<br>4.95<br>3.79                                                                                                         | N<br>3<br>3<br>3                        | 23.00<br>11.40<br>4.93                                                                                                             | 3 181.00<br>3 139.00<br>3 113.00                                                                                                                                       | 3                                       | 7.5<br>7.6<br>7.7                                                                                            |
|           | 709<br>710<br>711<br>732                                                                                            | N - 3 3 3 3                             | 15.00<br>14.30<br>13.30<br>15.00                                                                                           | N<br>3<br>3<br>3<br>3                     | 2.97<br>2.90<br>2.83<br>2.97                                                                                                                 | N - 3 3 3 3 3                            | 16.70<br>8.80<br>3.33<br>14.60                                                                   | N<br>3<br>3<br>3<br>3                     | 0.98<br>0.72<br>0.52<br>0.97                                                                                 | N                                                 | Hean<br>44.00<br>43.70<br>43.70<br>44.00                                                                                   | N . 3 3 3 3                             | 6.93<br>4.95<br>3.79<br>6.72                                                                                                 | N<br>3<br>3<br>3<br>3                   | 23.00<br>11.40<br>4.93<br>21.00                                                                                                    | 3 181.00<br>3 139.00<br>3 113.00<br>3 174.00                                                                                                                           | 3<br>3<br>3                             | 7.5<br>7.6<br>7.7<br>7.5                                                                                     |
|           | 709<br>710<br>711                                                                                                   | N - 3 3 3 3 3                           | 15.00<br>14.30<br>13.30<br>15.00<br>13.70                                                                                  | N . 3 . 3 . 3 . 3 . 3 . 3                 | 2.97<br>2.90<br>2.83<br>2.97<br>2.83                                                                                                         | N . 3 3 3 3 3 3                          | 16.70<br>8.80<br>3.33<br>14.60<br>6.40                                                           | N 3 3 3 3 3 3                             | 0.98<br>0.72<br>0.52<br>0.97<br>0.63                                                                         | N - 3 3 3 3 3 3                                   | Hean<br>44.00<br>43.70<br>43.70<br>44.00<br>43.70                                                                          | N . 3 3 3 3 3 3                         | 6.93<br>4.95<br>3.79<br>6.72<br>4.40                                                                                         | N . 3 3 3 3 3 3                         | 23.00<br>11.40<br>4.93<br>21.00<br>8.67                                                                                            | 8 Hean<br>3 181.00<br>3 139.00<br>3 113.00<br>3 174.00<br>3 128.00                                                                                                     | 3<br>3<br>3<br>3                        | 7.5<br>7.6<br>7.7<br>7.5                                                                                     |
|           | 709<br>710<br>711<br>732<br>714                                                                                     | N - 3 3 3 3 3 3                         | 15.00<br>14.30<br>13.30<br>15.00<br>13.70<br>13.30                                                                         | N . 3 3 3 3 3 3 3                         | 2.97<br>2.90<br>2.83<br>2.97<br>2.83<br>2.97<br>2.83                                                                                         | N · 3 3 3 3 3 3 3                        | 16.70<br>8.80<br>3.33<br>14.60<br>6.40<br>2.77                                                   | N 3 3 3 3 3 3 3                           | 0.98<br>0.72<br>0.52<br>0.97<br>0.63<br>0.53                                                                 | N - 3 3 3 3 3 3 3                                 | Mean<br>44.00<br>43.70<br>43.70<br>44.00<br>43.70<br>43.70                                                                 | N                                       | 6.93<br>4.95<br>3.79<br>6.72<br>4.40<br>3.54                                                                                 | N . 3 3 3 3 3 3 3 3 3                   | 23.00<br>11.40<br>4.93<br>21.00<br>8.67<br>3.50                                                                                    | N Hean<br>3 181.00<br>3 139.00<br>3 113.00<br>3 174.00<br>3 128.00<br>3 107.00                                                                                         | 3<br>3<br>3<br>3                        | 7.5<br>7.6<br>7.7<br>7.5<br>7.6<br>7.8                                                                       |
|           | 709<br>710<br>711<br>732<br>714<br>733<br>715                                                                       | N - 3 3 3 3 3 3 3 3                     | 15.00<br>14.30<br>13.30<br>15.00<br>13.70<br>13.30<br>14.30                                                                | N . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3         | 2.97<br>2.90<br>2.83<br>2.97<br>2.83<br>2.83<br>2.90                                                                                         | N - 3 3 3 3 3 3 3 3 3 3                  | Mean<br>16.70<br>8.80<br>3.33<br>14.60<br>6.40<br>2.77<br>12.20                                  | N 3 3 3 3 3 3 3 3 3                       | 0.98<br>0.72<br>0.52<br>0.97<br>0.63<br>0.53                                                                 | N . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3                 | 44.00<br>43.70<br>43.70<br>44.00<br>43.70<br>43.70<br>43.70<br>44.00                                                       | N - 3 3 3 3 3 3 3                       | 6.93<br>4.95<br>3.79<br>6.72<br>4.40<br>3.54<br>5.98                                                                         | N . 3 3 3 3 3 3 3 3 3                   | 23.00<br>11.40<br>4.93<br>21.00<br>8.67<br>3.50<br>17.10                                                                           | N Hean<br>3 181.00<br>3 139.00<br>3 113.00<br>3 174.00<br>3 128.00<br>3 107.00<br>3 157.00                                                                             | 3 3 3 3 3 3                             | 7.5<br>7.6<br>7.7<br>7.5<br>7.6<br>7.8<br>7.8                                                                |
| ,         | 709<br>710<br>711<br>732<br>714<br>733<br>715<br>716                                                                | N - 3 3 3 3 3 3 3 6                     | 15.00<br>14.30<br>13.30<br>15.00<br>13.70<br>13.30<br>14.30<br>13.70                                                       | N · 3 3 3 3 3 3 6                         | 2.97<br>2.90<br>2.83<br>2.97<br>2.83<br>2.83<br>2.90<br>2.85                                                                                 | N - 3 3 3 3 3 3 6                        | Mean<br>16.70<br>8.80<br>3.33<br>14.60<br>6.40<br>2.77<br>12.20<br>4.28                          | N 3 3 3 3 3 3 6                           | 0.98<br>0.72<br>0.52<br>0.97<br>0.63<br>0.53<br>0.87                                                         | N - 3 3 3 3 3 3 6                                 | 44.00<br>43.70<br>43.70<br>44.00<br>43.70<br>43.70<br>44.00<br>43.50                                                       | N - 3 3 3 3 3 6                         | 6.93<br>4.95<br>3.79<br>6.72<br>4.40<br>3.54<br>5.98<br>3.99                                                                 | N                                       | 23.00<br>11.40<br>4.93<br>21.00<br>8.67<br>3.50<br>17.10<br>5.75                                                                   | N Hean<br>3 181.00<br>3 139.00<br>3 113.00<br>3 174.00<br>3 128.00<br>3 107.00<br>3 157.00<br>6 116.00                                                                 | 3<br>3<br>3<br>3                        | 7.5<br>7.6<br>7.7<br>7.5<br>7.6<br>7.8<br>7.5<br>7.7                                                         |
|           | 709<br>710<br>711<br>732<br>714<br>733<br>715<br>716<br>735                                                         | N - 3 3 3 3 3 3 6 3                     | 15.00<br>14.30<br>13.30<br>15.00<br>13.70<br>13.30<br>14.30<br>13.70                                                       | N                                         | 2.97<br>2.90<br>2.83<br>2.97<br>2.83<br>2.83<br>2.90<br>2.85<br>2.83                                                                         | N - 3 3 3 3 3 3 3 6 3                    | 16.70<br>8.80<br>3.33<br>14.60<br>6.40<br>2.77<br>12.20<br>4.28<br>2.97                          | N<br>3<br>3<br>3<br>3<br>3<br>3<br>6<br>3 | 0.98<br>0.72<br>0.52<br>0.97<br>0.63<br>0.53<br>0.87<br>0.56                                                 | N - 3 3 3 3 3 3 6 3                               | 44.00<br>43.70<br>43.70<br>44.00<br>43.70<br>44.00<br>43.50<br>43.30                                                       | N - 3 3 3 3 3 6 3                       | 6.93<br>4.95<br>3.79<br>6.72<br>4.40<br>3.54<br>5.98<br>3.99<br>3.49                                                         | N . 3 3 3 3 3 3 6 3                     | 23.00<br>11.40<br>4.93<br>21.00<br>8.67<br>3.50<br>17.10<br>5.75<br>3.50                                                           | N Hean<br>3 181.00<br>3 139.00<br>3 113.00<br>3 174.00<br>3 128.00<br>3 107.00<br>3 157.00                                                                             | 3 3 3 3 3 3                             | 7.5<br>7.6<br>7.7<br>7.5<br>7.6<br>7.8<br>7.5<br>7.7                                                         |
|           | 709<br>710<br>711<br>732<br>714<br>733<br>715<br>716<br>735<br>718                                                  | N · 3 3 3 3 3 3 6 3 3                   | 15.00<br>14.30<br>13.30<br>15.00<br>13.70<br>13.30<br>14.30<br>13.70<br>13.70                                              | N - 3 3 3 3 3 3 6 3 3 3                   | 2.97<br>2.90<br>2.83<br>2.97<br>2.83<br>2.83<br>2.90<br>2.85<br>2.83<br>2.90                                                                 | N · 3 3 3 3 3 3 3 6 3 3                  | 16.70<br>8.80<br>3.33<br>14.60<br>6.40<br>2.77<br>12.20<br>4.28<br>2.97<br>11.30                 | N - 3 3 3 3 3 3 6 3 3 3 6 3 3             | Mean<br>0.98<br>0.72<br>0.52<br>0.97<br>0.63<br>0.53<br>0.87<br>0.56<br>0.56                                 | N - 3 3 3 3 3 3 6 3 3                             | 44.00<br>43.70<br>43.70<br>43.70<br>43.70<br>43.70<br>44.00<br>43.50<br>43.30<br>43.70                                     | N                                       | 6.93<br>4.95<br>3.79<br>6.72<br>4.40<br>3.54<br>5.98<br>3.99<br>3.49<br>5.66                                                 | N . 3 3 3 3 3 3 6 3 3 6 3 3             | 23.00<br>11.40<br>4.93<br>21.00<br>8.67<br>3.50<br>17.10<br>5.75                                                                   | N Hean<br>3 181.00<br>3 139.00<br>3 113.00<br>3 174.00<br>3 128.00<br>3 107.00<br>3 157.00<br>6 116.00                                                                 | 3 3 3 3 6                               | 7.50<br>7.6<br>7.7<br>7.5<br>7.6<br>7.8<br>7.5<br>7.7                                                        |
| ,         | 709<br>710<br>711<br>732<br>714<br>733<br>715<br>716<br>735<br>718<br>719                                           | N - 3 3 3 3 3 3 3 6 3 3 3 3             | 15.00<br>14.30<br>13.30<br>15.00<br>13.70<br>13.30<br>14.30<br>13.70<br>13.70<br>14.70<br>13.70                            | N - 3 - 3 - 3 - 3 - 6 - 3 - 3 - 3 - 3 - 3 | 2.97<br>2.90<br>2.83<br>2.97<br>2.83<br>2.90<br>2.85<br>2.85<br>2.83<br>2.90<br>2.85                                                         | N - 3 3 3 3 3 3 6 3 3 3 3                | Heen<br>16.70<br>8.80<br>3.33<br>14.60<br>6.40<br>2.77<br>12.20<br>4.28<br>2.97<br>11.30<br>3.43 | N - 3 - 3 - 3 - 3 - 5 - 5 - 5 - 5 - 5 - 5 | 0.98<br>0.72<br>0.52<br>0.97<br>0.63<br>0.53<br>0.87<br>0.56<br>0.56<br>0.83<br>0.55                         | N - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -           | 44.00<br>43.70<br>43.70<br>43.70<br>44.00<br>43.70<br>44.00<br>43.50<br>43.30<br>43.70<br>43.30                            | N - 3 3 3 3 3 6 3 3 3 3 3               | 6.93<br>4.95<br>3.79<br>6.72<br>4.40<br>3.54<br>5.98<br>3.99<br>3.49<br>5.66<br>3.70                                         | N . 3 3 3 3 3 3 6 3                     | 23.00<br>11.40<br>4.93<br>21.00<br>8.67<br>3.50<br>17.10<br>5.75<br>3.50                                                           | N Hean 3 181.00 3 139.00 3 137.00 3 174.00 3 128.00 3 107.00 3 157.00 6 116.00 3 107.00                                                                                | 3<br>3<br>3<br>3<br>3<br>6<br>3         | 7.50<br>7.6<br>7.7<br>7.5<br>7.6<br>7.8<br>7.7<br>7.8<br>7.7                                                 |
| ,         | 709<br>710<br>711<br>732<br>714<br>733<br>715<br>716<br>735<br>718<br>719<br>720                                    | N - 3 3 3 3 3 3 3 6 3 3 3 2             | 15.00<br>14.30<br>13.30<br>15.00<br>13.70<br>13.30<br>14.30<br>13.70<br>13.70<br>14.70<br>13.70                            | N · 3 · 3 · 3 · 3 · 3 · 6 · 3 · 3 · 2 · . | 2.97<br>2.90<br>2.83<br>2.97<br>2.83<br>2.97<br>2.83<br>2.90<br>2.85<br>2.83<br>2.90<br>2.83<br>2.90                                         | N - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3  | 16.70<br>8.80<br>3.33<br>14.60<br>6.40<br>2.77<br>12.20<br>4.28<br>2.97<br>11.30<br>3.43<br>8.55 | N 3 3 3 3 3 3 6 3 3 3 2                   | 0.98<br>0.72<br>0.52<br>0.97<br>0.63<br>0.53<br>0.56<br>0.56<br>0.56<br>0.73                                 | N - 3 3 3 3 3 3 6 3 3 3 2                         | 44.00<br>43.70<br>43.70<br>43.70<br>43.70<br>43.70<br>43.70<br>43.50<br>43.30<br>43.70<br>43.30<br>44.00                   | N - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 6.93<br>4.95<br>3.79<br>6.72<br>4.40<br>3.54<br>5.98<br>3.99<br>3.49<br>5.66<br>3.70<br>5.03                                 | N 3 3 3 3 3 3 6 3 3 3 2                 | 23.00<br>11.40<br>4.93<br>21.00<br>8.67<br>3.50<br>17.10<br>5.75<br>3.50<br>15.40<br>4.43<br>12.00                                 | N Hean 3 181.00 3 139.00 3 113.00 3 174.00 3 128.00 3 107.00 3 157.00 6 116.00 3 107.00 3 152.00 3 110.00 2 138.00                                                     | 3<br>3<br>3<br>3<br>3<br>6<br>3<br>3    | 7.5<br>7.6<br>7.7<br>7.5<br>7.6<br>7.8<br>7.5<br>7.7<br>7.8<br>7.5<br>7.7                                    |
|           | 709<br>710<br>711<br>732<br>714<br>733<br>715<br>716<br>735<br>718<br>719<br>720<br>721                             | N - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 15.00<br>14.30<br>13.30<br>15.00<br>13.70<br>13.30<br>14.30<br>13.70<br>14.70<br>13.70<br>14.50                            | N · 3 · 3 · 3 · 3 · 3 · 3 · 3 · 3 · 3 ·   | 2.97<br>2.90<br>2.83<br>2.97<br>2.83<br>2.97<br>2.83<br>2.90<br>2.85<br>2.90<br>2.83<br>2.90<br>2.83                                         | N - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3  | Meen                                                                                             | N 3 3 3 3 3 3 6 3 3 3 2 3                 | 0.98<br>0.72<br>0.52<br>0.97<br>0.63<br>0.53<br>0.56<br>0.56<br>0.56<br>0.55<br>0.73                         | N - 3 3 3 3 3 3 6 3 3 3 2 3                       | Hean 44.00 43.70 43.70 44.00 43.70 44.00 43.50 43.30 43.70 43.30 44.00 43.30                                               | N . 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 6.93<br>4.95<br>3.79<br>6.72<br>4.40<br>3.54<br>5.98<br>3.99<br>3.49<br>5.66<br>3.70<br>5.03<br>3.23                         | N - 3 3 3 3 3 3 3 6 3 3 3 3 3 3         | 23.00<br>11.40<br>4.93<br>21.00<br>8.67<br>3.50<br>17.10<br>5.75<br>3.50<br>15.40<br>4.43                                          | N Hean 3 181.00 3 139.00 3 113.00 3 174.00 3 128.00 3 107.00 3 157.00 6 116.00 3 107.00 3 152.00 3 110.00 2 138.00                                                     | 3 3 3 3 6 3 3 3                         | 7.56<br>7.67<br>7.56<br>7.67<br>7.68<br>7.57<br>7.87<br>7.87                                                 |
|           | 709 710 711 732 714 733 715 716 735 718 719 720 721 737                                                             | N - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 15.00<br>14.30<br>13.30<br>15.00<br>13.70<br>13.30<br>14.30<br>13.70<br>14.70<br>13.70<br>14.50<br>13.70                   | N · 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3   | 2.97<br>2.90<br>2.83<br>2.97<br>2.83<br>2.83<br>2.90<br>2.85<br>2.83<br>2.90<br>2.83<br>2.90<br>2.83<br>2.90<br>2.83                         | N - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3  | Meen                                                                                             | N 3 3 3 3 3 3 6 3 3 3 2 3 3 3             | 0.98<br>0.72<br>0.52<br>0.53<br>0.53<br>0.56<br>0.56<br>0.56<br>0.73<br>0.51                                 | N - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3           | Hean<br>                                                                                                                   | N . 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 6.93<br>4.95<br>3.79<br>6.72<br>4.40<br>3.54<br>5.98<br>3.99<br>3.49<br>5.66<br>3.70<br>5.03                                 | N 3 3 3 3 3 3 6 3 3 3 2                 | 23.00<br>11.40<br>4.93<br>21.00<br>8.67<br>3.50<br>17.10<br>5.75<br>3.50<br>15.40<br>4.43<br>12.00<br>1.47<br>3.40                 | N Hean  3 181.00  3 139.00  3 174.00  3 128.00  3 107.00  3 157.00  6 116.00  3 152.00  3 152.00  3 199.00                                                             | 3 3 3 3 3 3 3 2                         | 7.5(<br>7.6)<br>7.6<br>7.7<br>7.5(<br>7.6)<br>7.8<br>7.7<br>7.8<br>7.5<br>7.8<br>7.7                         |
| ,         | 709<br>710<br>711<br>732<br>714<br>733<br>715<br>716<br>735<br>718<br>719<br>720<br>721<br>737<br>723               | N - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 15.00<br>14.30<br>13.30<br>15.00<br>13.70<br>13.70<br>13.70<br>14.70<br>13.70<br>14.50<br>13.70<br>13.70<br>13.70          | N - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3   | 2.97<br>2.90<br>2.83<br>2.97<br>2.83<br>2.83<br>2.90<br>2.85<br>2.83<br>2.90<br>2.85<br>2.83<br>2.90<br>2.80<br>2.80<br>2.80                 | N - 33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | Meen                                                                                             | N 3 3 3 3 3 3 3 6 3 3 3 2 3 3 2 3 3 2     | 0.98<br>0.72<br>0.52<br>0.97<br>0.63<br>0.53<br>0.56<br>0.56<br>0.56<br>0.55<br>0.73                         | N - 3 3 3 3 3 3 6 3 3 3 2 3                       | Hean 44.00 43.70 43.70 44.00 43.70 44.00 43.50 43.30 43.70 43.30 44.00 43.30                                               | N . 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 6.93<br>4.95<br>3.79<br>6.72<br>4.40<br>3.54<br>5.98<br>3.99<br>3.49<br>5.66<br>3.70<br>5.03<br>3.23                         | N - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 23.00<br>11.40<br>4.93<br>21.00<br>8.67<br>3.50<br>17.10<br>5.75<br>3.50<br>15.40<br>4.43<br>12.00<br>1.47<br>3.40                 | N Hean 3 181.00 3 139.00 3 113.00 3 174.00 3 128.00 3 107.00 3 157.00 6 116.00 3 107.00 3 152.00 3 199.00 3 198.00                                                     | 333333333333333333333333333333333333333 | 7.56<br>7.6<br>7.7<br>7.5<br>7.6<br>7.8<br>7.7<br>7.8<br>7.5<br>7.8<br>7.7<br>7.8                            |
| •••       | 709 710 711 732 714 733 715 716 735 718 719 720 721 737                                                             | N - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 15.00<br>14.30<br>13.30<br>15.00<br>13.70<br>13.30<br>14.30<br>13.70<br>14.70<br>13.70<br>14.50<br>13.70                   | N · 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3   | 2.97<br>2.90<br>2.83<br>2.97<br>2.83<br>2.83<br>2.90<br>2.85<br>2.83<br>2.90<br>2.83<br>2.90<br>2.83<br>2.90<br>2.83                         | N - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3  | Meen                                                                                             | N 3 3 3 3 3 3 6 3 3 3 2 3 3 3             | 0.98<br>0.72<br>0.52<br>0.53<br>0.53<br>0.56<br>0.56<br>0.56<br>0.73<br>0.51                                 | N - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3           | Hean<br>                                                                                                                   | N . 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 6.93<br>4.95<br>3.79<br>6.72<br>4.40<br>3.54<br>5.98<br>3.99<br>3.49<br>5.66<br>3.70<br>5.03<br>3.23<br>3.56                 | N · 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 23.00<br>11.40<br>4.93<br>21.00<br>8.67<br>3.50<br>17.10<br>5.75<br>3.50<br>15.40<br>4.43<br>12.00                                 | N Hean 3 181.00 3 139.00 3 113.00 3 128.00 3 107.00 3 157.00 6 116.00 3 107.00 3 152.00 3 152.00 3 100 2 138.00 3 99.00 3 108.00 2 103.00                              | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 7.5<br>7.6<br>7.7<br>7.5<br>7.6<br>7.8<br>7.5<br>7.7<br>7.8<br>7.5<br>7.7<br>7.8<br>7.7                      |
| Bay<br>JB | 709<br>710<br>711<br>732<br>714<br>733<br>715<br>716<br>735<br>718<br>719<br>720<br>721<br>737<br>723<br>728        | N - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 15.00<br>14.30<br>13.30<br>15.00<br>13.70<br>13.70<br>14.30<br>13.70<br>14.70<br>13.70<br>14.50<br>13.00<br>13.70<br>13.70 | N - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -   | 2.97<br>2.90<br>2.83<br>2.97<br>2.83<br>2.90<br>2.85<br>2.83<br>2.90<br>2.83<br>2.90<br>2.83<br>2.90<br>2.83<br>2.80<br>2.80<br>2.85<br>2.80 | N - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3  | Meen                                                                                             | N 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3   | 0.98<br>0.72<br>0.52<br>0.57<br>0.63<br>0.53<br>0.87<br>0.56<br>0.56<br>0.83<br>0.55<br>0.73<br>0.51         | N - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -           | Hean<br>                                                                                                                   | N - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 6.93<br>4.95<br>3.79<br>6.72<br>4.40<br>3.54<br>5.98<br>3.99<br>3.49<br>5.66<br>3.70<br>5.03<br>3.23<br>3.56<br>3.34         | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3   | 23.00<br>11.40<br>4.93<br>21.00<br>8.67<br>3.50<br>17.10<br>5.75<br>3.50<br>15.40<br>4.43<br>12.00<br>1.47<br>2.35<br>2.83         | N Hean 3 181,00 3 139,00 3 113,00 3 174,00 3 128,00 3 107,00 3 157,00 6 116,00 3 107,00 3 152,00 3 110,00 2 138,00 3 99,00 3 108,00 2 103,00 3 104,00                  | 333333333333333333333333333333333333333 | 7.55<br>7.66<br>7.77<br>7.56<br>7.86<br>7.55<br>7.75<br>7.86<br>7.55<br>7.86<br>7.76<br>7.88<br>7.78<br>7.88 |
| <b>J8</b> | 709<br>710<br>711<br>732<br>714<br>733<br>715<br>716<br>735<br>718<br>719<br>720<br>721<br>737<br>723<br>723<br>728 | N - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 15.00<br>14.30<br>13.30<br>15.00<br>13.70<br>13.70<br>13.70<br>14.30<br>13.70<br>14.50<br>13.70<br>13.00<br>13.70<br>13.30 | N · 3 · 3 · 3 · 3 · 3 · 3 · 3 · 3 · 3 ·   | 2.97<br>2.90<br>2.83<br>2.97<br>2.83<br>2.90<br>2.85<br>2.83<br>2.90<br>2.83<br>2.90<br>2.80<br>2.80<br>2.85<br>2.80                         | N - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3  | Meen                                                                                             | N 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3   | 0.98<br>0.72<br>0.52<br>0.53<br>0.53<br>0.56<br>0.56<br>0.83<br>0.55<br>0.73<br>0.51<br>0.53<br>0.53<br>0.50 | N - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3           | 44.00<br>43.70<br>43.70<br>44.00<br>43.70<br>44.00<br>43.50<br>43.30<br>43.70<br>44.00<br>43.30<br>43.30<br>43.30<br>43.30 | N . 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 6.93<br>4.95<br>3.79<br>6.72<br>4.40<br>3.54<br>5.98<br>3.99<br>3.49<br>5.66<br>3.70<br>5.03<br>3.23<br>3.23<br>3.35<br>3.34 | N                                       | 23.00<br>11.40<br>4.93<br>21.00<br>8.67<br>3.50<br>17.10<br>5.75<br>3.50<br>15.40<br>4.43<br>12.00<br>1.47<br>3.40<br>2.35<br>2.83 | N Hean  3 181,00  3 139,00  3 113,00  3 174,00  3 128,00  3 107,00  3 157,00  6 116,00  3 107,00  3 152,00  3 110,00  2 138,00  3 99,00  3 108,00  2 103,00  3 104,00  | 333333333333333333333333333333333333333 | 7.56<br>7.66<br>7.77<br>7.56<br>7.86<br>7.55<br>7.79<br>7.86<br>7.70<br>7.88<br>7.88<br>7.88<br>7.88         |
| <b>J8</b> | 709<br>710<br>711<br>732<br>714<br>733<br>715<br>716<br>735<br>718<br>719<br>720<br>721<br>737<br>723<br>728        | N - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 15.00<br>14.30<br>13.30<br>15.00<br>13.70<br>13.70<br>14.30<br>13.70<br>14.70<br>13.70<br>14.50<br>13.00<br>13.70<br>13.70 | N - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -   | 2.97<br>2.90<br>2.83<br>2.97<br>2.83<br>2.90<br>2.85<br>2.83<br>2.90<br>2.83<br>2.90<br>2.83<br>2.90<br>2.83<br>2.80<br>2.80<br>2.85<br>2.80 | N - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3  | Meen                                                                                             | N 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3   | 0.98<br>0.72<br>0.52<br>0.53<br>0.53<br>0.56<br>0.56<br>0.56<br>0.83<br>0.55<br>0.73<br>0.51                 | N - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 2 - 3 - 2 - 3 - 3 | 44.00<br>43.70<br>43.70<br>43.70<br>43.70<br>43.70<br>44.00<br>43.50<br>43.30<br>43.30<br>43.30<br>43.30<br>43.30<br>43.30 | N . 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 6.93<br>4.95<br>3.79<br>6.72<br>4.40<br>3.54<br>5.98<br>3.99<br>3.49<br>5.66<br>3.70<br>5.03<br>3.23<br>3.56<br>3.34<br>3.48 | N 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 23.00<br>11.40<br>4.93<br>21.00<br>8.67<br>3.50<br>17.10<br>5.75<br>3.50<br>15.40<br>4.43<br>12.00<br>1.47<br>2.35<br>2.83         | N Hean  3 181,00  3 139,00  3 174,00  3 174,00  3 107,00  3 157,00  6 116,00  3 107,00  3 152,00  3 100,00  2 138,00  3 108,00  3 108,00  3 104,00  3 105,00  5 101,00 | 333333333333333333333333333333333333333 | •                                                                                                            |

<sup>\*</sup> all units mg/L except conductivity(umhos/cm)
MB - Hoberly Bay JB - Jackfish Bay proper TB - Tunnel Bay

Survey: 1 July 1987 open water (surface water)

#### Hetal means\*

|           |      | Aluminum | Arsenic  | Beryllium             | Iron    | Mercury  | Cacimium  | Chronium | Copper   | Manganese | Nickel   | Lend     | Zinc     |
|-----------|------|----------|----------|-----------------------|---------|----------|-----------|----------|----------|-----------|----------|----------|----------|
| Bay       | \$tn | N Hean   | I Kean   | N Hean                | N Hean  | N Meen   | H Nean    | N Nean   | H Henn   | N Hean    | H Nean   | N Herri  | N Neen   |
| NB        | 701  | 4 <1.000 | 4 <0.001 | 4 <0.050              | 4 1,210 | 4 <0.010 | 4 <0.018  | 4 8.110  | 4 0.177  | 4 0.492   | 4 <0.100 | 4 <0.100 | 4 0.162  |
|           | 803  | 3 <1.000 | 3 <0.001 | 3 <0.050              | 3 1.010 | 3 <0.019 | 3 <0.010  | 3 <0.100 | 3 <0.100 | 3 0.507   | 3 <0.100 | 3 <0.100 | 3 6.113  |
|           | 895  | 3 0.437  | 3 <0.001 | 3 0.823               | 3 0,233 | 3 <0.019 | 3 <0.004  | 3 8.040  | 3 4.040  | 3 0.137   | 3 0.040  | 3 8.060  | 3 0.043  |
|           | 782  | 2 8.565  | 3 <0.001 | 2 6.030               | 2 0,785 | 3 0.013  | 2 <0.805  | 2 0.055  | 2 9.055  | 2 0,245   | 2 0.655  | 2 0.655  | 2 0.055  |
|           | 886  | 3 <1.000 | 3 <0.001 | 3 < 0.050             | 3 0.770 | 3 0.813  | 3 <0.810  | 3 <0.100 | 3 <0.100 | 3 0.410   | 3 6.100  | 3 4.113  | 3 0.200  |
|           | 807  | 2 0.105  | 2 <0.801 | 2 <0.010              | 2 0.170 | 2 <0.010 | 2 <0.001  | 2 0.015  | 2 <0.010 | 2 0.080   | 2 <0.010 | 2 <0.010 | 2 0.015  |
| •         | 808  | 3 0.700  | 3 <0.061 | 3 0.037               | 3 0.253 | 3 <0.910 | 3 6.007   | 3 0.070  | 3 0.070  | 3 0.137   | 3 9.070  | 3 4.490  | 3 0.070. |
|           | 809  | 3 0.400  | 3 <0.081 | 3 0.023               | 3 0,157 | 3 <0.010 | 3 .0.004  | 3 0.040  | 3 0.040  | 3 0.090   | 3 6.040  | 3 0.040  | 3 0.847  |
|           | B10  | 3 8.107  | 3 <0.801 | 3 <0.010              | 3 0.117 | 3 <0.018 | 3 <0.001  | 3 <0.010 | 3 <0.010 | 3 0.060   | 3 <0.010 | 3 <0.010 | 3 0.013  |
|           | 811  | 3 8.087  | 3 <0.881 | 3 0.007               | 3 0.187 | 3 4.010  | 3 <0.001  | 3 0.009  | 3 0.007  | 3 0.044   | 3 0.007  | 3 0.808  | 3 8.809  |
|           | 812  | 4 <0.188 | 4 <0.001 | 4 <0.918              | 4 0.133 | 4 <4.010 | 4 <0.001  | 4 G.013  | 4 <0.018 | 4 0.053   | 4 <0.010 | 4 <0.010 | 4 0.030  |
|           | 813  | 3 <0.180 | 3 <0.901 | 3 <0.018              | 3 8.110 | 3 <0.010 | 3 <0.091  | 3 <0.010 | 3 0.023  | 3 0.053   | 3 <0.010 | 3 <0.010 | 3 0.013  |
|           | 814  | 3 <0.100 | 3 <0.001 | 3 <0.018              | 3 0.110 | 3 <0.010 | 3 <0.081  | 3 <0.010 | 3 <0.010 | 3 0.037   | 3 <0.018 | 3 <0.010 | 3 0.030  |
|           | 815  | 3 0.120  | 3 40.001 | 3 <0.01€              | 3 4.213 | 3 <0.010 | 3 ≪8.881  | 3 4.010  | 3 <0.010 | 3 0.050   | 3 <0.018 | 3 0.013  | 3 0.013  |
| 114       | 783  | 4 0.082  | 5 <0.001 | 4 <0.005              | 4 9.097 | 4 <0.010 | 4 <0.801  | 4 0.005  | 4 10.006 | 4 0.034   | 4 0.006  | 4 0.009  | 4 <0.010 |
|           | 704  | 5 0.064  | 6 40,001 | 5 <0.005              | 5 0.067 | 6 <0.010 | 5 49.801  | 5 0.006  | 5 <0.005 | 5 0.032   | 5 <0.005 | 5 0.008  | 5 0.009  |
|           | 705  | 3 9.071  | 3 40.001 | 3 0.007               | 3 0.120 | 3 <0.810 | 3 <0.901  | 3 8.997  | 3 0.007  | 3 0.038   | 3 0.007  | 3 0.008  | 3 0.011  |
|           | 816. | 2 0.079  | 2 40.001 | 2 <0.005              | 2 0.067 | 2 <0.818 | 2 ≪0.001  | 2 9.006  | 2 <0.005 | 2 0.036   | 2 0.886  | 2 0.006  | 2 0.022  |
|           | 817  | 1 0.078  | 1 <0.001 | 1 <0.001              | 1 0.130 | 1 40.818 | 1 <0.9003 | 1 <0.019 | 1 <0.001 | 1 0.054   | 1 <0.002 | 1 <0.083 | 1 0.009  |
|           | 818  | 1 0.015  | 1 <0.001 | 1 <0.001              | 1 0.009 | 1 40.818 | 1 <0.0003 | 1 <0.001 | 1 <0.001 | 1 0.007   | 1 <0.002 | 1 <0.803 | 1 0.003  |
|           | 786  | 1 0.032  | 2 <0.001 | 2 <0.005              | 2 0.068 | 3 49.818 | 2 40.001  | 2 <0.005 | 2 <0.005 | 2 0.016   | 2 0.006  | 2 8.800  | 2 0.030  |
|           | 707  | 2 0.843  | 4 40.001 | 3 9,004               | 3 0.071 | 4 ASTIS  | 3 <0,001  | 3 0.006  | 3 0.004  | 3 0.028   | 3 <0.005 | 3 ≪0.005 | 3 0:097  |
|           | 708  | 3 0.074  | 3 <0.001 | 3 8.007               | 3 0.080 | 3 4.018  | 3 ≪0.001  | 3 0.007  | 3 0.007. | 3 ,       | 3 8.007  | 3 9.011  | 3 0.008  |
| , · · · · |      | Aluminum | Arsenic  | Beryllium             | ) ron   | Hercury  | Cadwium   | Chromium | Соррег   | Mangorase | Hickel   | Lend     | Zinc     |
| Bay       | Stn  | N Henra  | N Hean   | M Nean                | I Acon  | N Mean   | N Hean    | N Heen   | N Reun   | N Mean    | N Henn   | li Neso  | N Heen   |
| JB        | 709  | 2 0.053  | 3 <0.801 | 3 0.004               | 3 8.960 | 3 <0.010 | 3 <0.081  | 3 0.007  | 3 0.004  | 3 0.031   | 3 <0.005 | 3 0.006  | 3 0.037  |
|           | 732  | 1 0.030  | 2 <4.001 | 2 <0.005              | 2 8.057 | 3 <0.010 | 2 <0.001  | 2 0.006  | 2 8.811  | 2 <0.010  | 2 0.006  | 2 .0.112 | 2 0,135  |
|           | 715  | 1 0.055  | 2 <0.001 |                       | 2 0.051 | 2 <0.010 | 2 <8.862  | 2 0.006  | 2 0.007  | 2 0.009   | 2 0.006  | 2 0.422  | 2 0.135  |
|           | 716  | 3 ≪0.010 | 3 ≪0.001 |                       | 3 0.018 | 3 4.013  |           | 3 <0.001 | 3 <0.002 | 3 0.004   | 3 <0.002 | 3 <0.603 | 3 0.003  |
| 18        | 713  | 3 0.039  | 5 ≪0.001 | 5 0.006               | 5 0.062 | 5 <0.010 | 5 <0.001  | 5 0.006  | 5 4.006  | 5 0.006   | 5 0.007  | 5 0.023  | 5 0.009  |
|           | 832  | 2 0.014  | 3 40,001 | and the second second | 3 0.037 | 3 <0.010 | 3 <9.801  | 3 0.004  | 3 <0.005 | 3 <0.005  | 3 <0.005 | 3 0.022  | 3 0.004  |
|           | 633  | 1 <0.010 | 2 40,001 |                       | 2 0.058 | 2 <0.010 | 2 <0.401  | 2 <0.005 | 2 <0.005 | 2 0.007   | 2 0.006  | 2 0.007  | 2 <0.005 |

| 经国际股份 医脱毛 医脱毛 医大胆 医皮肤 医二氏虫 经保险股票 的复数医动物 医克里特            |                           |
|---------------------------------------------------------|---------------------------|
| MB - Moberly Bay Aluminum <.003 <.10 Mercury <.01       | Manganese <.0085 <.01     |
| JB - Jackfish Bey proper Arsenic <.001 Cadmium <.000    | 2 <.015 Nicket <.001 <.10 |
| TB - Turnel Bay Beryllium < .0805 < .05 Chromium < .005 | <.10 Lead <.005 <.15      |

| Bay      | Stn                                                                                                          |                                           | RSP<br>Mean                                                                                                         | Tur                                     | bidity<br>Mean                                                                                                       |                                             | 005                                                                                                                          |                                                                    | DOC                                  | Tennins                                                                               |                                                     | onium                                                                                        | Nit                                                                                              | rates                                                                                                                |                                                                                                                | ldehl<br>rogen                                                                                               |                                                 | otal D<br>phorous                                                    |                                                   | ved React                                                        |
|----------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------|------------------------------------------------------------------|
| ,        |                                                                                                              |                                           |                                                                                                                     |                                         | neati                                                                                                                | . 7                                         | Hean                                                                                                                         | N                                                                  | Mean                                 | , N Mean                                                                              |                                                     | Hean                                                                                         | N,                                                                                               | Heen                                                                                                                 | N                                                                                                              | Hean                                                                                                         | N                                               | Mean                                                                 | N                                                 | Hean                                                             |
| MB       | 701                                                                                                          | 6                                         | 21.70                                                                                                               | . 6                                     | 25.30                                                                                                                | 6                                           | 53.50                                                                                                                        |                                                                    | ~~~~                                 | • ••••                                                                                | •                                                   |                                                                                              | •                                                                                                |                                                                                                                      | • • .                                                                                                          |                                                                                                              |                                                 |                                                                      | •                                                 |                                                                  |
| 7        | 803                                                                                                          | 3                                         | 21.70                                                                                                               | 3                                       | 25.30                                                                                                                | 3                                           | 53.00                                                                                                                        | - 6                                                                | 96.90                                | 6 64.20                                                                               | 2                                                   | 0.01                                                                                         | - 4                                                                                              | 0.07                                                                                                                 | 6                                                                                                              | 2.17                                                                                                         | 6                                               | 0.37                                                                 | 2                                                 | 0.01                                                             |
|          | 805                                                                                                          | 3                                         | 5.67                                                                                                                | 3                                       | 6.70                                                                                                                 | 3                                           |                                                                                                                              | 3                                                                  | 84.20                                | 3 60.00                                                                               | 1                                                   | 0.01                                                                                         | 2                                                                                                | 0.07                                                                                                                 | . 3                                                                                                            | 2.10                                                                                                         | 3                                               | 0.36                                                                 | - 1                                               | 0.01                                                             |
|          | 702                                                                                                          | 2                                         | 8.50                                                                                                                | 3                                       | 7.35                                                                                                                 | . 2·                                        | 6.57<br>10.00                                                                                                                | 3                                                                  | 22.20                                | 3 26.00                                                                               | 3                                                   | 0.03                                                                                         | 3                                                                                                | 0.03                                                                                                                 | 3                                                                                                              | 0.73                                                                                                         | 3                                               | 0.09                                                                 | 3                                                 | 0.01                                                             |
|          | 806                                                                                                          | 2                                         | 25.00                                                                                                               | 2                                       | 10.30                                                                                                                | 2                                           | 27.80                                                                                                                        | 3                                                                  | 14.10                                | 2 9.33                                                                                | 3                                                   | 0.03                                                                                         | 3                                                                                                | 0.01                                                                                                                 | 3                                                                                                              | 0.85                                                                                                         | 3                                               | 0.11                                                                 | 3                                                 | 0.01                                                             |
|          | 807                                                                                                          | 3                                         | 5.00                                                                                                                | 3                                       | 3.87                                                                                                                 |                                             |                                                                                                                              | . 3                                                                |                                      | 2 37.50                                                                               | _ 1                                                 | 0.03                                                                                         | 2                                                                                                | 0.06                                                                                                                 | 2                                                                                                              | 1.25                                                                                                         | 2                                               | 0.18                                                                 | 0                                                 | •                                                                |
|          | 808                                                                                                          | 3                                         | 4.33                                                                                                                | 3                                       | 6.47                                                                                                                 | 3                                           | 4.33                                                                                                                         | 3                                                                  | 12.40                                | 3 7.33                                                                                | 3                                                   | 0.04                                                                                         | 3                                                                                                | 0.06                                                                                                                 | . 3                                                                                                            | 0.49                                                                                                         | 3                                               | 0.05                                                                 | 3                                                 | 0.02                                                             |
|          | 809                                                                                                          | 3                                         | 2.67                                                                                                                | 3                                       |                                                                                                                      | 3                                           | 6.33                                                                                                                         | . 3                                                                | 18.60                                | 3 10.70                                                                               | . 3                                                 | 0.04                                                                                         | 3                                                                                                | 0.02                                                                                                                 | 3                                                                                                              | 0.70                                                                                                         | . 3                                             | 0.08                                                                 | . 3                                               | 0.01                                                             |
| 1        | 810                                                                                                          | 3                                         | 4.00                                                                                                                | 3                                       | 1.70                                                                                                                 | 3                                           | 1.57                                                                                                                         | 3                                                                  | 5.13                                 | 3 2.67                                                                                | 3                                                   | 0.02                                                                                         | 3                                                                                                | 0.19                                                                                                                 | 3                                                                                                              | 0.35                                                                                                         | : 3                                             | 0.03                                                                 | - 3                                               | 0.00                                                             |
|          | 811                                                                                                          | 3                                         |                                                                                                                     |                                         | 4.03                                                                                                                 | 3                                           | 4.73                                                                                                                         | <u> </u>                                                           | 11.30                                | 3 8.00                                                                                | 3                                                   | 0.05                                                                                         | - 3                                                                                              | 0.05                                                                                                                 | . 3                                                                                                            | 0.59                                                                                                         | 3                                               | 0.06                                                                 | . 3                                               | 0.01                                                             |
|          |                                                                                                              |                                           | 2.00                                                                                                                | 3                                       | 154.00                                                                                                               | . 3                                         | 2.23                                                                                                                         | 3.                                                                 | 6.03                                 | 3 4.67                                                                                | . 3                                                 | 0.03                                                                                         | 3                                                                                                | 0.15                                                                                                                 | 3                                                                                                              | 0.42                                                                                                         | 3                                               | 0.04                                                                 | 3                                                 | 0.01                                                             |
|          | 812                                                                                                          | 3                                         | 12.30                                                                                                               | 3                                       | 4.47                                                                                                                 | 3                                           | 3.93                                                                                                                         | 3                                                                  | 11.70                                | 3 6.33                                                                                | 3.                                                  | 0.04                                                                                         | 3                                                                                                | 0.07                                                                                                                 | 3                                                                                                              | 0.53                                                                                                         | 3                                               | 0.05                                                                 | 3                                                 | 0.01                                                             |
|          | 813                                                                                                          | 2                                         | 6,50                                                                                                                | 2                                       | 3.85                                                                                                                 | 2                                           | 3.90                                                                                                                         | 2                                                                  | 12.70                                | 2 8.50                                                                                | 2                                                   | 0.04                                                                                         | 2                                                                                                | 0.08                                                                                                                 | 2                                                                                                              | 0.52                                                                                                         | 2                                               | 0.05                                                                 | 2                                                 | 0.01                                                             |
|          | 814                                                                                                          | 3                                         | 4.33                                                                                                                | 3                                       | 3.20                                                                                                                 | 3                                           | 3.97                                                                                                                         | 3                                                                  | 11.20                                | 3 7.00                                                                                | 3                                                   | 0.05                                                                                         | 3                                                                                                | 0.07                                                                                                                 | 3                                                                                                              | 0.56                                                                                                         | 3                                               | 0.06                                                                 | . 3                                               | 0.01                                                             |
| 5        | 815                                                                                                          | 3                                         | 3.33                                                                                                                | 3                                       | 2.88                                                                                                                 | 3                                           | 2.70                                                                                                                         | 3                                                                  | 9.20                                 | 3 6.33                                                                                | 3                                                   | 0.04                                                                                         | 3                                                                                                | 0.11                                                                                                                 | 3                                                                                                              | 0.46                                                                                                         | . 3                                             | 0.04                                                                 | 3                                                 | 0.01                                                             |
|          | 703                                                                                                          | 3                                         | 2.33                                                                                                                | 3                                       | 2.53                                                                                                                 | - 3.                                        | 2.13                                                                                                                         | . 3                                                                | 7.07                                 | 3 3.67                                                                                | . 3                                                 | 0.03                                                                                         | 3                                                                                                | 0.14                                                                                                                 | 3                                                                                                              | 0.38                                                                                                         | 3                                               | 0.04                                                                 | 3                                                 | 0.01                                                             |
|          | 704                                                                                                          | 6                                         | 3.50                                                                                                                | 6                                       | 3.48                                                                                                                 | 6                                           | 3.33                                                                                                                         | 6                                                                  | 9.70                                 | 6 4.17                                                                                | 6                                                   | 0.04                                                                                         | 6                                                                                                | 0.09                                                                                                                 | 6                                                                                                              | 0.52                                                                                                         | 6                                               | 0.05                                                                 | 6                                                 |                                                                  |
|          | 705                                                                                                          | - 3                                       | 1.00                                                                                                                | 3.                                      | 0.55                                                                                                                 | 3.                                          | 0.23                                                                                                                         | 3                                                                  | 1.87                                 | 3 1.67                                                                                | 3                                                   | 0.01                                                                                         | 3                                                                                                | 0.27                                                                                                                 | 3                                                                                                              | 0.18                                                                                                         | 3                                               | 0.01                                                                 | 3                                                 | 0.01                                                             |
|          | 816                                                                                                          | 3                                         | 3.00                                                                                                                | . 3                                     | 2.30                                                                                                                 | 3                                           | 2.27                                                                                                                         | 3                                                                  | 8.10                                 | 3 5.33                                                                                | 3                                                   | 0.04                                                                                         | 3                                                                                                | 0.15                                                                                                                 | 3                                                                                                              | 0.41                                                                                                         | 3                                               | 0.04                                                                 | 3<br>3                                            | 0.00                                                             |
|          | 817                                                                                                          | . 3                                       | 2.67                                                                                                                | 3                                       | 1.63                                                                                                                 | . 3                                         | 2.47                                                                                                                         | . 0                                                                |                                      | 0                                                                                     | 3                                                   | 0.04                                                                                         | 3                                                                                                | 0.13                                                                                                                 | 3                                                                                                              | 0.44                                                                                                         | 3                                               | 0.04                                                                 | 3                                                 | 0.00                                                             |
|          | . <b>818</b> "                                                                                               | 3                                         | 2.00                                                                                                                | 3                                       | 1.63                                                                                                                 | 3                                           | 1.17                                                                                                                         | 0                                                                  | · • •                                | 0 -                                                                                   | 3                                                   | 0.02                                                                                         | 3                                                                                                | 0.20                                                                                                                 | 3                                                                                                              | 0.30                                                                                                         | 3                                               | 0.02                                                                 | 3                                                 | 0.01                                                             |
|          | 819                                                                                                          | 3                                         | 1.33                                                                                                                | 3                                       | 0.53                                                                                                                 | 3                                           | 0.30                                                                                                                         | 0                                                                  | •                                    | 0 -                                                                                   | 3                                                   | 0.01                                                                                         | . 3                                                                                              | 0.26                                                                                                                 | 3                                                                                                              | 0.17                                                                                                         |                                                 |                                                                      |                                                   | 0.00                                                             |
| 1        | 706                                                                                                          | 3                                         | 2.33                                                                                                                | 3                                       | 2.00                                                                                                                 | 3                                           | 1.93                                                                                                                         | 3                                                                  | 7.27                                 | 3 4.33                                                                                | 3                                                   | 0.05                                                                                         | 3                                                                                                | 0.16                                                                                                                 | 3                                                                                                              |                                                                                                              | 3<br>3                                          | 0.01                                                                 | . 3                                               | 0.00                                                             |
|          | 707                                                                                                          | 5                                         | 2.40                                                                                                                | 5                                       | 2.58                                                                                                                 | 5                                           | 1.78                                                                                                                         | 5                                                                  | 6.20                                 | 5 3.80                                                                                | 5                                                   | 0.02                                                                                         | 5                                                                                                | 0.16                                                                                                                 | 5                                                                                                              | 0.32                                                                                                         |                                                 | 0.03                                                                 | 3                                                 | 0.00                                                             |
|          | 708                                                                                                          | . 3                                       | 1.00                                                                                                                | 3                                       | 0.52                                                                                                                 | 3                                           | 0.33                                                                                                                         | 2                                                                  | 1.95                                 | 2 0.50                                                                                | 3                                                   | 0.01                                                                                         | 3                                                                                                | 0.16                                                                                                                 | 3                                                                                                              | 0.36                                                                                                         | 5                                               | 0.03                                                                 | 4                                                 | 0.00                                                             |
|          |                                                                                                              |                                           |                                                                                                                     |                                         |                                                                                                                      |                                             |                                                                                                                              |                                                                    |                                      | - 0.30                                                                                |                                                     | 0.01                                                                                         | •                                                                                                | 0.27                                                                                                                 | 3                                                                                                              | 0.17                                                                                                         | 3                                               | 0.01                                                                 | 3                                                 | 0.00                                                             |
|          |                                                                                                              |                                           |                                                                                                                     |                                         |                                                                                                                      |                                             |                                                                                                                              |                                                                    |                                      |                                                                                       |                                                     |                                                                                              |                                                                                                  |                                                                                                                      |                                                                                                                |                                                                                                              |                                                 |                                                                      |                                                   |                                                                  |
| , •      |                                                                                                              |                                           | RSP                                                                                                                 | Tur                                     | bidity                                                                                                               | 8                                           | 005                                                                                                                          |                                                                    | DOC                                  | Tennins                                                                               | Ams                                                 | onium                                                                                        | Mit                                                                                              | rates                                                                                                                |                                                                                                                | ldahl                                                                                                        |                                                 |                                                                      |                                                   | red React                                                        |
| ∎y.      | Stn                                                                                                          | . N                                       | RSP<br>Mean                                                                                                         | Tur<br>N                                | bidity<br>Hean                                                                                                       | 8<br>N                                      | 005<br>Hean                                                                                                                  | N                                                                  | DOC<br>Mean                          | Tannins<br>N Hean                                                                     | Ama<br>N                                            | onium<br>Mean                                                                                | Nit<br>N                                                                                         | rates<br>Mean                                                                                                        |                                                                                                                | ldahl<br>rogen<br>Mean                                                                                       |                                                 | otal D<br>phorous<br>Mean                                            |                                                   | red Reacti<br>sphate<br>Mean                                     |
| ••       |                                                                                                              |                                           | Mean                                                                                                                | K                                       | Hean                                                                                                                 | N                                           | Hean                                                                                                                         | N                                                                  | Mean                                 | N Mean                                                                                |                                                     |                                                                                              | 2.0                                                                                              |                                                                                                                      |                                                                                                                | rogen                                                                                                        | Phos                                            | shorous                                                              |                                                   | sphate                                                           |
| ••       | 709                                                                                                          |                                           | Mean<br>1,67                                                                                                        | H<br>-<br>3                             | Hean                                                                                                                 | N<br>-<br>3                                 | Hean<br>1.30                                                                                                                 | N<br>-<br>3                                                        |                                      |                                                                                       |                                                     |                                                                                              | 2.0                                                                                              |                                                                                                                      |                                                                                                                | rogen                                                                                                        | Phos                                            | horous<br>Hean                                                       | Pho                                               | iphate<br>Mean                                                   |
| ••       | 709<br>710                                                                                                   | 3<br>3                                    | 1,67<br>1.00                                                                                                        | H<br>-<br>3<br>3                        | 1.70<br>1.80                                                                                                         | N<br>-<br>3<br>3                            | 1.30<br>0.97                                                                                                                 | N<br>-<br>3<br>0                                                   | Mean                                 | N Mean                                                                                | H                                                   | Hean                                                                                         |                                                                                                  | Mean                                                                                                                 |                                                                                                                | rogen<br>Hean<br>0.32                                                                                        | Phos:                                           | herous<br>Hean<br>0.02                                               | Phot<br>N                                         | phate<br>Mean<br>0.00                                            |
| ••       | 709<br>710<br>711                                                                                            | 7<br>3<br>3<br>3                          | 1,67<br>1.00<br>1.00                                                                                                | N<br>3<br>3<br>3                        | 1.70<br>1.80<br>0.52                                                                                                 | N<br>-<br>3                                 | Hean<br>1.30                                                                                                                 | _                                                                  | Mean                                 | N Hean<br>3 2.67                                                                      | N<br>-<br>3                                         | Mean<br>0.04                                                                                 | 3                                                                                                | Mean<br>0.19                                                                                                         | Nit<br>N<br>3                                                                                                  | 0.32<br>0.25                                                                                                 | Phosp<br>N<br>3<br>3                            | Mean<br>0.02                                                         | Phon<br>N<br>3                                    | Mean<br>0.00                                                     |
| ••       | 709<br>710<br>711<br>732                                                                                     | 3<br>3<br>3<br>3                          | 1,67<br>1.00<br>1.00<br>1.67                                                                                        | N                                       | 1.70<br>1.80<br>0.52<br>1.30                                                                                         | N<br>-<br>3<br>3                            | 1.30<br>0.97<br>0.40<br>1.10                                                                                                 | 0                                                                  | Mean 5.13                            | N Hean<br>3 2.67                                                                      | #<br>3<br>3                                         | 0.04<br>0.02                                                                                 | 3<br>3                                                                                           | 0.19<br>0.24<br>0.26                                                                                                 | Nit<br>N<br>-<br>3<br>3                                                                                        | 0.32<br>0.25<br>0.17                                                                                         | Phosp<br>N<br>-<br>3<br>3                       | 0.02<br>0.02<br>0.02                                                 | Phon<br>N<br>3<br>3                               | 0.00<br>0.00<br>0.00                                             |
| ••       | 709<br>710<br>711<br>732<br>714                                                                              | # 3<br>3<br>3<br>3<br>5                   | 1,67<br>1.00<br>1.00<br>1.67<br>1.00                                                                                | N                                       | 1.70<br>1.80<br>0.52<br>1.30<br>0.82                                                                                 | N - 3 3 3 3                                 | 1.30<br>0.97<br>0.40                                                                                                         | 0                                                                  | Mean 5.13                            | N Hean<br>3 2.67<br>0 -                                                               | 3<br>3<br>3<br>3                                    | 0.04<br>0.02<br>0.01                                                                         | 3<br>3<br>3<br>3                                                                                 | 0.19<br>0.24<br>0.26<br>0.21                                                                                         | Nit<br>N<br>3<br>3<br>3<br>3                                                                                   | 0.32<br>0.25<br>0.17<br>0.28                                                                                 | Phosp<br>N<br>3<br>3<br>3                       | 0.02<br>0.02<br>0.02<br>0.01<br>0.02                                 | Phot<br>N<br>-<br>3<br>3<br>3                     | 0.00<br>0.00<br>0.00<br>0.00<br>0.00                             |
| ••       | 709<br>710<br>711<br>732<br>714<br>733                                                                       | # - 3<br>3<br>3<br>3<br>5<br>3            | 1,67<br>1,00<br>1.00<br>1.67<br>1.00<br>1.33                                                                        | N                                       | 1.70<br>1.80<br>0.52<br>1.30                                                                                         | N - 3 3 3 3                                 | 1.30<br>0.97<br>0.40<br>1.10                                                                                                 | 0<br>0<br>3                                                        | Mean 5.13                            | M Hean<br>3 2.67<br>0 -<br>0 -<br>3 2.33                                              | 3<br>3<br>3<br>3                                    | 0.04<br>0.02<br>0.01<br>0.03<br>0.02                                                         | H - 3 3 3 5 5                                                                                    | 0.19<br>0.24<br>0.26<br>0.21<br>0.25                                                                                 | Nit<br>N<br>3<br>3<br>3<br>5                                                                                   | 0.32<br>0.25<br>0.17<br>0.28<br>0.22                                                                         | Phosp<br>N<br>3<br>3<br>3<br>5                  | 0.02<br>0.02<br>0.02<br>0.01<br>0.02<br>0.01                         | Phot N                                            | 0.00<br>0.00<br>0.00<br>0.00<br>0.00                             |
| •        | 709<br>710<br>711<br>732<br>714                                                                              | # 3<br>3<br>3<br>3<br>5                   | 1,67<br>1.00<br>1.00<br>1.67<br>1.00                                                                                | N                                       | 1.70<br>1.80<br>0.52<br>1.30<br>0.82                                                                                 | N - 3 3 3 5 5                               | 1.30<br>0.97<br>0.40<br>1.10<br>0.80                                                                                         | 0<br>0<br>3<br>0                                                   | Mean 5.13                            | N Hean<br>                                                                            | H - 3 3 3 3 5                                       | Mean<br>0.04<br>0.02<br>0.01<br>0.03<br>0.02<br>0.02                                         | N . 3 3 3 5 3 5 3                                                                                | 0.19<br>0.24<br>0.26<br>0.21<br>0.25<br>0.25                                                                         | Nit<br>N -<br>3<br>3<br>3<br>5<br>5                                                                            | 0.32<br>0.25<br>0.17<br>0.28<br>0.22<br>0.21                                                                 | Phosp N                                         | 0.02<br>0.02<br>0.02<br>0.01<br>0.02<br>0.01                         | Photo 8 - 3 - 3 - 3 - 5 - 3                       | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00             |
| ••       | 709<br>710<br>711<br>732<br>714<br>733                                                                       | # - 3<br>3<br>3<br>3<br>5<br>3            | 1,67<br>1,00<br>1.00<br>1.67<br>1.00<br>1.33                                                                        | N - 3 3 3 5 5 3                         | 1.70<br>1.80<br>0.52<br>1.30<br>0.82<br>0.73                                                                         | 3<br>3<br>3<br>3<br>5<br>5                  | 1.30<br>0.97<br>0.40<br>1.10<br>0.80<br>0.73                                                                                 | 0<br>0<br>3<br>0<br>0                                              | 5.13<br>4.33                         | N Hean                                                                                | 3<br>3<br>3<br>3<br>5<br>3                          | 0.04<br>0.02<br>0.01<br>0.03<br>0.02<br>0.02                                                 | 3<br>3<br>3<br>3<br>5<br>3                                                                       | 0.19<br>0.24<br>0.26<br>0.21<br>0.25<br>0.25                                                                         | Nit<br>N -<br>3<br>3<br>3<br>5<br>5<br>3                                                                       | 0.32<br>0.25<br>0.17<br>0.28<br>0.22<br>0.21<br>0.28                                                         | Phosp II                                        | 0.02<br>0.02<br>0.02<br>0.01<br>0.02<br>0.01<br>0.01                 | Photo N                                           | Mean<br><br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 |
| •        | 709<br>710<br>711<br>732<br>714<br>733<br>715                                                                | N - 3 3 3 5 3 3 3                         | 1,67<br>1.00<br>1.00<br>1.67<br>1.00<br>1.33<br>1.67                                                                | N - 3 3 3 5 3 5 3 3                     | 1.70<br>1.80<br>0.52<br>1.30<br>0.82<br>0.73<br>1.18                                                                 | 3<br>3<br>3<br>5<br>3                       | 1.30<br>0.97<br>0.40<br>1.10<br>0.80<br>0.73<br>1.20                                                                         | 0<br>0<br>3<br>0<br>0                                              | 5.13<br>4.33                         | N Mean<br>3 2.67<br>0 -<br>3 2.33<br>0 -<br>1 2.00<br>2 1.00                          | 3<br>3<br>3<br>3<br>5<br>3<br>5                     | 0.04<br>0.02<br>0.01<br>0.03<br>0.02<br>0.02<br>0.02                                         | 3<br>3<br>3<br>3<br>5<br>3<br>6                                                                  | 0.19<br>0.24<br>0.26<br>0.21<br>0.25<br>0.25<br>0.25                                                                 | Nit<br>N -<br>3<br>3<br>3<br>5<br>3<br>5<br>3                                                                  | 0.32<br>0.25<br>0.17<br>0.28<br>0.22<br>0.21<br>0.28                                                         | Phosp II                                        | 0.02<br>0.02<br>0.01<br>0.02<br>0.01<br>0.01<br>0.01<br>0.02         | Photo N                                           | Mean<br><br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 |
| ••       | 709<br>710<br>711<br>732<br>714<br>733<br>715<br>716                                                         | N - 3 3 3 5 3 6                           | 1,67<br>1.00<br>1.00<br>1.67<br>1.00<br>1.33<br>1.67                                                                | N - 3 3 3 5 3 5 3 6                     | 1.70<br>1.80<br>0.52<br>1.30<br>0.82<br>0.73<br>1.18<br>0.64                                                         | N - 3 3 3 5 3 5 3 6                         | 1.30<br>0.97<br>0.40<br>1.10<br>0.80<br>0.73<br>1.20<br>0.57<br>0.33                                                         | 0<br>0<br>3<br>0<br>0                                              | 5.13<br>4.33                         | N Mean                                                                                | H                                                   | 0.04<br>0.02<br>0.01<br>0.03<br>0.02<br>0.02<br>0.02<br>0.02                                 | 3<br>3<br>3<br>5<br>3<br>6<br>3                                                                  | 0.19<br>0.24<br>0.26<br>0.21<br>0.25<br>0.25<br>0.22<br>0.64<br>0.27                                                 | Nit<br>N<br>3<br>3<br>3<br>5<br>3<br>5<br>3                                                                    | 0.32<br>0.25<br>0.17<br>0.28<br>0.22<br>0.21<br>0.28<br>0.46<br>0.17                                         | Phosp II                                        | 0.02<br>0.02<br>0.02<br>0.01<br>0.02<br>0.01<br>0.01<br>0.02<br>0.01 | Photo N                                           | Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.0                           |
| ••       | 709<br>710<br>711<br>732<br>714<br>733<br>715<br>716<br>735                                                  | N - 3 3 3 5 3 5 3 6 3                     | 1,67<br>1.00<br>1.00<br>1.67<br>1.00<br>1.33<br>1.67<br>1.00                                                        | N                                       | 1.70<br>1.80<br>0.52<br>1.30<br>0.82<br>0.73<br>1.18<br>0.64<br>0.47                                                 | N - 3 3 3 5 5 3 6 3 3 3                     | 1.30<br>0.97<br>0.40<br>1.10<br>0.80<br>0.73<br>1.20<br>0.57<br>0.33<br>0.50                                                 | 0<br>0<br>3<br>0<br>0<br>1<br>6<br>0                               | 5.13<br>4.33                         | N Mean                                                                                | N - 3 3 3 5 3 5 3 6 3 3                             | 0.04<br>0.02<br>0.01<br>0.03<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02                         | 3<br>3<br>3<br>3<br>5<br>3<br>6<br>3                                                             | 0.19<br>0.24<br>0.26<br>0.21<br>0.25<br>0.25<br>0.22<br>0.64<br>0.27                                                 | Nit<br>N - 3<br>3 3 5 5 3 6 3 3                                                                                | 0.32<br>0.25<br>0.17<br>0.28<br>0.22<br>0.21<br>0.28<br>0.46<br>0.17                                         | Phosp N                                         | 0.02<br>0.02<br>0.01<br>0.02<br>0.01<br>0.01<br>0.01<br>0.02<br>0.01 | Phiot N - 3 3 3 3 5 3 3 6 3 3 5                   | Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.0                           |
| ••       | 709<br>710<br>711<br>732<br>714<br>733<br>715<br>716<br>735<br>718<br>719                                    | N - 3 3 3 5 3 6 3 3                       | 1,67<br>1.00<br>1.00<br>1.67<br>1.00<br>1.67<br>1.00<br>1.33<br>1.67<br>1.00<br>1.00                                | N - 3 3 3 5 3 6 3 3 3 3                 | 1.70<br>1.80<br>0.52<br>1.30<br>0.82<br>0.73<br>1.18<br>0.64<br>0.47<br>0.55<br>0.42                                 | H - 3 3 3 5 5 3 6 3 3 3 3                   | 1.30<br>0.97<br>0.40<br>1.10<br>0.80<br>0.73<br>1.20<br>0.57<br>0.33<br>0.50                                                 | 0<br>0<br>3<br>0<br>0<br>1<br>6<br>0<br>0                          | 5.13<br>4.33                         | N Mean 3 2.67 0 3 2.33 0 1 2.00 2 1.00 0 0 0                                          | N - 3 3 3 3 5 3 6 3 3 3 3                           | 0.04<br>0.02<br>0.01<br>0.03<br>0.02<br>0.02<br>0.02<br>0.02<br>0.01<br>0.02                 | 3<br>3<br>3<br>3<br>5<br>3<br>6<br>3<br>3                                                        | 0.19<br>0.24<br>0.26<br>0.21<br>0.25<br>0.25<br>0.22<br>0.64<br>0.27<br>0.26<br>0.27                                 | Nit<br>N -<br>3 3 3 5 3 6 3 3 6 3 3 3                                                                          | 0.32<br>0.25<br>0.17<br>0.28<br>0.22<br>0.21<br>0.28<br>0.46<br>0.17<br>0.18                                 | Phosp N                                         | 0.02<br>0.02<br>0.01<br>0.02<br>0.01<br>0.01<br>0.01<br>0.02<br>0.01 | Phiot N - 3 3 3 5 3 3 6 3 3 3 5                   | 9000 0.00 0.00 0.00 0.00 0.00 0.00 0.00                          |
| ••       | 709<br>710<br>711<br>732<br>714<br>733<br>715<br>716<br>735<br>718<br>719<br>720                             | N - 33 3 5 3 3 6 3 3 3 3                  | 1,67<br>1.00<br>1.00<br>1.67<br>1.00<br>1.33<br>1.67<br>1.00<br>1.00<br>1.00<br>1.00<br>5.67                        | N - 3 3 3 5 3 3 6 3 3 3 3 3             | 1.70<br>1.80<br>0.52<br>1.30<br>0.82<br>0.73<br>1.18<br>0.64<br>0.47<br>0.55<br>0.42<br>0.85                         | N - 3 3 3 5 3 3 3 3 3 3 3 3                 | 1.30<br>0.97<br>0.40<br>1.10<br>0.80<br>0.73<br>1.20<br>0.57<br>0.33<br>0.50<br>0.40                                         | 0<br>0<br>3<br>0<br>0<br>1<br>6<br>0<br>0                          | 5.13<br>4.33                         | N Mean 3 2.67 0 3 2.33 0 1 2.00 2 1.00 0 0 0 0                                        | 3<br>3<br>3<br>3<br>5<br>3<br>6<br>3<br>3<br>3<br>3 | 0.04<br>0.02<br>0.01<br>0.03<br>0.02<br>0.02<br>0.02<br>0.02<br>0.01<br>0.02                 | 3<br>3<br>3<br>3<br>5<br>3<br>5<br>3<br>6<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | 0.19<br>0.24<br>0.26<br>0.21<br>0.25<br>0.25<br>0.25<br>0.22<br>0.64<br>0.27<br>0.26<br>0.27                         | Nit N - 3 3 3 3 5 3 3 3 3 3 3 3                                                                                | 0.32<br>0.25<br>0.17<br>0.28<br>0.22<br>0.21<br>0.21<br>0.21<br>0.46<br>0.17<br>0.18<br>0.17                 | Phosp N                                         | 0.02<br>0.02<br>0.01<br>0.02<br>0.01<br>0.01<br>0.01<br>0.01         | Prior N 3 3 3 5 3 3 6 3 3 3 3 3 3                 | Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00                          |
| ••       | 709<br>710<br>711<br>732<br>714<br>733<br>715<br>716<br>735<br>718<br>719<br>720<br>721                      | N - 3 3 3 5 3 3 6 3 3 3 3 3 3             | 1,67<br>1,00<br>1,00<br>1,67<br>1,00<br>1,33<br>1,67<br>1,00<br>1,00<br>1,00<br>4,00<br>5,67                        | N - 3 3 3 3 5 3 3 3 3 3 3 3 3           | 1.70<br>1.80<br>0.52<br>1.30<br>0.82<br>0.73<br>1.18<br>0.64<br>0.47<br>0.55<br>0.42<br>0.85<br>0.30                 | N - 3 3 3 5 5 3 3 6 3 3 3 3 3 3 3 3 3 3 3 3 | 1.30<br>0.97<br>0.40<br>1.10<br>0.80<br>0.73<br>1.20<br>0.57<br>0.33<br>0.50<br>0.40<br>0.70<br>0.33                         | 0<br>0<br>3<br>0<br>0<br>1<br>6<br>0<br>0<br>0                     | 5.13<br>4.33                         | M Mean  3 2.67 0 - 3 2.33 0 - 1 2.00 2 1.00 0 - 0 - 0 - 0 - 0 -                       | N - 3 3 3 5 3 6 3 3 3 3 3 3 3 3                     | 0.04<br>0.02<br>0.01<br>0.03<br>0.02<br>0.02<br>0.02<br>0.02<br>0.01<br>0.02<br>0.01         | 3<br>3<br>3<br>3<br>3<br>5<br>3<br>3<br>6<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | 0.19<br>0.24<br>0.26<br>0.21<br>0.25<br>0.25<br>0.25<br>0.26<br>0.27<br>0.26<br>0.27                                 | Nit N - 3 3 3 3 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                                  | 0.32<br>0.25<br>0.17<br>0.28<br>0.22<br>0.21<br>0.21<br>0.26<br>0.46<br>0.17<br>0.18<br>0.17<br>0.23         | Phosp N                                         | 0.02<br>0.02<br>0.01<br>0.01<br>0.02<br>0.01<br>0.01<br>0.01         | Prior N 3 3 3 5 3 3 6 3 3 3 3 3 3 3 3 3 3 3 3 3   | Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00                          |
| ••       | 709<br>710<br>711<br>732<br>714<br>733<br>715<br>716<br>735<br>718<br>719<br>720<br>721<br>737               | N 3 3 3 3 5 3 3 6 3 3 3 3 3 3 3 3         | 1,67<br>1,00<br>1,00<br>1,67<br>1,00<br>1,33<br>1,67<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00        | N - 3 3 3 3 3 3 3 3 3 3 3 3 3 3         | 1.70<br>1.80<br>0.52<br>1.30<br>0.82<br>0.73<br>1.18<br>0.64<br>0.47<br>0.55<br>0.42<br>0.85<br>0.30                 | N - 3 3 3 3 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3   | 1.30<br>0.97<br>0.40<br>1.10<br>0.80<br>0.73<br>1.20<br>0.57<br>0.33<br>0.50<br>0.40<br>0.70<br>0.33<br>0.23                 | 0<br>0<br>3<br>0<br>0<br>1<br>6<br>0<br>0<br>0<br>0                | 5.13<br>4.33                         | N Mean  3 2.67 0 0 3 2.33 0 1 2.00 2 1.00 0 0 -0 0 -0 0 -0 0 -0 0 -0 0 -0 0 -0        | N - 3 3 3 5 5 3 6 3 3 3 3 3 3 3 3 3 3 3 3 3         | 0.04<br>0.02<br>0.01<br>0.03<br>0.02<br>0.02<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02         | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3      | 0.19<br>0.24<br>0.26<br>0.21<br>0.25<br>0.25<br>0.22<br>0.64<br>0.27<br>0.26<br>0.27<br>0.26<br>0.27                 | Nit<br>N -<br>3<br>3<br>3<br>5<br>3<br>5<br>3<br>6<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | 0.32<br>0.25<br>0.25<br>0.17<br>0.28<br>0.22<br>0.21<br>0.28<br>0.46<br>0.17<br>0.18<br>0.17                 | Phosp N - 3 3 3 3 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 0.02<br>0.02<br>0.01<br>0.01<br>0.01<br>0.02<br>0.01<br>0.01         | Prior N - 3 3 3 5 3 3 6 3 3 3 3 3 3 3 3 3 3 3 3 3 | Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00                          |
| ••       | 709<br>710<br>711<br>732<br>714<br>733<br>715<br>716<br>735<br>718<br>719<br>720<br>721<br>737<br>723        | N - 33 3 3 5 3 3 6 3 3 3 3 3 3 2          | 1,67<br>1,00<br>1,00<br>1,67<br>1,00<br>1,33<br>1,67<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,0 | N - 3 3 3 3 3 3 3 3 3 3 3 2             | 1.70<br>1.80<br>0.52<br>1.30<br>0.82<br>0.73<br>1.18<br>0.64<br>0.47<br>0.55<br>0.42<br>0.85<br>0.30<br>0.27         | N - 33 3 3 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3    | 1.30<br>0.97<br>0.40<br>1.10<br>0.80<br>0.73<br>1.20<br>0.57<br>0.33<br>0.50<br>0.40<br>0.70<br>0.33<br>0.23                 | 0<br>0<br>3<br>0<br>0<br>1<br>6<br>0<br>0<br>0<br>0<br>0           | 5.13<br>4.33                         | N Mean                                                                                | N - 3 3 3 3 5 3 3 3 3 3 3 2 2                       | 0.04<br>0.02<br>0.01<br>0.03<br>0.02<br>0.02<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01 | 3<br>3<br>3<br>3<br>5<br>3<br>6<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | 0.19<br>0.24<br>0.26<br>0.21<br>0.25<br>0.22<br>0.64<br>0.27<br>0.26<br>0.27<br>0.26<br>0.27<br>0.28<br>0.27<br>0.28 | Nit<br>N - 3<br>3<br>3<br>3<br>5<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3    | 0.32<br>0.25<br>0.25<br>0.27<br>0.28<br>0.22<br>0.21<br>0.28<br>0.46<br>0.17<br>0.18<br>0.17<br>0.23<br>0.14 | Phosp N - 3 3 3 3 5 3 3 3 3 3 3 3 3 3 2         | 0.02<br>0.02<br>0.01<br>0.01<br>0.02<br>0.01<br>0.01<br>0.01         | Prior N 3 3 3 5 3 3 6 3 3 3 3 3 3 3 3 3 3 3 3 3   | Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00                          |
| ••       | 709<br>710<br>711<br>732<br>714<br>733<br>715<br>716<br>735<br>718<br>719<br>720<br>721<br>737               | N 3 3 3 3 5 3 3 6 3 3 3 3 3 3 3 3         | 1,67<br>1,00<br>1,00<br>1,00<br>1,00<br>1,33<br>1,67<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,0 | N - 3 3 3 3 3 3 3 3 3 3 3 3 3 3         | 1.70<br>1.80<br>0.52<br>1.30<br>0.82<br>0.73<br>1.18<br>0.64<br>0.47<br>0.55<br>0.42<br>0.85<br>0.30                 | N - 3 3 3 3 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3   | 1.30<br>0.97<br>0.40<br>1.10<br>0.80<br>0.73<br>1.20<br>0.57<br>0.33<br>0.50<br>0.40<br>0.70<br>0.33<br>0.23                 | 0<br>0<br>3<br>0<br>0<br>1<br>6<br>0<br>0<br>0<br>0                | 5.13<br>4.33                         | N Mean  3 2.67 0 0 3 2.33 0 1 2.00 2 1.00 0 0 -0 0 -0 0 -0 0 -0 0 -0 0 -0 0 -0        | N - 3 3 3 5 5 3 6 3 3 3 3 3 3 3 3 3 3 3 3 3         | 0.04<br>0.02<br>0.01<br>0.03<br>0.02<br>0.02<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02         | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3      | 0.19<br>0.24<br>0.26<br>0.21<br>0.25<br>0.25<br>0.22<br>0.64<br>0.27<br>0.26<br>0.27<br>0.26<br>0.27                 | Nit<br>N -<br>3<br>3<br>3<br>5<br>3<br>5<br>3<br>6<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | 0.32<br>0.25<br>0.25<br>0.17<br>0.28<br>0.22<br>0.21<br>0.28<br>0.46<br>0.17<br>0.18<br>0.17                 | Phosp N - 3 3 3 3 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 0.02<br>0.02<br>0.01<br>0.01<br>0.01<br>0.02<br>0.01<br>0.01         | Prior N - 3 3 3 5 3 3 6 3 3 3 3 3 3 3 3 3 3 3 3 3 | Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.0                           |
| <b>8</b> | 709<br>710<br>711<br>732<br>714<br>733<br>715<br>716<br>735<br>718<br>719<br>720<br>721<br>737<br>723<br>728 | N - 3 3 3 3 5 3 3 5 3 3 3 3 3 3 3 2 2 3 3 | 1,67<br>1,00<br>1,00<br>1,67<br>1,00<br>1,67<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,0         | N - 3 3 3 3 3 3 3 3 3 3 3 2             | 1.70<br>1.80<br>0.52<br>1.30<br>0.82<br>0.73<br>1.18<br>0.64<br>0.47<br>0.55<br>0.42<br>0.85<br>0.30<br>0.27<br>0.25 | N - 33 3 3 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3    | 1.30<br>0.97<br>0.40<br>1.10<br>0.80<br>0.73<br>1.20<br>0.57<br>0.33<br>0.50<br>0.40<br>0.70<br>0.33<br>0.23<br>0.25         | 0<br>0<br>3<br>0<br>0<br>1<br>6<br>0<br>0<br>0<br>0<br>0           | 5.13<br>4.33                         | N Mean                                                                                | N - 3 3 3 3 5 3 3 3 3 3 3 2 2                       | 0.04<br>0.02<br>0.01<br>0.03<br>0.02<br>0.02<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01 | 3<br>3<br>3<br>3<br>5<br>3<br>6<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | 0.19<br>0.24<br>0.26<br>0.21<br>0.25<br>0.22<br>0.64<br>0.27<br>0.26<br>0.27<br>0.26<br>0.27<br>0.28<br>0.27         | Nit<br>N - 3<br>3<br>3<br>3<br>5<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3    | 0.32<br>0.25<br>0.17<br>0.28<br>0.21<br>0.28<br>0.46<br>0.17<br>0.18<br>0.17<br>0.23<br>0.14<br>0.15<br>0.15 | Phosp N - 3 3 3 3 5 3 3 3 3 3 3 3 3 3 2         | 0.02<br>0.02<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01         | Prior N - 3 3 3 3 3 5 5 3 3 3 3 3 3 3 3 3 2 2 2 2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0      |
| 8        | 709 710 711 732 714 733 715 716 735 718 719 720 721 737 723 728                                              | N - 33 3 3 5 3 3 5 3 3 3 3 3 2 2 - 3 4    | 1,67<br>1,00<br>1,00<br>1,67<br>1,00<br>1,67<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,0         | N - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 1.70<br>1.80<br>0.52<br>1.30<br>0.82<br>0.73<br>1.18<br>0.64<br>0.47<br>0.55<br>0.42<br>0.85<br>0.30<br>0.27<br>0.25 | N 3 3 3 3 5 5 3 3 3 3 3 3 3 2 2 2           | 1.30<br>0.97<br>0.40<br>1.10<br>0.80<br>0.73<br>1.20<br>0.57<br>0.33<br>0.50<br>0.40<br>0.70<br>0.33<br>0.23<br>0.25<br>0.20 | 0<br>0<br>3<br>0<br>0<br>1<br>6<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 5.13<br>4.33                         | N Mean  3 2.67 0 - 0 - 3 2.33 0 - 1 2.00 2 1.00 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 | N - 3 3 3 3 5 3 3 3 3 3 3 2 2 2 3 3 3               | Mean 0.04 0.02 0.01 0.03 0.02 0.02 0.02 0.01 0.02 0.01 0.02 0.01 0.01                        | 3<br>3<br>3<br>3<br>5<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | 0.19<br>0.24<br>0.26<br>0.25<br>0.25<br>0.22<br>0.64<br>0.27<br>0.26<br>0.27<br>0.28<br>0.27<br>0.28                 | Nit N 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                                      | 0.32<br>0.25<br>0.17<br>0.28<br>0.22<br>0.21<br>0.28<br>0.46<br>0.17<br>0.18<br>0.17<br>0.15<br>0.15         | Phospin 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3   | 0.02<br>0.02<br>0.01<br>0.02<br>0.01<br>0.01<br>0.01<br>0.01         | Prior N 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3       | 9thate  Mean  0.00 0.00 0.00 0.00 0.00 0.00 0.                   |
| 8        | 709<br>710<br>711<br>732<br>714<br>733<br>715<br>716<br>735<br>718<br>719<br>720<br>721<br>737<br>723<br>728 | N - 3 3 3 3 5 3 3 5 3 3 3 3 3 3 3 2 2 3 3 | 1,67<br>1,00<br>1,00<br>1,67<br>1,00<br>1,67<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,0         | N - 3 3 3 3 3 3 3 3 3 2 2 2             | 1.70<br>1.80<br>0.52<br>1.30<br>0.82<br>0.73<br>1.18<br>0.64<br>0.47<br>0.55<br>0.42<br>0.85<br>0.30<br>0.27<br>0.25 | N 3 3 3 3 5 5 3 3 3 3 3 3 3 2 2 2 3 3       | 1.30<br>0.97<br>0.40<br>1.10<br>0.80<br>0.73<br>1.20<br>0.57<br>0.33<br>0.50<br>0.40<br>0.70<br>0.33<br>0.23<br>0.25         | 0<br>0<br>3<br>0<br>0<br>1<br>6<br>0<br>0<br>0<br>0<br>0           | Heen<br>5.13<br>4.33<br>4.90<br>2.48 | N Mean  3 2.67 0 - 0 - 3 2.33 0 - 1 2.00 2 1.00 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 | N - 3 - 3 - 3 - 5 - 3 - 3 - 3 - 3 - 3 - 3           | 0.04<br>0.02<br>0.01<br>0.03<br>0.02<br>0.02<br>0.02<br>0.01<br>0.02<br>0.01<br>0.01<br>0.01 | 3<br>3<br>3<br>3<br>3<br>5<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | 0.19<br>0.24<br>0.26<br>0.21<br>0.25<br>0.22<br>0.64<br>0.27<br>0.26<br>0.27<br>0.26<br>0.27<br>0.28<br>0.27         | Nit N                                                                                                          | 0.32<br>0.25<br>0.17<br>0.28<br>0.21<br>0.28<br>0.46<br>0.17<br>0.18<br>0.17<br>0.23<br>0.14<br>0.15<br>0.15 | Phospin II                                      | 0.02<br>0.02<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01         | Prior N - 3 3 3 3 3 5 5 3 3 3 3 3 3 3 3 3 2 2 2 2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0      |

<sup>\*</sup> all units mg/L except Turbidity(ftu)
MB - Moberly Bay JB - Jackfish Bay proper TB - Turnel Bay

Survey: 2 open water stations (surface water)

| Bay   | Stn                                                                                                          | Ca<br>N                                   | lcium<br>Mean                                                                                                                      | Mag                                                                                              | nesium<br>Mean                                                                                                               | M                                     | Sodium<br>Mean                                                                        |                                     | assium<br>Mean                                                                                               | Alk                                              | alinity<br>Mean                                                                                                                     | St                                        | Ilphate                                                                                                                      |                                                                                             | oride                                                                                                                   |                                                                                                  | uctivity                                                                                                                                          |                                                                         | pH                                                                                           |
|-------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
|       | :                                                                                                            |                                           |                                                                                                                                    | •                                                                                                | ••••                                                                                                                         |                                       |                                                                                       |                                     | neari                                                                                                        |                                                  | near!                                                                                                                               | 7                                         | Mean                                                                                                                         | N                                                                                           | Mean                                                                                                                    | N                                                                                                | Mean                                                                                                                                              | N                                                                       | Mean                                                                                         |
| MB    | 701                                                                                                          | 6                                         | 39.30                                                                                                                              | 6                                                                                                | 5.58                                                                                                                         | 6                                     | 147.00                                                                                | 5                                   | 5.24                                                                                                         | 6                                                | 57.20                                                                                                                               | 6                                         | 36.30                                                                                                                        | 4                                                                                           | 227.00                                                                                                                  |                                                                                                  | 007 00                                                                                                                                            | -                                                                       |                                                                                              |
| •     | 803                                                                                                          | 3                                         | 39.00                                                                                                                              | . 3                                                                                              | 5.63                                                                                                                         | . 3                                   |                                                                                       | 3                                   | 5.27                                                                                                         | 3                                                | 57.00                                                                                                                               | 3                                         | 35.80                                                                                                                        |                                                                                             | 222.00                                                                                                                  | 3                                                                                                | 983.00                                                                                                                                            | 6                                                                       | 6.73                                                                                         |
|       | 805                                                                                                          | 3                                         | 21.00                                                                                                                              | 3                                                                                                | 3.63                                                                                                                         | 3                                     | 45.30                                                                                 | 3                                   | 1.93                                                                                                         | 3                                                | 46.00                                                                                                                               | 3                                         | 12.30                                                                                                                        | 3                                                                                           | 59.40                                                                                                                   | _                                                                                                |                                                                                                                                                   | 3                                                                       | 6.77                                                                                         |
|       | 702                                                                                                          | . 2                                       | 21.00                                                                                                                              | 2                                                                                                | 3.80                                                                                                                         | 2                                     |                                                                                       | 3                                   | 1.90                                                                                                         | . 2                                              | 45.00                                                                                                                               | -                                         | 12.00                                                                                                                        | 2                                                                                           |                                                                                                                         |                                                                                                  | 362.00                                                                                                                                            | 3                                                                       | 6.93                                                                                         |
|       | 806                                                                                                          | 2                                         | 26.50                                                                                                                              | 2                                                                                                | 4.25                                                                                                                         | 2                                     |                                                                                       | 2                                   | 2.95                                                                                                         | 2                                                | 51.50                                                                                                                               | 2                                         |                                                                                                                              | - 7                                                                                         | 72.40                                                                                                                   |                                                                                                  | 362.00                                                                                                                                            | 2                                                                       | 7.00                                                                                         |
|       | 807                                                                                                          | 3                                         | 16.70                                                                                                                              | 3                                                                                                | 3.23                                                                                                                         | 3                                     | 24.70                                                                                 | 3                                   | 1.23                                                                                                         | 3                                                | 45.00                                                                                                                               | 3                                         | 22.60                                                                                                                        | 2                                                                                           | 108.00                                                                                                                  |                                                                                                  | 570.00                                                                                                                                            | , 2                                                                     | 7.05                                                                                         |
|       | 808                                                                                                          | 3                                         | 19.00                                                                                                                              | 3                                                                                                | 3.30                                                                                                                         | 3                                     | 33.00                                                                                 | 3                                   | 1.47                                                                                                         | 3                                                | 45.30                                                                                                                               | 3                                         | 8.84                                                                                                                         | 3                                                                                           | 34.70                                                                                                                   |                                                                                                  | 244.00                                                                                                                                            | 3                                                                       | 7.17                                                                                         |
|       | 809                                                                                                          | 3                                         |                                                                                                                                    | 3                                                                                                | 2.97                                                                                                                         | 3                                     |                                                                                       | 3                                   | 0.77                                                                                                         | 3                                                | 43.30                                                                                                                               | -                                         | 11.30                                                                                                                        | 3                                                                                           | 51.30                                                                                                                   |                                                                                                  | 308.00                                                                                                                                            | 3                                                                       | 7.03                                                                                         |
| ٠,    | 810                                                                                                          | 3                                         | 17.30                                                                                                                              | - 3                                                                                              | 3.30                                                                                                                         | 3                                     | 26.00                                                                                 | 3                                   | 1.30                                                                                                         | 3                                                |                                                                                                                                     | 3                                         | 5.24                                                                                                                         | 3                                                                                           | 15.40                                                                                                                   |                                                                                                  | 154.00                                                                                                                                            | 3                                                                       | 7.57                                                                                         |
|       | 811                                                                                                          | 3                                         | 15.00                                                                                                                              | 3                                                                                                | 2.97                                                                                                                         | 3                                     | 14.60                                                                                 | 3                                   | 0.89                                                                                                         | . 3                                              | 45.00                                                                                                                               | 3                                         |                                                                                                                              | 3                                                                                           | 39.30                                                                                                                   |                                                                                                  | 253.00                                                                                                                                            | 3                                                                       | 7.17                                                                                         |
|       | 812                                                                                                          | 3                                         | 17.30                                                                                                                              | 3                                                                                                | 3.27                                                                                                                         | 3                                     | 24.70                                                                                 | 3                                   |                                                                                                              | 3                                                | 43.30                                                                                                                               |                                           | 324.00                                                                                                                       | 3.                                                                                          | 21.90                                                                                                                   |                                                                                                  | 166.00                                                                                                                                            | 3                                                                       | 7.47                                                                                         |
|       | 813                                                                                                          |                                           | 17.00                                                                                                                              | 2                                                                                                | 3.20                                                                                                                         | 2                                     | 23.50                                                                                 | 2                                   | 1.27                                                                                                         | _                                                | 44.70                                                                                                                               | 3                                         | 8.46                                                                                                                         | 3                                                                                           | 35.30                                                                                                                   | : 3                                                                                              |                                                                                                                                                   | 3                                                                       | 7.13                                                                                         |
| 1.    | 814                                                                                                          | 3                                         | 17.00                                                                                                                              | 3                                                                                                | 3.20                                                                                                                         | 3                                     | 24.00                                                                                 |                                     | 1.10                                                                                                         | 2                                                | 42.50                                                                                                                               | 2                                         | 7.29                                                                                                                         | 2                                                                                           | 36.10                                                                                                                   |                                                                                                  | 228.00                                                                                                                                            | 2                                                                       | 7.15                                                                                         |
|       | 815                                                                                                          | 3                                         | 15.70                                                                                                                              | 3                                                                                                | 3.13                                                                                                                         | 3                                     |                                                                                       | 3                                   | 1.20                                                                                                         | 3                                                | 44.70                                                                                                                               | 3                                         | 8.74                                                                                                                         | 3                                                                                           | 34.90                                                                                                                   |                                                                                                  | 238.00                                                                                                                                            | 3                                                                       | 7.23                                                                                         |
|       | 703                                                                                                          | 3                                         | 15.30                                                                                                                              | 3                                                                                                | 3.00                                                                                                                         | 3                                     | 15.60                                                                                 | - 3                                 | 0.93                                                                                                         | . 3                                              | 43.00                                                                                                                               | . 3                                       |                                                                                                                              | 3                                                                                           | 24.00                                                                                                                   |                                                                                                  | 193.00                                                                                                                                            | 3                                                                       | 7.40                                                                                         |
|       | 704                                                                                                          | 6                                         | 16.50                                                                                                                              | 6                                                                                                | 3.13                                                                                                                         | ა<br>6                                | 14.70                                                                                 | 3                                   | 0.94                                                                                                         | 3                                                | 43.70                                                                                                                               | 3                                         | 6.72                                                                                                                         | . 3                                                                                         | 22.20                                                                                                                   |                                                                                                  | 184.00                                                                                                                                            | 3                                                                       | 7.37                                                                                         |
|       | 705                                                                                                          | 3                                         | 13.30                                                                                                                              | 3                                                                                                | 2.80                                                                                                                         | 3                                     | 22.30                                                                                 | . 6                                 | 1.13                                                                                                         | 6.                                               | 44.70                                                                                                                               | 6                                         | 8.10                                                                                                                         | 6                                                                                           | 28.70                                                                                                                   |                                                                                                  | 223.00                                                                                                                                            | 6                                                                       | 7.23                                                                                         |
|       | 816                                                                                                          | 3                                         | 15.70                                                                                                                              | 3                                                                                                | 3.00                                                                                                                         |                                       | 12.50                                                                                 | 3                                   | 0.57                                                                                                         | 3                                                | 42.70                                                                                                                               | 3                                         | 3.47                                                                                                                         | 3                                                                                           | 15.50                                                                                                                   | . 3                                                                                              | 109.00                                                                                                                                            | 3                                                                       | 7.87                                                                                         |
| and S | 817                                                                                                          | 3                                         | 15.30                                                                                                                              | 3                                                                                                |                                                                                                                              | 3                                     | 14.40                                                                                 | 3                                   | 0.91                                                                                                         | 3                                                | 43.30                                                                                                                               | 3                                         | 6.95                                                                                                                         | 3                                                                                           | 22.30                                                                                                                   | 3                                                                                                | 177.00                                                                                                                                            | 3                                                                       | 7.40                                                                                         |
|       | 818                                                                                                          | 3                                         |                                                                                                                                    | 3                                                                                                | 3.03                                                                                                                         | 3                                     |                                                                                       | 3.                                  | 0.96                                                                                                         | 3                                                | 44.30                                                                                                                               | 3                                         | 7.03                                                                                                                         | 3                                                                                           | 23.50                                                                                                                   | 3                                                                                                | 183.00                                                                                                                                            | 3                                                                       | 7.43                                                                                         |
| 4.0   | 819                                                                                                          | 3                                         | 14.00                                                                                                                              |                                                                                                  | 2.93                                                                                                                         | 3                                     | 7.90                                                                                  | 3                                   | 0.74                                                                                                         | 3                                                | 43.00                                                                                                                               | 3                                         | 4.91                                                                                                                         | . 3                                                                                         | 13.00                                                                                                                   | 3                                                                                                | 143.00                                                                                                                                            | 3                                                                       | 7.67                                                                                         |
|       | 706                                                                                                          | 3                                         | 13.30                                                                                                                              | 3                                                                                                | 2.83                                                                                                                         | 3                                     | 3.03                                                                                  | 3                                   | 0.56                                                                                                         | 3                                                | 42.70                                                                                                                               | 3                                         | 3.53                                                                                                                         | 3                                                                                           | 4.03                                                                                                                    | 3                                                                                                | 109.00                                                                                                                                            | · 3                                                                     | 7.87                                                                                         |
| 100   | 707                                                                                                          |                                           | 15.30                                                                                                                              | 3                                                                                                | 3.00                                                                                                                         | 3                                     | 13.50                                                                                 | 3                                   | 0.92                                                                                                         | 3                                                | 44.00                                                                                                                               | - 3                                       | 6.61                                                                                                                         | 3                                                                                           | 20.30                                                                                                                   | . 3                                                                                              | 173.00                                                                                                                                            | 3                                                                       | 7.43                                                                                         |
| , i   | 707                                                                                                          | 5<br>3                                    | 14.60                                                                                                                              | . 5<br>2                                                                                         | 2.94<br>2.80                                                                                                                 | 3                                     | 15.80<br>2.87                                                                         | 5<br>3                              | 0.88<br>0.55                                                                                                 | 5<br>3                                           | 43.80                                                                                                                               | 5                                         | 5.87                                                                                                                         | 5                                                                                           | 17.10                                                                                                                   | 5                                                                                                | 182.00                                                                                                                                            | 5                                                                       | 7.38                                                                                         |
|       |                                                                                                              | •                                         |                                                                                                                                    | <del></del>                                                                                      |                                                                                                                              |                                       |                                                                                       | * :<br>*,                           |                                                                                                              | <del>-                                    </del> | 42.70                                                                                                                               |                                           | 3.54                                                                                                                         | 3                                                                                           | 3.77                                                                                                                    |                                                                                                  | 108.00                                                                                                                                            | 3                                                                       | 7.83                                                                                         |
|       |                                                                                                              |                                           | lcium 🛒                                                                                                                            |                                                                                                  |                                                                                                                              |                                       |                                                                                       |                                     | · • · -                                                                                                      |                                                  |                                                                                                                                     |                                           |                                                                                                                              |                                                                                             |                                                                                                                         |                                                                                                  |                                                                                                                                                   |                                                                         |                                                                                              |
| Bay   | Stn                                                                                                          | N                                         |                                                                                                                                    | -                                                                                                | nesium<br>Kean                                                                                                               |                                       | Sodium<br>Mean                                                                        |                                     | assium<br>Mean                                                                                               | Alk                                              | alinity                                                                                                                             | 45                                        | lphate                                                                                                                       | ,                                                                                           | oride                                                                                                                   | Cond                                                                                             | uctivity                                                                                                                                          |                                                                         | рN                                                                                           |
| Bay   | Stn                                                                                                          | 1 12                                      | Hean                                                                                                                               | Mag<br>N                                                                                         | Hean                                                                                                                         | N                                     | Sodium<br>Mean                                                                        | Pot                                 | Mean                                                                                                         | Alk                                              | alinity<br>Mean                                                                                                                     | St<br>N                                   | alphate<br>Mean                                                                                                              | Ch (                                                                                        | oride<br>Hean                                                                                                           | Condi<br>N                                                                                       | uctivity<br>Hean                                                                                                                                  | N                                                                       | pli<br>Mean                                                                                  |
| Bay   |                                                                                                              | N                                         | Hean                                                                                                                               | N                                                                                                | Mean                                                                                                                         | N                                     | Mean                                                                                  | N                                   | Mean                                                                                                         | N                                                | Mean                                                                                                                                | N                                         | Mean                                                                                                                         | N                                                                                           | Hean                                                                                                                    | N                                                                                                | Hean                                                                                                                                              | H                                                                       | Hean                                                                                         |
| •••   | 709                                                                                                          | N<br>3                                    | Hean<br>14.70                                                                                                                      | N                                                                                                | Hean<br>2.93                                                                                                                 | N<br>-<br>3                           | Mean<br>10.10                                                                         | N<br>-                              | Mean<br>                                                                                                     | N -                                              | Hean<br>43.70                                                                                                                       | N -                                       | Mean<br>5.60                                                                                                                 | N<br>-<br>3                                                                                 | Hean<br>15.40                                                                                                           | N<br>3                                                                                           | Hean<br>156.00                                                                                                                                    | H .                                                                     | Hean<br>7.57                                                                                 |
| •••   | 709<br>710                                                                                                   | N<br>-<br>3<br>3                          | Hean<br>14.70<br>14.30                                                                                                             | N 3                                                                                              | 2.93<br>2.83                                                                                                                 | N<br>3<br>3                           | Mean<br>10.10<br>6.93                                                                 | N<br>3<br>3                         | Mean<br>0.80<br>0.70                                                                                         | N - 3                                            | Hean<br>43.70<br>43.70                                                                                                              | . N<br>. 3                                | 5.60<br>4.55                                                                                                                 | N<br>-<br>3<br>3                                                                            | Hean<br>15.40<br>9.53                                                                                                   | 3<br>3                                                                                           | Hean<br>156.00<br>132.00                                                                                                                          | 3                                                                       | 7.57<br>7.70                                                                                 |
| •••   | 709<br>710<br>711                                                                                            | N - 3 3 3 3                               | Hean<br>14.70<br>14.30<br>13.30                                                                                                    | N<br>3<br>3<br>3                                                                                 | 2.93<br>2.83<br>2.80                                                                                                         | N<br>-<br>3<br>3<br>3                 | Mean<br>10.10<br>6.93<br>2.87                                                         | N<br>3<br>3<br>3                    | 0.80<br>0.70<br>0.55                                                                                         | N<br>3<br>3<br>3                                 | Hean<br>43.70<br>43.70<br>42.70                                                                                                     | N - 3 3 3 3                               | 5.60<br>4.55<br>3.55                                                                                                         | N - 3 3 3 3                                                                                 | 15.40<br>9.53<br>3.87                                                                                                   | N<br>3<br>3<br>3                                                                                 | 156.00<br>132.00<br>107.00                                                                                                                        | 3                                                                       | 7.57<br>7.70<br>7.90                                                                         |
| •••   | 709<br>710<br>711<br>732                                                                                     | N 3 3 3 3 3                               | Hean<br>14.70<br>14.30<br>13.30<br>14.00                                                                                           | N                                                                                                | 2.93<br>2.83<br>2.80<br>2.90                                                                                                 | N - 3 3 3 3 3                         | Hean<br>10.10<br>6.93<br>2.87<br>8.20                                                 | N<br>3<br>3<br>3                    | 0.80<br>0.70<br>0.55<br>0.73                                                                                 | N - 3 - 3 - 3 - 3 - 3                            | Hean<br>43.70<br>43.70<br>42.70<br>43.30                                                                                            | N . 3 3 3 3 3                             | 5.60<br>4.55<br>3.55<br>5.03                                                                                                 | N · 3 · 3 · 3 · 3 · 3                                                                       | 15.40<br>9.53<br>3.87<br>12.10                                                                                          | N<br>3<br>3<br>3<br>3                                                                            | Hean<br>156.00<br>132.00<br>107.00<br>142.00                                                                                                      | 3 3                                                                     | 7.57<br>7.70<br>7.90<br>7.60                                                                 |
|       | 709<br>710<br>711<br>732<br>714                                                                              | N - 3 3 3 5 5                             | Hean<br>14.70<br>14.30<br>13.30<br>14.00<br>14.00                                                                                  | N                                                                                                | 2.93<br>2.83<br>2.80<br>2.90<br>2.84                                                                                         | N - 3 3 3 5 5                         | Hean<br>10.10<br>6.93<br>2.87<br>8.20<br>5.46                                         | N - 3 3 3 5 5                       | 0.80<br>0.70<br>0.55<br>0.73<br>0.63                                                                         | N - 3 - 3 - 3 - 5 - 5                            | 43.70<br>43.70<br>42.70<br>43.30<br>43.40                                                                                           | N - 3 3 3 5 5                             | 5.60<br>4.55<br>3.55<br>5.03<br>4.28                                                                                         | * 3<br>3<br>3<br>5                                                                          | Hean<br>15.40<br>9.53<br>3.87<br>12.10<br>7.62                                                                          | N                                                                                                | Hean<br>156.00<br>132.00<br>107.00<br>142.00<br>125.00                                                                                            | 3<br>3<br>3<br>5                                                        | 7.57<br>7.70<br>7.90<br>7.60<br>7.74                                                         |
| •••   | 709<br>710<br>711<br>732<br>714<br>733                                                                       | N - 3 3 3 5 3                             | 14.70<br>14.30<br>13.30<br>14.00<br>14.00<br>13.70                                                                                 | N                                                                                                | Mean<br>2.93<br>2.83<br>2.80<br>2.90<br>2.84<br>2.87                                                                         | N - 3 3 3 5 5 3                       | Hean<br>10.10<br>6.93<br>2.87<br>8.20<br>5.46<br>5.20                                 | N - 3 3 3 5 3 5 3                   | 0.80<br>0.70<br>0.55<br>0.73<br>0.63                                                                         | N - 3 3 3 5 3 5 3                                | Hean<br>43.70<br>43.70<br>42.70<br>43.30<br>43.40<br>43.70                                                                          | N - 3 3 3 5 3 5 3                         | 5.60<br>4.55<br>3.55<br>5.03<br>4.28<br>4.29                                                                                 | N 3 3 3 5 5 3                                                                               | Hean<br>15.40<br>9.53<br>3.87<br>12.10<br>7.62<br>7.03                                                                  | N                                                                                                | Hean<br>156.00<br>132.00<br>107.00<br>142.00<br>125.00<br>123.00                                                                                  | 3<br>3<br>5<br>3                                                        | 7.57<br>7.70<br>7.90<br>7.60<br>7.74<br>7.80                                                 |
| •••   | 709<br>710<br>711<br>732<br>714<br>733<br>715                                                                | N - 3 3 3 5 3 5 3 3                       | 14.70<br>14.30<br>13.30<br>14.00<br>14.00<br>13.70<br>14.00                                                                        | N                                                                                                | Xeen<br>2.93<br>2.83<br>2.80<br>2.90<br>2.84<br>2.87<br>2.87                                                                 | N - 3 3 3 5 5 3 3                     | Hean<br>10.10<br>6.93<br>2.87<br>8.20<br>5.46<br>5.20<br>7.47                         | N - 3 3 3 5 3 5 3 3                 | 0.80<br>0.70<br>0.55<br>0.73<br>0.63<br>0.63                                                                 | N - 3 3 3 5 3 5 3 3                              | 43.70<br>43.70<br>43.70<br>42.70<br>43.30<br>43.40<br>43.70<br>43.30                                                                | N - 3 3 3 5 3 5 3 3                       | 5.60<br>4.55<br>3.55<br>5.03<br>4.28<br>4.29<br>4.74                                                                         | N - 3 3 3 5 3 5 3 3                                                                         | Hean<br>15.40<br>9.53<br>3.87<br>12.10<br>7.62<br>7.03<br>10.90                                                         | N - 3 3 3 5 5 3 3                                                                                | Hean<br>156.00<br>132.00<br>107.00<br>142.00<br>125.00<br>123.00<br>137.00                                                                        | 3<br>3<br>3<br>5                                                        | 7.57<br>7.70<br>7.90<br>7.60<br>7.74                                                         |
| •••   | 709<br>710<br>711<br>732<br>714<br>733<br>715<br>716                                                         | N - 3 3 3 5 3 5 5 5 5 5                   | 14.70<br>14.30<br>13.30<br>14.00<br>14.00<br>13.70<br>14.00<br>13.60                                                               | N                                                                                                | 2.93<br>2.83<br>2.80<br>2.90<br>2.84<br>2.87<br>2.87<br>2.76                                                                 | N - 3 3 3 5 3 3 6                     | Hean 10.10 6.93 2.87 8.20 5.46 5.20 7.47 4.15                                         | N 3 3 3 5 3 5 5 5                   | 0.80<br>0.70<br>0.55<br>0.73<br>0.63<br>0.71<br>0.61                                                         | N - 3 3 3 5 3 5 3 6                              | 43.70<br>43.70<br>42.70<br>43.30<br>43.40<br>43.70<br>43.30<br>43.00                                                                | N - 3 3 3 5 3 5 5 5                       | 5.60<br>4.55<br>3.55<br>5.03<br>4.28<br>4.29<br>4.74<br>4.26                                                                 | N 3 3 3 5 3 5 3 5 5                                                                         | 15.40<br>9.53<br>3.87<br>12.10<br>7.62<br>7.03<br>10.90<br>6.06                                                         | 3<br>3<br>3<br>3<br>5<br>3<br>6                                                                  | Nean<br>156.00<br>132.00<br>107.00<br>142.00<br>125.00<br>123.00<br>137.00<br>113.00                                                              | 3<br>3<br>5<br>3<br>6                                                   | 7.57<br>7.70<br>7.90<br>7.60<br>7.74<br>7.80<br>7.67                                         |
| •••   | 709<br>710<br>711<br>732<br>714<br>733<br>715<br>716<br>735                                                  | N - 3 3 3 5 3 5 5 3 5 5 3                 | 14.70<br>14.30<br>13.30<br>14.00<br>14.00<br>13.70<br>14.00<br>13.60<br>13.00                                                      | N 3 3 3 5 3 5 3 5 3                                                                              | 2.93<br>2.83<br>2.80<br>2.90<br>2.84<br>2.87<br>2.87<br>2.76<br>2.80                                                         | N - 3 3 3 5 3 3 6 3                   | Nean<br>10.10<br>6.93<br>2.87<br>8.20<br>5.46<br>5.20<br>7.47<br>4.15<br>2.73         | N - 3 3 3 5 3 5 3 5 3               | 0.80<br>0.70<br>0.55<br>0.73<br>0.63<br>0.63<br>0.71<br>0.61<br>0.53                                         | N - 3 - 3 - 5 - 3 - 6 - 3                        | 43.70<br>43.70<br>42.70<br>43.30<br>43.40<br>43.70<br>43.30<br>43.00<br>43.30                                                       | N - 3 3 3 5 3 5 3 5 3                     | 5.60<br>4.55<br>3.55<br>5.03<br>4.28<br>4.29<br>4.74<br>4.26<br>3.62                                                         | N - 3 3 3 5 3 5 3 5 3                                                                       | Hean<br>15.40<br>9.53<br>3.87<br>12.10<br>7.62<br>7.03<br>10.90                                                         | 3<br>3<br>3<br>3<br>5<br>3<br>6                                                                  | Hean<br>156.00<br>132.00<br>107.00<br>142.00<br>125.00<br>123.00<br>137.00                                                                        | 3<br>3<br>5<br>3<br>3                                                   | 7.57<br>7.70<br>7.90<br>7.60<br>7.74<br>7.80<br>7.67                                         |
| •••   | 709<br>710<br>711<br>732<br>714<br>733<br>715<br>716<br>735<br>718                                           | N - 3 3 3 5 3 5 5 3 3 5 3 3               | Hean<br>14.70<br>14.30<br>13.30<br>14.00<br>14.00<br>13.70<br>14.00<br>13.60<br>13.00<br>13.70                                     | N 3 3 3 5 3 5 3 3 5 3 3                                                                          | Rean<br><br>2.93<br>2.83<br>2.80<br>2.90<br>2.84<br>2.87<br>2.87<br>2.76<br>2.80<br>2.80                                     | N - 3 3 3 5 3 6 3 3 6 3 3             | Nean 10.10 6.93 2.87 8.20 5.46 5.20 7.47 4.15 2.73 3.77                               | N - 3 3 3 5 3 5 5 3 3 5 3 3         | 0.80<br>0.70<br>0.55<br>0.73<br>0.63<br>0.63<br>0.71<br>0.61<br>0.53                                         | N - 3 3 3 3 5 3 3 6 3 3                          | 43.70<br>43.70<br>42.70<br>42.70<br>43.30<br>43.40<br>43.70<br>43.30<br>43.00<br>43.30                                              | N - 3333533533533                         | 5.60<br>4.55<br>3.55<br>5.03<br>4.28<br>4.29<br>4.74<br>4.26<br>3.62<br>3.85                                                 | N - 3 3 3 5 3 5 3 3 5 3 3                                                                   | 15.40<br>9.53<br>3.87<br>12.10<br>7.62<br>7.03<br>10.90<br>6.06<br>3.47<br>5.03                                         | 3<br>3<br>3<br>3<br>5<br>3<br>3<br>6<br>3                                                        | Nean<br>156.00<br>132.00<br>107.00<br>142.00<br>125.00<br>123.00<br>137.00<br>113.00                                                              | 3<br>3<br>5<br>3<br>6                                                   | 7.57<br>7.70<br>7.90<br>7.60<br>7.74<br>7.80<br>7.67<br>7.73                                 |
| •••   | 709<br>710<br>711<br>732<br>714<br>733<br>715<br>716<br>735<br>718                                           | N - 3 3 3 5 3 5 3 3 5 3 3 3               | Hean<br>14.70<br>14.30<br>13.30<br>14.00<br>13.70<br>14.00<br>13.60<br>13.00<br>13.70<br>13.00                                     | N                                                                                                | 2.93<br>2.83<br>2.80<br>2.90<br>2.84<br>2.87<br>2.76<br>2.80<br>2.80<br>2.77                                                 | N - 3 3 3 5 3 3 6 3 3 3               | Nean 10.10 6.93 2.87 8.20 5.46 5.20 7.47 4.15 2.73 3.77 2.70                          | N - 3 3 3 5 3 5 3 5 3 3 3 3 3 3     | 0.80<br>0.70<br>0.55<br>0.73<br>0.63<br>0.63<br>0.71<br>0.61<br>0.53<br>0.60<br>0.55                         | N - 3 3 3 5 3 3 6 3 3 3                          | 43.70<br>43.70<br>42.70<br>43.30<br>43.40<br>43.70<br>43.30<br>43.00<br>43.30<br>43.30                                              | N - 3 3 3 5 3 3 5 3 3 3 3                 | 5.60<br>4.55<br>3.55<br>5.03<br>4.28<br>4.29<br>4.74<br>4.26<br>3.62                                                         | N - 3 3 3 5 3 5 3 3 3 3                                                                     | Hean<br>9.53<br>3.87<br>12.10<br>7.62<br>7.03<br>10.90<br>6.06<br>3.47                                                  | 3<br>3<br>3<br>3<br>5<br>3<br>3<br>6<br>3                                                        | Nean<br>156.00<br>132.00<br>107.00<br>142.00<br>125.00<br>123.00<br>137.00<br>113.00<br>107.00                                                    | 3<br>3<br>5<br>3<br>6<br>3                                              | 7.57<br>7.70<br>7.90<br>7.60<br>7.74<br>7.80<br>7.67<br>7.73                                 |
| •••   | 709 710 711 732 714 733 715 716 735 718 719 720                                                              | N - 3 3 3 5 3 5 5 3 3 5 3 3 3 3           | Hean<br>14.70<br>14.30<br>13.30<br>14.00<br>13.70<br>14.00<br>13.60<br>13.70<br>13.00<br>13.70                                     | N                                                                                                | 2.93<br>2.83<br>2.80<br>2.90<br>2.84<br>2.87<br>2.76<br>2.80<br>2.80<br>2.77<br>2.87                                         | N - 3 3 3 3 5 3 3 3 3 3 3 3           | Nean 10.10 6.93 2.87 8.20 5.46 5.20 7.47 4.15 2.73 3.77 2.70 5.13                     | N 3 3 3 5 3 3 5 3 3 3 3 3 3         | 0.80<br>0.70<br>0.55<br>0.73<br>0.63<br>0.63<br>0.71<br>0.61<br>0.53<br>0.60<br>0.55                         | N - 3 3 3 5 3 3 6 3 3 3 3                        | 43.70<br>43.70<br>42.70<br>43.30<br>43.40<br>43.70<br>43.30<br>43.30<br>43.30<br>43.30<br>43.30                                     | N - 3 3 3 5 3 3 5 3 3 3 3 3 3             | 5.60<br>4.55<br>3.55<br>5.03<br>4.28<br>4.29<br>4.74<br>4.26<br>3.62<br>3.85                                                 | N - 3 3 3 5 3 5 3 3 5 3 3                                                                   | 15.40<br>9.53<br>3.87<br>12.10<br>7.62<br>7.03<br>10.90<br>6.06<br>3.47<br>5.03                                         | 3<br>3<br>3<br>3<br>5<br>3<br>3<br>6<br>3<br>3<br>3                                              | Hean<br>156.00<br>132.00<br>107.00<br>142.00<br>125.00<br>123.00<br>137.00<br>113.00<br>107.00<br>113.00                                          | 3<br>3<br>5<br>3<br>6<br>3                                              | 7.57<br>7.70<br>7.90<br>7.60<br>7.74<br>7.80<br>7.67<br>7.73<br>7.87                         |
| •••   | 709<br>710<br>711<br>732<br>714<br>733<br>715<br>716<br>735<br>718<br>719<br>720<br>721                      | N - 3 3 3 5 3 5 3 3 3 3 3 3 3             | Hean<br>14.70<br>14.30<br>13.30<br>14.00<br>13.70<br>14.00<br>13.60<br>13.00<br>13.70<br>13.00<br>13.70                            | 3<br>3<br>3<br>3<br>5<br>3<br>5<br>3<br>3<br>5<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | 2.93<br>2.83<br>2.80<br>2.90<br>2.84<br>2.87<br>2.76<br>2.80<br>2.77<br>2.87<br>2.77                                         | N - 3 3 3 5 3 3 6 3 3 3 3 3           | Hean 10.10 6.93 2.87 8.20 5.46 5.20 7.47 4.15 2.73 3.77 2.70 5.13 1.87                | N 3 3 3 5 3 5 3 3 3 3 3 3 3 3       | 0.80<br>0.70<br>0.55<br>0.73<br>0.63<br>0.71<br>0.61<br>0.53<br>0.62<br>0.49                                 | N - 3 - 3 - 3 - 5 - 3 - 3 - 3 - 3 - 3 - 3        | 43.70<br>43.70<br>43.70<br>43.30<br>43.40<br>43.70<br>43.30<br>43.00<br>43.30<br>43.00<br>43.30<br>43.00<br>43.00                   | N - 3 3 3 5 3 3 5 3 3 3 3                 | Mean 5.60 4.55 3.55 5.03 4.28 4.29 4.74 4.26 3.62 3.85 3.54                                                                  | N - 3 3 3 5 3 5 3 3 3 3                                                                     | 15.40<br>9.53<br>3.87<br>12.10<br>7.62<br>7.03<br>10.90<br>6.06<br>3.47<br>5.03<br>3.27                                 | 3<br>3<br>3<br>3<br>5<br>3<br>3<br>6<br>3<br>3<br>3<br>3<br>3                                    | Hean<br>156.00<br>132.00<br>107.00<br>142.00<br>125.00<br>123.00<br>137.00<br>113.00<br>107.00                                                    | 3<br>3<br>5<br>3<br>6<br>3<br>3                                         | 7.57<br>7.70<br>7.90<br>7.60<br>7.74<br>7.80<br>7.67<br>7.73<br>7.87                         |
| •••   | 709<br>710<br>711<br>732<br>714<br>733<br>716<br>735<br>718<br>719<br>720<br>721                             | N - 3 3 3 5 5 3 5 5 3 3 3 3 3 3 3         | Hean<br>14.70<br>14.30<br>13.30<br>14.00<br>14.00<br>13.70<br>14.00<br>13.60<br>13.70<br>13.00<br>13.70<br>13.00                   | N - 3 3 3 3 5 3 3 3 3 3 3 3 3 3                                                                  | 2.93<br>2.83<br>2.80<br>2.90<br>2.84<br>2.87<br>2.76<br>2.80<br>2.80<br>2.77<br>2.77<br>2.77<br>2.77                         | N - 3 3 3 5 3 3 6 3 3 3 3 3 3         | Nean 10.10 6.93 2.87 8.20 5.46 5.20 7.47 4.15 2.73 3.77 2.70 5.13 1.87                | N - 3 3 3 5 3 3 5 3 3 3 3 3 3 3 3 3 | 0.80<br>0.70<br>0.55<br>0.73<br>0.63<br>0.71<br>0.61<br>0.53<br>0.60<br>0.55<br>0.62<br>0.49                 | N - 3 3 3 3 5 3 3 3 3 3 3 3 3 3                  | 43.70<br>43.70<br>43.70<br>43.30<br>43.40<br>43.70<br>43.30<br>43.00<br>43.30<br>43.00<br>43.30<br>43.00<br>43.00<br>43.00          | N - 3 3 3 5 3 3 5 3 3 3 3 3 3             | 5.60<br>4.55<br>3.55<br>5.03<br>4.28<br>4.29<br>4.74<br>4.26<br>3.62<br>3.85<br>3.54<br>4.08                                 | N 3 3 3 5 3 3 5 3 3 3 3 3 3 3 3 3 3 3 3                                                     | 15.40<br>9.53<br>3.87<br>12.10<br>7.62<br>7.03<br>10.90<br>6.06<br>3.47<br>5.03<br>3.27<br>7.37                         | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>6<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | Hean<br>156.00<br>132.00<br>107.00<br>142.00<br>125.00<br>123.00<br>137.00<br>113.00<br>107.00<br>113.00<br>107.00                                | 3<br>3<br>5<br>3<br>6<br>3<br>3<br>3                                    | 7.57<br>7.70<br>7.90<br>7.60<br>7.74<br>7.80<br>7.67<br>7.73<br>7.87<br>7.80<br>7.83<br>7.73 |
| •••   | 709<br>710<br>711<br>732<br>714<br>733<br>716<br>735<br>718<br>719<br>720<br>721<br>737                      | N - 3335535535533332                      | Hean<br>14.70<br>14.30<br>13.30<br>14.00<br>13.70<br>14.00<br>13.60<br>13.70<br>13.00<br>13.70<br>13.00<br>13.00<br>13.00          | N - 3 3 3 5 3 3 5 3 3 3 3 2                                                                      | 2.93<br>2.83<br>2.80<br>2.90<br>2.84<br>2.87<br>2.76<br>2.80<br>2.80<br>2.77<br>2.87<br>2.77<br>2.73<br>2.70                 | N - 3 3 3 3 5 5 3 3 6 3 3 3 3 3 3 3 2 | Hean 10.10 6.93 2.87 8.20 5.46 5.20 7.47 4.15 2.73 3.77 2.70 5.13 1.87                | N 3 3 3 5 3 5 3 3 3 3 3 3 3 3       | 0.80<br>0.70<br>0.55<br>0.73<br>0.63<br>0.71<br>0.61<br>0.53<br>0.62<br>0.49                                 | N - 3 - 3 - 3 - 5 - 3 - 3 - 3 - 3 - 3 - 3        | 43.70<br>43.70<br>43.70<br>43.30<br>43.40<br>43.70<br>43.30<br>43.00<br>43.30<br>43.00<br>43.30<br>43.00<br>43.00                   | N · 3 3 3 3 5 3 3 5 3 3 3 3 3 3 3         | 5.60<br>4.55<br>3.55<br>5.03<br>4.28<br>4.29<br>4.74<br>4.26<br>3.62<br>3.85<br>4.08<br>3.33<br>3.32                         | * 3 3 3 5 3 3 5 3 3 3 3 3 3 3 3                                                             | 15.40<br>9.53<br>3.87<br>12.10<br>7.62<br>7.03<br>10.90<br>6.06<br>3.47<br>5.03<br>3.27<br>7.37<br>2.13                 | 3<br>3<br>3<br>3<br>3<br>3<br>6<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | Hean<br>156.00<br>132.00<br>107.00<br>142.00<br>125.00<br>123.00<br>137.00<br>113.00<br>107.00<br>113.00<br>107.00<br>122.00<br>101.00            | 3 3 3 5 3 3 3 3 3 3 3 3                                                 | 7.57<br>7.70<br>7.90<br>7.60<br>7.74<br>7.80<br>7.67<br>7.87<br>7.87<br>7.83<br>7.83<br>7.73 |
|       | 709<br>710<br>711<br>732<br>714<br>733<br>716<br>735<br>718<br>719<br>720<br>721                             | N - 3335535535533332                      | Hean<br>14.70<br>14.30<br>13.30<br>14.00<br>14.00<br>13.70<br>14.00<br>13.60<br>13.70<br>13.00<br>13.70<br>13.00                   | N - 3 3 3 3 5 3 3 3 3 3 3 3 3 3                                                                  | 2.93<br>2.83<br>2.80<br>2.90<br>2.84<br>2.87<br>2.76<br>2.80<br>2.80<br>2.77<br>2.77<br>2.77<br>2.77                         | N - 3 3 3 5 3 3 6 3 3 3 3 3 3         | Nean 10.10 6.93 2.87 8.20 5.46 5.20 7.47 4.15 2.73 3.77 2.70 5.13 1.87                | N - 3 3 3 5 3 3 5 3 3 3 3 3 3 3 3 3 | 0.80<br>0.70<br>0.55<br>0.73<br>0.63<br>0.71<br>0.61<br>0.53<br>0.60<br>0.55<br>0.62<br>0.49                 | N - 3 3 3 3 5 3 3 3 3 3 3 3 3 3                  | 43.70<br>43.70<br>43.70<br>43.30<br>43.40<br>43.70<br>43.30<br>43.00<br>43.30<br>43.00<br>43.30<br>43.00<br>43.00<br>43.00          | N · 3 3 3 3 5 3 3 5 3 3 3 3 3 3 3 3       | 5.60<br>4.55<br>3.55<br>5.03<br>4.28<br>4.29<br>4.74<br>4.26<br>3.62<br>3.85<br>3.54<br>4.08<br>3.33                         | N 3 3 3 5 3 3 5 3 3 3 3 3 3 3 3 3 3 3 3                                                     | 15.40<br>9.53<br>3.87<br>12.10<br>7.62<br>7.03<br>10.90<br>6.06<br>3.47<br>5.03<br>3.27<br>7.37<br>2.13<br>2.03         | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>6<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | Hean<br>156.00<br>132.00<br>107.00<br>142.00<br>125.00<br>123.00<br>137.00<br>113.00<br>107.00<br>113.00<br>107.00<br>101.00                      | 3<br>3<br>5<br>3<br>6<br>3<br>3<br>3<br>3<br>3                          | 7.57<br>7.70<br>7.90<br>7.60<br>7.74<br>7.80<br>7.67<br>7.73<br>7.87<br>7.83<br>7.83<br>7.83 |
| •••   | 709<br>710<br>711<br>732<br>714<br>733<br>715<br>716<br>735<br>718<br>719<br>720<br>721<br>737<br>723<br>728 | N - 3 3 3 5 5 3 3 5 5 3 3 3 3 3 2 2 2 3   | Hean<br>14.70<br>14.30<br>13.30<br>14.00<br>13.70<br>14.00<br>13.60<br>13.70<br>13.00<br>13.70<br>13.00<br>13.00<br>13.00<br>13.00 | N 3 3 3 3 3 5 3 3 3 3 3 3 2 2 2 3                                                                | 2.93<br>2.83<br>2.80<br>2.90<br>2.84<br>2.87<br>2.76<br>2.80<br>2.77<br>2.77<br>2.77<br>2.77<br>2.77<br>2.70<br>2.70         | N - 3 3 3 3 5 5 3 3 3 3 3 3 2 2 2 3 3 | Nean 10.10 6.93 2.87 8.20 5.46 5.20 7.47 4.15 2.73 3.77 2.70 5.13 1.87 1.77 1.65 1.55 | N 3 3 3 3 3 5 3 3 3 3 3 2 2 2 3     | 0.80<br>0.70<br>0.55<br>0.73<br>0.63<br>0.63<br>0.61<br>0.53<br>0.60<br>0.55<br>0.62<br>0.49<br>0.50<br>0.50 | N - 3 3 3 5 3 3 5 3 3 3 3 3 2 2 2 3              | 43.70<br>43.70<br>43.70<br>43.30<br>43.40<br>43.30<br>43.30<br>43.30<br>43.30<br>43.30<br>43.00<br>43.00<br>43.00<br>43.00          | N - 3 3 3 3 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 5.60<br>4.55<br>3.55<br>5.03<br>4.28<br>4.29<br>4.74<br>4.26<br>3.62<br>3.85<br>3.54<br>4.08<br>3.33<br>3.32<br>3.24<br>3.25 | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | 15.40<br>9.53<br>3.87<br>12.10<br>7.62<br>7.03<br>10.90<br>6.06<br>3.47<br>5.03<br>3.27<br>7.37<br>2.13<br>2.03<br>1.70 | N                                                                                                | Hean<br>156.00<br>132.00<br>107.00<br>142.00<br>125.00<br>125.00<br>137.00<br>113.00<br>107.00<br>113.00<br>107.00<br>1107.00<br>101.00<br>100.00 | 3 3 5 3 3 6 3 3 3 3 3 2                                                 | 7.57<br>7.70<br>7.90<br>7.60<br>7.67<br>7.80<br>7.67<br>7.83<br>7.83<br>7.73<br>8.00         |
| JB.   | 709 710 711 732 714 733 715 716 735 718 719 720 721 737 723 728 712 713                                      | N - 3 3 3 3 5 3 3 3 5 3 3 3 3 2 2 2 3 4   | Hean                                                                                                                               | N                                                                                                | 2.93<br>2.83<br>2.80<br>2.90<br>2.84<br>2.87<br>2.76<br>2.80<br>2.77<br>2.77<br>2.77<br>2.77<br>2.77<br>2.77<br>2.70<br>2.70 | N - 3 3 3 3 3 3 3 3 3 3 2 2 2         | Nean 10.10 6.93 2.87 8.20 5.46 5.20 7.47 4.15 2.73 3.77 2.70 5.13 1.87 1.77 1.65 1.55 | N 3 3 3 3 3 5 3 3 3 3 3 3 2 2 2 3 4 | 0.80<br>0.70<br>0.55<br>0.73<br>0.63<br>0.71<br>0.61<br>0.53<br>0.60<br>0.55<br>0.62<br>0.49<br>0.50<br>0.47 | N - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -          | 43.70<br>43.70<br>43.70<br>43.30<br>43.40<br>43.70<br>43.30<br>43.00<br>43.30<br>43.00<br>43.00<br>43.00<br>43.00<br>43.00<br>43.00 | N - 3 3 3 5 3 3 5 3 3 3 3 3 3 2 2         | 5.60<br>4.55<br>3.55<br>5.03<br>4.28<br>4.29<br>4.74<br>4.26<br>3.62<br>3.85<br>3.54<br>4.08<br>3.33<br>3.32<br>3.24<br>3.25 | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | 15.40<br>9.53<br>3.87<br>12.10<br>7.62<br>7.03<br>10.90<br>6.06<br>3.47<br>5.03<br>3.27<br>7.37<br>2.13<br>2.03<br>1.70 | N                                                                                                | Hean<br>156.00<br>132.00<br>107.00<br>142.00<br>125.00<br>137.00<br>137.00<br>113.00<br>107.00<br>113.00<br>107.00<br>100.00<br>100.00            | 3<br>3<br>3<br>5<br>3<br>3<br>6<br>3<br>3<br>3<br>3<br>3<br>3<br>2<br>2 | 7.57<br>7.70<br>7.90<br>7.60<br>7.67<br>7.80<br>7.67<br>7.83<br>7.83<br>7.73<br>8.00<br>8.00 |
| JB.   | 709<br>710<br>711<br>732<br>714<br>733<br>715<br>716<br>735<br>718<br>719<br>720<br>721<br>737<br>723<br>728 | N - 3 3 3 3 5 3 3 5 3 3 3 3 3 2 2 2 3 4 3 | Hean<br>14.70<br>14.30<br>13.30<br>14.00<br>13.70<br>14.00<br>13.60<br>13.70<br>13.00<br>13.70<br>13.00<br>13.00<br>13.00<br>13.00 | N 3 3 3 3 3 5 3 3 3 3 3 3 2 2 2 3                                                                | 2.93<br>2.83<br>2.80<br>2.90<br>2.84<br>2.87<br>2.76<br>2.80<br>2.77<br>2.77<br>2.77<br>2.77<br>2.77<br>2.70<br>2.70         | N - 3 3 3 3 5 5 3 3 3 3 3 3 2 2 2 3 3 | Nean 10.10 6.93 2.87 8.20 5.46 5.20 7.47 4.15 2.73 3.77 2.70 5.13 1.87 1.77 1.65 1.55 | N 3 3 3 3 3 5 3 3 3 3 3 2 2 2 3     | 0.80<br>0.70<br>0.55<br>0.73<br>0.63<br>0.63<br>0.61<br>0.53<br>0.60<br>0.55<br>0.62<br>0.49<br>0.50<br>0.50 | N - 3 3 3 5 3 3 5 3 3 3 3 3 2 2 2 3              | 43.70<br>43.70<br>43.70<br>43.30<br>43.40<br>43.30<br>43.30<br>43.30<br>43.30<br>43.30<br>43.00<br>43.00<br>43.00<br>43.00          | N - 3 3 3 3 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 5.60<br>4.55<br>3.55<br>5.03<br>4.28<br>4.29<br>4.74<br>4.26<br>3.62<br>3.85<br>3.54<br>4.08<br>3.33<br>3.32<br>3.24<br>3.25 | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | 15.40<br>9.53<br>3.87<br>12.10<br>7.62<br>7.03<br>10.90<br>6.06<br>3.47<br>5.03<br>3.27<br>7.37<br>2.13<br>2.03<br>1.70 | N - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4                                                            | Hean<br>156.00<br>132.00<br>107.00<br>142.00<br>125.00<br>125.00<br>137.00<br>113.00<br>107.00<br>113.00<br>107.00<br>1107.00<br>101.00<br>100.00 | 333533333322                                                            | 7.57<br>7.70<br>7.90<br>7.60<br>7.67<br>7.80<br>7.67<br>7.83<br>7.93<br>7.93<br>8.00<br>8.00 |

<sup>\*</sup> all units mg/L except conductivity(unhos/cm)
MB - Moberly Bay JB - Jackfish Bay proper TB - Tunnel Bay

Survey: 2 August 1987 open water (surface water)

#### Metal means\*

|     |               |                | Alum       | เกษต           |         | Arsenic            | De         | yllium          | Ī   | ron                   | Ne  | roury         | Cz  | daius     | Chr | omium         | Co  | pper          | Har | ganese  | Ni  | ckel    | ī   | eed .    | 7   | ins          |
|-----|---------------|----------------|------------|----------------|---------|--------------------|------------|-----------------|-----|-----------------------|-----|---------------|-----|-----------|-----|---------------|-----|---------------|-----|---------|-----|---------|-----|----------|-----|--------------|
| Bay | Stn           |                | N I        | Neum           |         | Hear               | , <b>I</b> | Hean            |     | Nean                  |     | Hean          | H   | Hean      | . 1 | Hean          | H   | Heen          | N.  | Hean    | N   | Nean    | N   | Kean     | M   | Nean         |
|     |               | · '            | •.         |                | • • •   |                    | •          | ****            | •   |                       | •   |               | . • |           | -   |               | •   |               | •   |         | :   |         | •   |          | •   |              |
| HB  | . 701         |                | _          | 0.612          |         | <0.001             |            | 1.025           | 19  | 1.148                 |     | 0.612         |     | 0.011     | . 6 | 0.040         | - 6 | 0.023         | 6   | 0.307   | 6   | 0.023   | 4   | 0.863    | 6   | 9.057        |
|     |               |                |            | 0.603          |         | €0.001             | 3          | <b>9.</b> 023   |     | 9.853                 | -   | <8.018        |     | 0.006     | 3   | 0.040         | 3   | 0.023         | 3   | 0.313   | 3   | 0.023   | 3   | 0.863    | 3   | 9.060.       |
|     | 805           |                |            | 0.147          |         | € 40.001           | 3          |                 |     | 0.223                 |     | <0.010        | 3   | <0.001    | .3  | 0.011         | . 3 | 0.007         | 3   | 0.078   | . 3 | 0.007   | ~3  | 0.014    | 3   | 8.026        |
|     | 702           |                | _          | 0.140          |         | s <b>&lt;0.001</b> | 3          |                 |     | 0.208                 |     | <0.010        |     | <0.001    | 3   | 0.009         | . 3 | 0.006         | . 3 | 0.060   | 3   | 0.007   | 3   | 0.814    | 3   | D.015        |
|     | . 806         | •              | <b>.</b> 3 | 0.243          |         | 5 <0.001           | 3          | <0.010          | - ₹ | 0.343                 | 3   | ≪6.018        | 3   | 0.002     | 3   | 0.017         | 3   | <0.010        | 3   | 0.127   | 3   | <0.010  | 3   | <0.028   | 3   | 0.013        |
| 113 | 507           | <b>P</b> · ,   | - 3∵<      | 8.180          |         | 5 <0.001           | 3          | 0.007           | 3   | 9,337                 | - 3 | 4.019         | 3   | 40.001    | . 3 | 0.007         | 3   | 8.007         | 3   | 0.845   | 3   | 0.007   | 3   | 0.014    | 3   | B.019        |
|     | 808           | }              | 3          | 8.123          |         | 40.001             | 3          | 9.007           | . 3 | 0.200                 | 3   | <0.018        | 3   | <0.001    | 3   | 0.008         | 3   | 0.007         | 3   | 0.068   | : 3 | 0.007   | 3   | 0.014    | 3   | 4.018        |
|     | 809           | <b>)</b>       | 3          | 0.967          |         | 3 ≪0.001           | 3          | 4.010           | 3   | 0.067                 | 3   | <0.018        | 3   | 0.002     | 3   | <0.010        | . 3 | €0.010        | 3   | 0.023   | 3   | 4.810   | 3   | <0.020   | 3   | 4.018        |
|     | 616           |                | 3          | 0.120          |         | 3 <0.001           | 3          | 8.807           | 3   | 0.157                 | 3   | 40.018        | 3   | <0.001    | - 3 | 0.008         | 3   | 0.007         | 3   | 0.04B   | 3   | 0.007   |     | 0.014    | 3   | 0.016        |
|     | 811           |                | 3          | 0.053          |         | 3 <b>-0.001</b>    | • 3        | 0.D07           | 3   | 0.070                 | 3   | 40.010        | 3   | <0.001    | 3   | 0.008         | 3   | 0.007         | . 3 | 0.024   | - 3 | 8.007   | . 3 | 0.014    | 3   | 0.209        |
| y   | .812          | 2              | 3          | 0.098          |         | 40.001             | . 3        | 0.967           | 3   | 0.137                 | 3   | €0.010        | 3   | <0.801    | 3   | 0.008         | 3   | 0.007         | 3   | 0.048   | · 3 | 8.007   | . 3 |          | . 3 | 0.809        |
|     | 813           | •              | 2          | 0.120          | · · · ; | 2 40.001           | 2          | 40.005          | 2   | 0.185                 | 2   | 40.010        | 2   | 4.001     | 2   | 0.008         | 2   | 0.006         | 2   | 0.053   | 2   | <0.005  | 2   | 0.012    | 2   | 4.910        |
|     | 814           |                | 3          | 0.095          |         | 3 40.001           | 3          | 6.007           | 3   | 0.133                 | 3   | <0.010        | 3   | <0.001    | 3   | 0.008         | 3   | 0.007         | 3   | 0.047   | 3   | 0.007   | 3   | 0.014    | 3   | 8.009        |
|     | 815           | 5              | 3          | 0.063          | :       | 3 4.901            | . 3        | 0.607           | 3   | 49,100                | 3   | <0.010        | 3   | <0.001    | 3   | 0.008         | 3   | 0.007         | 3   | 0.032   | 3   |         | 3   | 0.014    | . 3 | 8.009        |
| •   | 70            | <b>3</b> · , · | 3          | 0.067          |         | 3 4.101            | 3          | 0.007           | 3   | 0.890                 | 3   | 40.010        | 3   | <0.091    | 3   | 0.008         | -3  | 0.867         | 3   | 0.030   | 3   | 0.007   | 3   | 0.014    | 3   | 8.009        |
|     | 70            | ζ.             | 6          | 0.061          |         | 6 d. 181           | •          | 0.906           | 6   | 0.115                 | 6   | 40.010        | 6   | ≪0.001    | 6   | 0.007         | .6  | 0.806         | - 6 |         | 6   | 0.006   | 6   | 0.012    | 6   | 8.009        |
| 1.5 | 70            | 5              | 3          | 0.017          |         | 3 4.001            | 3          | 0.004           | 3   | 0.016                 | 3   | 40.010        | - 3 | ≪9.001    | 3   | 0.004         | 3   | 0.004         | 3   | 0.006   | 3   | 0.004   | 3   | 0.009    | 3   | <4.005       |
|     | 810           |                | 3          | 0.058          |         | 3 4.001            | 3          | €0.001          | 3   | 0.092                 | 3   | 40.010        | 3   | <0.0003   | 3   | 0.003         | 3   | <0.801        | 3   |         |     | <0.081  | -   | <0.003   | 3   |              |
|     | 70            |                | 3          | 0.052          |         | 3 48.961           | 3          | 40.001          | 3   | 0.078                 | 3   | <0.010        | 3   | 9,0004    | 3   | 0.004         |     | 49.081        | 3   |         |     | <0.081  |     | <0.003   | 3   |              |
| 1   | 70            |                | 5          | 0.064          |         | 5 4.001            | •          | 0.006           | 5   | 0.102                 | - 5 | <0.010        |     | 40.001    | - 5 | 0.007         | 5   | ~ 9.907       | 5   |         | 5   | 0.406   | _   | - 0.013- | 5   | 8.909        |
| 7   | 70            |                | 2          | 0.011          |         | 2 48.061           |            | 2 40,001        | 2   | 0.019                 | 2   | <0.010        |     | <0.0003   | 2   | 40.001        |     | <0.001        | 2   | 0.004   |     | 40.001  | -   | <0.003   | -   | <0.002       |
|     |               |                | A10-       | ninum          |         | Arsenic            |            | ryilium         |     | 1                     |     | ercury        |     | acinium   |     |               |     |               |     |         |     | F-11    |     |          |     | Zinc         |
|     |               | _              |            |                |         | H Mean             |            |                 |     | 1 ron<br>Hean         |     | Hean          |     |           |     | romium        |     | opper         |     | nganesa |     | lickel  |     | Lead     |     | Zinc<br>Hean |
| Ba  | , St          |                |            | Heart.         |         | N CHEST            |            | l Hean          |     |                       | -   |               | - 1 | Nenn      | , n | Kean          |     | Heen          |     | Nean    |     | i Hean  |     | Hean     |     | - 17646)     |
| JB  | 70            |                | 3          | 0.041          |         | 3 <4.981           |            | 3 ≪0.601        |     | 0.054                 | . 2 | €0.010        |     | <0.0003   | 3   |               |     | <0.001        | 3   |         | 7   | <0.991  | _   | <0.003   | 3   |              |
|     |               | 7              | -          |                |         | 3 <b>48.6</b> 01   |            |                 | . 3 | and the second second | -   |               | _   |           | 3   |               |     |               | _   |         |     |         |     |          | . – | ,            |
|     | 73            |                |            | 0.034          |         | - ,                |            | 40.001          | 3   |                       |     | <b>40.010</b> |     | <0.001    |     |               |     | 40.002        |     | 0.015   |     | 40.001  |     | <0.003   |     | 0.804        |
| 6 5 | 71            | _              | 1          | 0.027          |         | 1 4.001            |            | 40.001          |     | 0.938                 |     | <0.010        |     | <0.0003   |     | 0.003         |     | 40.001        |     | 0.015   | -   | <0.001  | _   | <0.003   |     | <0.502       |
|     | 71            | D<br>          | 6          | 0.D16          |         | 6 < <b>9.0</b> 01  |            | 6 <b>≪0.001</b> | •   | 9.026                 | D   | ◆.810         |     | 0.0004    |     | <b>4.00</b> 1 |     | <0.002        |     | 0.006   |     | <0.001  |     | <0.005   |     | 0.003        |
| TB  | 71            | 3              | 6          | <b>40.</b> 010 | · **. : | 6 <0.001           |            | 6 <0.001        |     | 9.011                 | 6   | €0.010        | •   | <0.0003   | 6   | <0.001        | (   | <b>40.001</b> |     | 0.002   |     | o.001   | 6   | 0.064    | ŧ   | <0.802       |
|     | 83            | 2              | 3          | 0.014          |         | 3 4.001            |            | 3 40.001        | . 3 | 0.045                 | 3   | <0.010        | 3   | <0.0003   | · 3 | <0.001        | 3   | <8.001        | 3   | 0.003   | . 3 | 40.001  | 3   | <0.003   | . 3 | 40.802       |
|     | 83            | 13             | 2          | 0.016          |         | 2 <4.001           | 1 . :      | 2 40.001        | . 2 | 0.022                 | 3   | <0.010        |     | ₹ <0.0003 | 2   | <0.001        | - 2 | <0.001        | 7   | 2 0.003 | 7   | 2 0.003 | 2   | 40.003   | 7   | <0.002       |
|     | - · · · · · · |                | ٠.         |                |         |                    |            |                 |     |                       |     |               |     |           |     | 造机 工程         | , i |               |     |         |     |         |     |          | . : |              |

#### \* all units mg/L

#### Range of detection limits:

| , riu |   | CONCLEY: DOY |       |
|-------|---|--------------|-------|
| 78    | - | Jackfish Bay | prope |
|       |   | Tunnet Say   |       |

Atuminum <.093 -- <.18 Arsenic <.001 Beryttium <.0005 -- <.05 1 ron <.001 -- <.10

Mercury Cadnium <.8002 -- <.015 Chronium <.865 -- <.18

Copper

<.0005 -- <.18

Manganese <.0005 -- <.01 Nickel <.001 -- <.10 Lead <.005 -- <.15 <.0005 -- <.10 Zinc

Survey: 3 May 1988 open water (surface water)

|     |     |   |       |   |          |       |        |       | 1.1    | 271.25    |         |     |       |    |       | Kje | ldahl | Tot   | al Dis  | solve | d Reacti | ve |
|-----|-----|---|-------|---|----------|-------|--------|-------|--------|-----------|---------|-----|-------|----|-------|-----|-------|-------|---------|-------|----------|----|
|     | :   |   | RSP   | T | urbidity | . • 6 | 1005   | . ) 5 | DOC    |           | Tannins | Amm | onium | Ni | rates | Hit | rogen | Phosp | shorous | Phos  | phate    |    |
| Bay | Stn | N | Mean  |   | N Mean   | N     | Hean   | . 1   | i Mean | . 1       | N Mean  | N   | Mean  | N  | Mean  | N   | Mean  | N     | Mean    | N     | Mean     | •  |
| МВ  | 820 | 1 | 29.00 |   | 1 15.00  | 1     | 113.00 |       | 79.00  |           | 1 50.00 | 1   | 0.10  | 1  | 0.20  | 1   | 0.80  | i     | 0.14    | 1     | 0.10     |    |
| JB  | 843 | 2 | 1.00  |   | 2 0.50   | 2     | 0.40   |       | 2 1.10 | ) - , : ; | 2 0.00  | 2   | 0.06  | 2  | 0.32  | 2   | 0.16  | 2     | 0.01    | 2     | 0.00     |    |

<sup>\*</sup> all units mg/L except Turbidity(ftu)

MB - Moberly Bay

JB - Jackfish Bay proper

Survey: 3 May 1988 open water (surface water)

|      |     | Cal | lcium | Mag | nesium | Sodiu                  | ) Po | tassium | Alkalinity | Su | lphate | Chlo | oride | Condu | ctivity |   | рH   |
|------|-----|-----|-------|-----|--------|------------------------|------|---------|------------|----|--------|------|-------|-------|---------|---|------|
| Bay  | Stn | N   |       |     |        | with the second second |      | Hean    | N Mean     |    |        |      |       |       |         |   |      |
| MB   | 820 | 1   | 69.00 |     | 4.90   | 1 163.                 | • •  | 5.55    | 1 100.00   |    |        |      |       |       | 1143.00 |   |      |
| JB - | 843 | 2   | 13.00 | 2   | 2.80   | 2 1.                   | 0 2  | 0.46    | 2 43.00    | 2  | 3.05   | 2    | 1.25  | 2     | 98.50   | 2 | 7.65 |

<sup>\*</sup> all units mg/L except conductivity(umhos/cm)

MB - Moberly Bay

JB - Jackfish Bay proper

Survey: 3 May 1988 open water (surface water)

Hal meers

| Zinc<br>II Nean                    | 1 8.024  | Ziac<br>Il Nean<br>2 49.002           |
|------------------------------------|----------|---------------------------------------|
| Lead<br># Mean                     | 1 40.010 | Lead                                  |
| Nickel<br>N Nown                   | - 4.005  | Nickel<br>N Nean<br>2 < 6.002         |
| Nangenese<br>N Heen                | 1 0.290  | Hangenese<br>N Hean<br>2 <0.001       |
| Cepper<br>N Nean                   | 1 0.003  | Capper N Hean 2 < 0.001               |
| Chromium<br>K Nean                 |          | Chronium<br>N Keen<br>2 <0.001        |
| Cadmium<br># Wean                  | 1 <0.005 | Cardmium<br>N Nean<br>2 <6.0002       |
| Mercury<br>N Nean                  | 1 <0.010 | Nercury<br>II Hean<br>2 <0.010        |
| 2 .<br>2 .                         | 1 0.510  | 1 ron<br>11 Hear<br>2 <0.020          |
| Arzenic Boryllium<br>N Hean N Haum |          | Beryllium II<br>R Ress R<br>2 4.001 2 |
| Arsenic<br>Nean                    | 1 40.001 | Arsenic<br>Il Neso<br>2 <0.001        |
| Atuminum<br>H Mean                 | 1 0.260  | Aluminum<br>R Reen<br>2 4.000         |
| Bey Strn                           | 8        | 2 : 32 E                              |
| Ì.                                 |          | 8 4                                   |

\* att units mg.A.

78 - Moberly Say JS - Jackfilsh Bay proper

| Bay       | Stn                                                                                                                               | N                                       | RSP<br>Mean                                                                                | Tur                                           | bidity<br>Mean                                                                                                                                     | E<br>N                                                                                           | 3005<br>Mean                            |                                                                                                  | DOC<br>Hean                                         |                                                | nnins                                                 |                                                                                 | onium                                                                                                                  | Nit                                           | rates                                                                                                                                         | Nit                                                            |                                                                                                                                                | Tot<br>Phosp                                                                                                       | al Dis<br>horous                                                                                                                     |                                                                                                                         | d Reacti<br>phate                                                                                               |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
|           |                                                                                                                                   |                                         | ****                                                                                       |                                               | near                                                                                                                                               |                                                                                                  | nean.                                   |                                                                                                  | nean                                                | H                                              | Mean                                                  | N                                                                               | Mean                                                                                                                   | N                                             | Mean .                                                                                                                                        |                                                                | Hean                                                                                                                                           | , N                                                                                                                | Hean                                                                                                                                 | 1                                                                                                                       | Hean                                                                                                            |
| MB        | 701                                                                                                                               | 4                                       | 26.30                                                                                      | 4                                             | 23.00                                                                                                                                              | 4                                                                                                | 59,50                                   | 4                                                                                                | 119.00                                              | 4                                              | 47.50                                                 | •                                                                               |                                                                                                                        |                                               |                                                                                                                                               | •                                                              | ••••                                                                                                                                           | •                                                                                                                  |                                                                                                                                      | •                                                                                                                       |                                                                                                                 |
|           | 803                                                                                                                               | 2                                       | 32.50                                                                                      | 2                                             | 25.00                                                                                                                                              | 0                                                                                                | 37,30                                   | . 2                                                                                              | 117.00                                              | 2.                                             | 50.00                                                 | 4 2                                                                             | 0.17                                                                                                                   | 2                                             | 0.05                                                                                                                                          | , 4                                                            | 1.57                                                                                                                                           | 4                                                                                                                  | 0.26                                                                                                                                 | 4                                                                                                                       | 0.08                                                                                                            |
|           | 804                                                                                                                               | 2                                       | 16.50                                                                                      | 2                                             | 6.00                                                                                                                                               | Ŏ                                                                                                |                                         | 2                                                                                                | 41.70                                               | 2                                              | 35.00                                                 | 2                                                                               | 0.10                                                                                                                   | 1                                             | 0.05                                                                                                                                          | 2                                                              | 3.35                                                                                                                                           | 2                                                                                                                  | 0.55                                                                                                                                 | . 2                                                                                                                     | 0.05                                                                                                            |
| 1.11      | 805                                                                                                                               | 2                                       | 4.50                                                                                       | 2                                             | 3.00                                                                                                                                               | Ŏ                                                                                                |                                         | 2                                                                                                | 25.40                                               | 2                                              | 11.50                                                 | 2                                                                               | 0.10                                                                                                                   | 1 2                                           | 0.05                                                                                                                                          | 2                                                              | 1.40                                                                                                                                           | 2                                                                                                                  | 0.21                                                                                                                                 | 2                                                                                                                       | 0.03                                                                                                            |
| 100       | 702                                                                                                                               | . 2                                     | 6.00                                                                                       | 2                                             | 3.70                                                                                                                                               | 2                                                                                                | 5.25                                    | 2                                                                                                | 22.00                                               | 2                                              | 9.00                                                  | 2                                                                               | 0.13                                                                                                                   | 2                                             | 0.06                                                                                                                                          |                                                                | 0.68                                                                                                                                           | 2                                                                                                                  | 0.07                                                                                                                                 | 2                                                                                                                       | 0.01                                                                                                            |
|           | 806                                                                                                                               | - 2                                     | 14.00                                                                                      | 2                                             | 8.50                                                                                                                                               | 0                                                                                                |                                         | 2                                                                                                | 57.00                                               | 2                                              | 18.50                                                 | 2                                                                               | 0.10                                                                                                                   | 1                                             | 0.05                                                                                                                                          | 2                                                              | 0.67                                                                                                                                           | 2                                                                                                                  | 0.07                                                                                                                                 | 2                                                                                                                       | 0.01                                                                                                            |
|           | 807                                                                                                                               | 2                                       | 4.00                                                                                       | 2                                             | 3.10                                                                                                                                               | 0                                                                                                | •                                       | 2                                                                                                | 19.60                                               | . 2                                            | 7.00                                                  | 2                                                                               | 0.10                                                                                                                   | 2                                             | 0.05                                                                                                                                          | 2                                                              | 1.08                                                                                                                                           | 2                                                                                                                  | 0.15                                                                                                                                 | 2                                                                                                                       | 0.02                                                                                                            |
| •         | 808                                                                                                                               | 2                                       | 4.50                                                                                       | 2                                             | 2.60                                                                                                                                               | Ō                                                                                                |                                         | · 2                                                                                              | 19.60                                               | 2                                              | 7.00                                                  | 5                                                                               | 0.13                                                                                                                   | 2                                             | 0.06                                                                                                                                          | 2                                                              | 0.57                                                                                                                                           | 2                                                                                                                  | 0.06                                                                                                                                 | 2                                                                                                                       | 0.01                                                                                                            |
| 1.        | 809                                                                                                                               | . 2                                     | 12.00                                                                                      | 2                                             | 4.80                                                                                                                                               | 0                                                                                                |                                         | 2                                                                                                | 40.80                                               | 2                                              | 13.00                                                 | 2                                                                               | 0.09                                                                                                                   | 1                                             | 0.05                                                                                                                                          | 2                                                              | 0.55                                                                                                                                           |                                                                                                                    | 0.05                                                                                                                                 | S                                                                                                                       | 0.01                                                                                                            |
|           | 810                                                                                                                               | 2                                       | 3.50                                                                                       | 2                                             | 2.65                                                                                                                                               | 0                                                                                                |                                         | Ž                                                                                                | 11.30                                               | . 2                                            | 9.50                                                  | 2                                                                               | 0.12                                                                                                                   | 2                                             | 0.05                                                                                                                                          |                                                                | 0.82                                                                                                                                           | 2                                                                                                                  | 0.10                                                                                                                                 | 2                                                                                                                       | 0.01                                                                                                            |
|           | 811                                                                                                                               | . 2                                     | 4.00                                                                                       | 2                                             | 1.57                                                                                                                                               | . 2                                                                                              | 2.65                                    | 2                                                                                                | 13.40                                               | 2                                              | 5.00                                                  | 2                                                                               | 0.09                                                                                                                   | 2                                             | 0.09                                                                                                                                          | 2                                                              | 0.50                                                                                                                                           | 2                                                                                                                  | 0.05                                                                                                                                 | 2                                                                                                                       | 0.01                                                                                                            |
| •         | 812                                                                                                                               | . 2                                     | 2.50                                                                                       | Ž                                             | 2.25                                                                                                                                               | ō                                                                                                | 05                                      | Ž                                                                                                | 15.90                                               | 2                                              | 5.00                                                  | 2                                                                               | 0.12                                                                                                                   | 2                                             | 0.09                                                                                                                                          | 2                                                              | 0.46                                                                                                                                           | 2                                                                                                                  | 0.04                                                                                                                                 | 2                                                                                                                       | 0.01                                                                                                            |
|           | 813                                                                                                                               | 2                                       | 4.00                                                                                       | 2                                             | 2.35                                                                                                                                               | . 0                                                                                              |                                         | 2                                                                                                | 14.60                                               | 2                                              | 7.00                                                  | 2                                                                               |                                                                                                                        | _                                             |                                                                                                                                               | _                                                              | 0.43                                                                                                                                           | 2                                                                                                                  | 0.04                                                                                                                                 | 2                                                                                                                       | 0.01                                                                                                            |
|           | 814                                                                                                                               | 2                                       | 5.00                                                                                       | 2                                             | 3.65                                                                                                                                               | ŏ                                                                                                |                                         | 2                                                                                                | 19.20                                               | 2                                              | 7.50                                                  |                                                                                 | 0.13                                                                                                                   | 2                                             | 0.10                                                                                                                                          | 2                                                              | 0.53                                                                                                                                           | 2                                                                                                                  | 0.05                                                                                                                                 | 2                                                                                                                       | 0.01                                                                                                            |
|           | 815                                                                                                                               | . 2                                     | 4.50                                                                                       | 2                                             | 1.60                                                                                                                                               | Ö                                                                                                |                                         | 2                                                                                                | 11.90                                               | _                                              |                                                       | 2                                                                               | 0.14                                                                                                                   | 2                                             | 0.05                                                                                                                                          | 2                                                              | 0.59                                                                                                                                           | 2                                                                                                                  | 0.06                                                                                                                                 | 2                                                                                                                       | 0.01                                                                                                            |
|           | 703                                                                                                                               | 2                                       | 2.00                                                                                       | 5                                             | 1.65                                                                                                                                               | 2                                                                                                | 1.85                                    | -                                                                                                |                                                     | 2                                              | 3.00                                                  | 2                                                                               | 0.05                                                                                                                   | 2                                             | 0.22                                                                                                                                          | 2                                                              | 0.26                                                                                                                                           | 2                                                                                                                  | 0.02                                                                                                                                 | 2                                                                                                                       | 0.00                                                                                                            |
| -         | 704                                                                                                                               | 4                                       | 3.25                                                                                       | 4                                             | 1.85                                                                                                                                               | . 4                                                                                              | 2.10                                    | 2                                                                                                | 9.30                                                | 2                                              | 4.00                                                  | 2                                                                               | 0.07                                                                                                                   | 2                                             | 0.16                                                                                                                                          | 2                                                              | 0.34                                                                                                                                           | 2                                                                                                                  | 0.03                                                                                                                                 | 2                                                                                                                       | 0.01                                                                                                            |
| •         | 705                                                                                                                               | . 2                                     | 1.50                                                                                       | 2                                             | 1.25                                                                                                                                               | 0                                                                                                | 2.10                                    |                                                                                                  | 13.60                                               | 4                                              | 5.00                                                  | 4                                                                               | 0.07                                                                                                                   | - 4                                           | 0.13                                                                                                                                          | 4                                                              | 0.41                                                                                                                                           | . 4                                                                                                                | 0.03                                                                                                                                 | 4                                                                                                                       | 0.01                                                                                                            |
| ٠,        | 816                                                                                                                               | 2                                       | 2.00                                                                                       | ž                                             | 1.75                                                                                                                                               | . 0                                                                                              | . • • · · · · · · · · · · · · · · · · · | 2                                                                                                | 4.05                                                | 2                                              | 1.50                                                  | 2                                                                               | 0.05                                                                                                                   | . 2                                           | 0.20                                                                                                                                          | 2                                                              | 0.29                                                                                                                                           | 2                                                                                                                  | 0.02                                                                                                                                 | 2                                                                                                                       | 0.01                                                                                                            |
| :         | 817                                                                                                                               | . 5                                     | 2.50                                                                                       | 2                                             |                                                                                                                                                    |                                                                                                  | •                                       | 2                                                                                                | 6.60                                                | 2                                              | 6.00                                                  | 2                                                                               | 0.04                                                                                                                   | 2                                             | 0.24                                                                                                                                          | 2                                                              | 0.33                                                                                                                                           | 2                                                                                                                  | 0.03                                                                                                                                 | 2                                                                                                                       | 0.01                                                                                                            |
|           | 818                                                                                                                               | 2                                       | 1.50                                                                                       |                                               | 1.65                                                                                                                                               | 0                                                                                                | •                                       | 0                                                                                                |                                                     | 0                                              | •                                                     | .2                                                                              | 0.07                                                                                                                   | 2                                             | 0.16                                                                                                                                          | 2                                                              | 0.34                                                                                                                                           | 2                                                                                                                  | 0.03                                                                                                                                 | . 2                                                                                                                     | 0.01                                                                                                            |
|           | 819                                                                                                                               | 2                                       | 1.50                                                                                       | 2                                             | 0.75                                                                                                                                               | 0                                                                                                | • . •                                   | .0                                                                                               | •                                                   | 0                                              | •                                                     | 2                                                                               | 0.04                                                                                                                   | . 2                                           | 0.25                                                                                                                                          | 2                                                              | 0.21                                                                                                                                           | 2                                                                                                                  | 0.01                                                                                                                                 | 2                                                                                                                       | 0.00                                                                                                            |
|           | . 017                                                                                                                             | ج.                                      |                                                                                            | _                                             | 0.82                                                                                                                                               | 0                                                                                                | •                                       | 0                                                                                                | -                                                   | : 0                                            |                                                       | 2                                                                               | 0.03                                                                                                                   | 2                                             | 0.26                                                                                                                                          | 2                                                              | 0.21                                                                                                                                           | 2                                                                                                                  | 0.01                                                                                                                                 | 2                                                                                                                       | 0.00                                                                                                            |
|           | 704                                                                                                                               | -                                       |                                                                                            |                                               |                                                                                                                                                    |                                                                                                  |                                         |                                                                                                  |                                                     |                                                |                                                       |                                                                                 |                                                                                                                        |                                               |                                                                                                                                               |                                                                |                                                                                                                                                |                                                                                                                    |                                                                                                                                      |                                                                                                                         |                                                                                                                 |
|           | 706                                                                                                                               | 2                                       | 1.50                                                                                       | 2                                             | 1.35                                                                                                                                               | 0                                                                                                | •                                       | 2                                                                                                | 6.05                                                | 2                                              | 3.50                                                  | 2                                                                               | 0.05                                                                                                                   | 2                                             | 0.20                                                                                                                                          | . 2                                                            | 0.30                                                                                                                                           | 2                                                                                                                  | 0.02                                                                                                                                 | 2                                                                                                                       | 0.01                                                                                                            |
|           | 707                                                                                                                               | 2                                       | 1.50                                                                                       | 2                                             | 1.65                                                                                                                                               | 2                                                                                                | 1.30                                    | 2                                                                                                | 5.35                                                | 2                                              | 2.50                                                  | 2                                                                               | 0.04                                                                                                                   | 2                                             | 0.22                                                                                                                                          | 2                                                              | 0.30<br>0.30                                                                                                                                   | 2                                                                                                                  | 0.02                                                                                                                                 | 2                                                                                                                       | 0.01                                                                                                            |
|           |                                                                                                                                   | -                                       |                                                                                            | . 7                                           |                                                                                                                                                    | -                                                                                                | 1.30                                    |                                                                                                  |                                                     |                                                |                                                       |                                                                                 |                                                                                                                        |                                               |                                                                                                                                               |                                                                |                                                                                                                                                |                                                                                                                    |                                                                                                                                      |                                                                                                                         | ,                                                                                                               |
|           | 707                                                                                                                               | 2                                       | 1.50                                                                                       | 2                                             | 1.65<br>0.63                                                                                                                                       | 0                                                                                                | •                                       | 2                                                                                                | 5.35<br>2.60                                        | 2 2                                            | 2.50<br>0.50                                          | 2<br>2                                                                          | 0.04<br>0.03                                                                                                           | 5 5                                           | 0.22<br>0.26                                                                                                                                  | 2<br>2<br>Kje                                                  | 0.30<br>0.21                                                                                                                                   | 2<br>2<br>Tot                                                                                                      | 0.02<br>0.01                                                                                                                         | 2<br>2<br>solve                                                                                                         | 0.00<br>0.00<br>d Reacti                                                                                        |
|           | 707<br>708                                                                                                                        | 2                                       | 1.50<br>1.00                                                                               | 2<br>2<br>Tur                                 | 1.65<br>0.63<br>bidity                                                                                                                             | 0                                                                                                | 1005                                    | 2                                                                                                | 5.35<br>2.60<br>DOC                                 | 2<br>2<br>Ta                                   | 2.50<br>0.50<br>nnins                                 | 2<br>2                                                                          | 0.04<br>0.03                                                                                                           | 5 5                                           | 0.22<br>0.26<br>rates                                                                                                                         | 2<br>2<br>Kje<br>Nit                                           | 0.30<br>0.21<br>Idahl<br>rogen                                                                                                                 | 2<br>2<br>Tot<br>Phosp                                                                                             | 0.02<br>0.01<br>al Dis                                                                                                               | 2<br>2<br>solve<br>Phos                                                                                                 | 0,00<br>0.00<br>d Reacti                                                                                        |
| lay       | 707                                                                                                                               | 2                                       | 1.50                                                                                       | 2                                             | 1.65<br>0.63                                                                                                                                       | 0                                                                                                | •                                       | 2                                                                                                | 5.35<br>2.60                                        | 2 2                                            | 2.50<br>0.50                                          | 2<br>2                                                                          | 0.04<br>0.03                                                                                                           | 5 5                                           | 0.22<br>0.26                                                                                                                                  | 2<br>2<br>Kje                                                  | 0.30<br>0.21                                                                                                                                   | 2<br>2<br>Tot                                                                                                      | 0.02<br>0.01                                                                                                                         | 2<br>2<br>solve                                                                                                         | 0.00<br>0.00<br>d Reacti                                                                                        |
| 3ay       | 707<br>708                                                                                                                        | 2<br>2                                  | 1.50<br>1.00                                                                               | 2<br>2<br>Tur<br>N                            | 1.65<br>0.63<br>bidity<br>Mean                                                                                                                     | 2<br>0<br>8<br>N                                                                                 | 1005                                    | 2<br>2                                                                                           | 5.35<br>2.60<br>DOC<br>Mean                         | 2<br>2<br>Ta<br>N                              | 2.50<br>0.50<br>nnins<br>Hean                         | Ami<br>N                                                                        | 0.04<br>0.03<br>nonium<br>Hean                                                                                         | 2<br>2<br>Nit                                 | 0.22<br>0.26<br>rates<br>Hean                                                                                                                 | 2<br>Z<br>Kje<br>Hit<br>H                                      | 0.30<br>0.21<br>Idahl<br>rogen<br>Hean                                                                                                         | 2<br>2<br>Tot<br>Phosp<br>N                                                                                        | 0.02<br>0.01<br>at Dis<br>horous<br>Hean                                                                                             | 2<br>2<br>solve<br>Phos<br>N                                                                                            | 0.00<br>0.00<br>d Reacti<br>phate<br>Mean                                                                       |
| lay<br>IB | 707<br>708<br>Stn                                                                                                                 | 2<br>2<br>N                             | 1.50<br>1.00<br>RSP<br>Hean                                                                | 2<br>2<br>Tur<br>N<br>-                       | 1.65<br>0.63<br>bidity<br>Mean                                                                                                                     | 2<br>0<br>8<br>N                                                                                 | iODS<br>Hean                            | 2<br>2<br>N<br>-<br>2                                                                            | 5.35<br>2.60<br>DOC                                 | 2<br>2<br>Ta<br>N                              | 2.50<br>0.50<br>nnins<br>Hean<br>2.50                 | Ami<br>N                                                                        | 0.04<br>0.03<br>nonfum<br>Hean<br>                                                                                     | 2<br>2<br>Nit<br>N                            | 0.22<br>0.26<br>rates<br>Hean<br>0.19                                                                                                         | Z<br>Z<br>Kje<br>Hit<br>H                                      | 0.30<br>0.21<br>Idahl<br>rogen<br>Mean<br>0.30                                                                                                 | Tot<br>Phosp<br>N                                                                                                  | 0.02<br>0.01<br>at Dis<br>horous<br>Hean<br>0.02                                                                                     | 2<br>2<br>solve<br>Phos<br>N                                                                                            | 0.00<br>0.00<br>d Reacti<br>phate<br>Hean                                                                       |
|           | 707<br>708<br>Stn<br><br>709<br>710                                                                                               | 2<br>2<br>N<br>2<br>2                   | 1.50<br>1.00<br>RSP<br>Mean<br>1.00                                                        | 2<br>2<br>Tur<br>N<br>•                       | 1.65<br>0.63<br>bidity<br>Mean<br>1.17<br>0.93                                                                                                     | 2<br>0<br>N<br>0                                                                                 | 1005                                    | 2<br>2<br>N<br>-<br>2<br>0                                                                       | 5.35<br>2.60<br>DOC<br>Mean                         | 2<br>2<br>Ta<br>N<br>-2<br>0                   | 2.50<br>0.50<br>nnins<br>Hean                         | Amm<br>N<br>2                                                                   | 0.04<br>0.03<br>nonfum<br>Hean<br>0.06<br>0.04                                                                         | 2<br>2<br>Wit<br>W -<br>2<br>2                | 0.22<br>0.26<br>rates<br>Hean<br>0.19<br>0.23                                                                                                 | Kje<br>Hit<br>H                                                | 0.30<br>0.21<br>Idahl<br>rogen<br>Hean<br>0.30<br>0.23                                                                                         | Tot<br>Phosp<br>N<br>-<br>2                                                                                        | 0.02<br>0.01<br>at Dis<br>horous<br>Hean<br>0.02<br>0.01                                                                             | 2<br>2<br>solve<br>Phos<br>N<br>-<br>2<br>2                                                                             | 0.00<br>0.00<br>d Reacti<br>phate<br>Mean<br>0.00<br>0.00                                                       |
|           | 707<br>708<br>Stn<br><br>709<br>710<br>711                                                                                        | 2<br>2<br>1<br>2<br>2<br>2              | 1.50<br>1.00<br>RSP<br>Mean<br>1.00<br>1.00                                                | 2<br>2<br>Tur<br>N<br>2<br>2                  | 1.65<br>0.63<br>bidity<br>Mean<br>1.17<br>0.93<br>0.63                                                                                             | 2<br>0<br>N<br>0<br>0                                                                            | iODS<br>Hean                            | 2<br>2<br>N -<br>2<br>0<br>0                                                                     | 5.35<br>2.60<br>DOC<br>Hean<br>6.65                 | 2<br>2<br>1<br>8<br>8<br>-<br>2<br>0           | 2.50<br>0.50<br>nnins<br>Hean<br>2.50                 | Ann<br>N -<br>2<br>2                                                            | 0.04<br>0.03<br>nonfum<br>Hean<br>0.06<br>0.04<br>0.02                                                                 | 2<br>2<br>Nit<br>N<br>-<br>2<br>2             | 0.22<br>0.26<br>rates<br>Hean<br>0.19<br>0.23<br>0.28                                                                                         | Kje<br>Wit<br>N                                                | 0.30<br>0.21<br>Idahl<br>rogen<br>Hean<br>0.30<br>0.23<br>0.16                                                                                 | Tot<br>Phosp<br>N -<br>2<br>2                                                                                      | 0.02<br>0.01<br>al Dis<br>horous<br>Mean<br>0.02<br>0.01<br>0.00                                                                     | 2<br>2<br>solve<br>Phos<br>N<br>-<br>2<br>2                                                                             | 0.00<br>0.00<br>d React<br>phate<br>Mean<br>0.00<br>0.00                                                        |
|           | 707<br>708<br>Stn<br><br>709<br>710<br>711<br>732                                                                                 | 2<br>2<br>2<br>2<br>2<br>2<br>2         | 1.50<br>1.00<br>RSP<br>Mean<br>1.00<br>1.00<br>1.00                                        | 2<br>2<br>Tur<br>N                            | 1.65<br>0.63<br>bidity<br>Mean<br>1.17<br>0.93<br>0.63<br>0.95                                                                                     | 2<br>0<br>N<br>0<br>0                                                                            | iODS<br>Hean                            | N - 2 0 0 2                                                                                      | 5.35<br>2.60<br>DOC<br>Mean                         | 7 8 N - 2 0 0 2                                | 2.50<br>0.50<br>nnins<br>Hean<br>2.50                 | Am<br>N -<br>2<br>2<br>2                                                        | 0.04<br>0.03<br>nonfum<br>Hean<br>0.06<br>0.04<br>0.02<br>0.04                                                         | 2<br>2<br>Wit<br>W -<br>2<br>2<br>2           | 0.22<br>0.26<br>rates<br>Hean<br>0.19<br>0.23<br>0.28<br>0.22                                                                                 | Kje<br>Wit<br>N                                                | 0.30<br>0.21<br>Idahl<br>rogen<br>Hean<br>0.30<br>0.23<br>0.16<br>0.28                                                                         | Tot<br>Phosp<br>N -<br>2<br>2<br>2                                                                                 | 0.02<br>0.01<br>at Dis<br>horous<br>Mean<br>0.02<br>0.01<br>0.00<br>0.02                                                             | 2<br>2<br>Solve<br>Phos<br>N<br>-<br>2<br>2<br>2                                                                        | 0.00<br>0.00<br>d React<br>phate<br>Mean<br>0.00<br>0.00<br>0.00                                                |
|           | 707<br>708<br>Stn<br><br>709<br>710<br>711<br>732<br>714                                                                          | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2   | 1.50<br>1.00<br>RSP<br>Mean<br>1.00<br>1.00<br>1.00                                        | 2<br>2<br>Tur<br>N -<br>2<br>2<br>2<br>2<br>2 | 1.65<br>0.63<br>bidity<br>Mean<br>1.17<br>0.93<br>0.63<br>0.95<br>0.63                                                                             | 2<br>0<br>N<br>0<br>0<br>0                                                                       | iODS<br>Hean                            | N - 2 0 0 2 0                                                                                    | 5.35<br>2.60<br>DOC<br>Hean<br>6.65                 | 2<br>2<br>N<br>-<br>2<br>0<br>0<br>2<br>0      | 2.50<br>0.50<br>nnins<br>Hean<br>2.50                 | 2<br>2<br>Amm<br>H -<br>2<br>2<br>2<br>2<br>2                                   | 0.04<br>0.03<br>nonfum<br>Hean<br><br>0.06<br>0.04<br>0.02<br>0.04<br>0.02                                             | 2<br>2<br>Nit<br>N -<br>2<br>2<br>2<br>2<br>2 | 0.22<br>0.26<br>rates<br>Hean<br>0.19<br>0.23<br>0.28<br>0.22<br>0.27                                                                         | Kje<br>Wit<br>N<br>2<br>2<br>2<br>2                            | 0.30<br>0.21<br>Idahl<br>rogen<br>Hean<br>0.30<br>0.23<br>0.16<br>0.28                                                                         | Tot<br>Phosp<br>N -<br>2<br>2<br>2<br>2                                                                            | 0.02<br>0.01<br>at Dis<br>horous<br>Hean<br><br>0.02<br>0.01<br>0.00<br>0.02<br>0.01                                                 | 2<br>2<br>solve<br>Phos<br>N<br>-<br>2<br>2<br>2<br>2                                                                   | 0.00<br>0.00<br>d React<br>phate<br>Mean<br>0.00<br>0.00<br>0.00<br>0.00                                        |
|           | 707<br>708<br>Stn<br><br>709<br>710<br>711<br>732<br>714<br>733                                                                   | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2   | 1.50<br>1.00<br>RSP<br>Mean<br>1.00<br>1.00<br>1.00<br>1.00                                | 7 Tur H - 2 2 2 2 2 2 2 2 2                   | 1.65<br>0.63<br>bidity<br>Mean<br><br>1.17<br>0.93<br>0.63<br>0.95<br>0.63<br>0.53                                                                 | 2<br>0<br>N<br>0<br>0<br>0                                                                       | ioos<br>Mean                            | N - 2 0 0 2 0 0 0                                                                                | 5.35<br>2.60<br>DOC<br>Mean<br>6.65                 | 2 2 7 8 N - 2 0 0 2 0 0 0                      | 2.50<br>0.50<br>nnins<br>Hean<br>2.50                 | Am<br>N - 2 2 2 2 2 2 2 2 2 2 2 2                                               | 0.04<br>0.03<br>nonfum<br>Hean<br>0.06<br>0.04<br>0.02<br>0.04<br>0.02                                                 | 2 2 2 2 2 2 2 2 2                             | 0.22<br>0.26<br>rates<br>Hean<br><br>0.19<br>0.23<br>0.28<br>0.22<br>0.27                                                                     | Kje<br>Nit<br>N<br>2<br>2<br>2<br>2<br>2                       | 0.30<br>0.21<br>Idahl<br>rogen<br>Mean<br>0.30<br>0.23<br>0.16<br>0.28<br>0.17<br>0.16                                                         | Tot Phosp N - 2 2 2 2 2 2 2 2 2                                                                                    | 0.02<br>0.01<br>at Dis<br>horous<br>Hean<br>0.02<br>0.01<br>0.00<br>0.02<br>0.01                                                     | Solve<br>Phos<br>N<br>-<br>2<br>2<br>2<br>2<br>2                                                                        | 0.00<br>0.00<br>d React<br>phate<br>Mean<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                                |
|           | 707<br>708<br>Stn<br><br>709<br>710<br>711<br>732<br>714<br>733<br>715                                                            | 22 22 22 22 22 22 22 22 22 22 22 22 22  | 1.50<br>1.00<br>RSP<br>Mean<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00                        | Tur<br>H                                      | 1.65<br>0.63<br>bidity<br>Mean<br><br>1.17<br>0.63<br>0.95<br>0.63<br>0.73                                                                         | 2<br>0<br>N · · · · · · · · · · · · · · · · · · ·                                                | 1.15                                    | 2<br>2<br>0<br>0<br>2<br>0<br>0<br>2                                                             | 5.35<br>2.60<br>DOC<br>Hean<br>6.65<br>5.40         | 2<br>2<br>N<br>-<br>2<br>0<br>0<br>2<br>0      | 2.50<br>0.50<br>mnins<br>Hean<br>2.50                 | Amm N - 2 2 2 2 2 2 2 2 2 2 2                                                   | 0.04<br>0.03<br>monium<br>Hean<br>0.06<br>0.04<br>0.02<br>0.04<br>0.02<br>0.02                                         | 2 2 Rit H - 2 2 2 2 2 2 2 2 2                 | 0.22<br>0.26<br>rates<br>Hean<br>0.19<br>0.23<br>0.28<br>0.22<br>0.27<br>0.27                                                                 | Kje<br>Wit<br>H<br>-<br>2<br>2<br>2<br>2<br>2<br>2<br>2        | 0.30<br>0.21<br>Idahl<br>rogen<br>Mean<br>0.30<br>0.16<br>0.28<br>0.17<br>0.16                                                                 | Tot<br>Phosp<br>N -<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                             | 0.02<br>0.01<br>at Disherous<br>Mean<br>0.02<br>0.01<br>0.00<br>0.02<br>0.01<br>0.01                                                 | Phos<br>N<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                            | 0.00<br>0.00<br>0.00<br>d React<br>phate<br>Mean<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                        |
| ••        | 707<br>708<br>Stn<br><br>709<br>710<br>711<br>732<br>714<br>733<br>715<br>716                                                     | 2 2 2 2 2 2 2 2 4                       | 1.50<br>1.00<br>RSP<br>Mean<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00                        | 2<br>2<br>Tur<br>H                            | 1.65<br>0.63<br>bidity<br>Mean<br>1.17<br>0.93<br>0.63<br>0.95<br>0.63<br>0.73<br>1.70                                                             | 2<br>0<br>8<br>N<br>0<br>0<br>0<br>0<br>0<br>0<br>2<br>4                                         | ioos<br>Mean                            | 2<br>2<br>0<br>0<br>2<br>0<br>0<br>2<br>4                                                        | 5.35<br>2.60<br>DOC<br>Mean<br>6.65                 | 2 2 Ta N - 2 0 0 2 0 0 2 4                     | 2.50<br>0.50<br>nnins<br>Hean<br>2.50                 | Am N - 2 2 2 2 2 2 2 4                                                          | 0.04<br>0.03<br>monfum<br>Hean<br>0.06<br>0.04<br>0.02<br>0.04<br>0.02<br>0.04<br>0.02                                 | #it #i - 2 2 2 2 2 2 4                        | 0.22<br>0.26<br>rates<br>Hean<br><br>0.19<br>0.23<br>0.28<br>0.22<br>0.27<br>0.27<br>0.26<br>0.28                                             | Kje<br>Wit<br>N -<br>2<br>2<br>2<br>2<br>2<br>2<br>2           | 0.30<br>0.21<br>ldahl<br>rogen<br>Hean<br>0.30<br>0.13<br>0.16<br>0.22<br>0.16                                                                 | Tot<br>Phosp<br>N -<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>4                                                        | 0.02<br>0.01<br>at Dishorous<br>Hean<br>0.02<br>0.01<br>0.00<br>0.02<br>0.01<br>0.01<br>0.01                                         | Phos<br>N<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>4                                                                       | 0.00<br>0.00<br>d React<br>phate<br>Mean<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                        |
|           | 707<br>708<br>Stn<br><br>709<br>710<br>711<br>732<br>714<br>733<br>715<br>716<br>735                                              | 2 2 2 2 2 2 2 2 2 4 2                   | 1.50<br>1.00<br>RSP<br>Mean<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00                | Tur<br>H                                      | 1.65<br>0.63<br>bidity<br>Hean<br>1.17<br>0.93<br>0.63<br>0.95<br>0.63<br>0.73<br>1.70<br>0.53                                                     | 2<br>0<br>N - 0<br>0<br>0<br>0<br>0<br>0<br>2<br>4<br>0                                          | 1.15                                    | N - 2 0 0 2 0 0 2 4 0 0                                                                          | 5.35<br>2.60<br>DOC<br>Hean<br>6.65<br>5.40         | 2 2 Ta N - 2 0 0 2 0 0 2 4 0                   | 2.50<br>0.50<br>mnins<br>Hean<br>2.50                 | Amm<br>N - 2 2 2 2 2 2 2 2 2 4 2                                                | 0.04<br>0.03<br>nonfum<br>Hean<br>0.06<br>0.04<br>0.02<br>0.04<br>0.02<br>0.03<br>0.01<br>0.02                         | #it #i - 2 2 2 2 2 2 2 4 2                    | 0.22<br>0.26<br>rates<br>Hean<br>0.19<br>0.23<br>0.28<br>0.22<br>0.27<br>0.27<br>0.26<br>0.28<br>0.28                                         | 2<br>2<br>Wit<br>N - 2<br>2<br>2<br>2<br>2<br>2<br>2<br>4<br>2 | 0.30<br>0.21<br>ldahl<br>rogen<br>Hean<br>0.30<br>0.23<br>0.16<br>0.25<br>0.17<br>0.16<br>0.22                                                 | Tot<br>Phosp<br>N -<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>4<br>2                                         | 0.02<br>0.01<br>at Dis<br>horous<br>Hean<br>0.02<br>0.01<br>0.00<br>0.02<br>0.01<br>0.01<br>0.00                                     | Phos<br>Phos<br>N -<br>2<br>2<br>2<br>2<br>2<br>2<br>4<br>4                                                             | 0.00<br>0.00<br>d React<br>phate<br>Hean<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                |
|           | 707<br>708<br>Stn<br><br>709<br>710<br>711<br>732<br>714<br>733<br>715<br>716<br>735<br>718                                       | N - 2 2 2 2 2 2 2 4 2 2                 | 1.50<br>1.00<br>RSP<br>Mean<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00                | Tur<br>H                                      | 1.65<br>0.63<br>bidity<br>Hean<br>1.17<br>0.93<br>0.63<br>0.95<br>0.63<br>0.73<br>1.70<br>0.53<br>0.70                                             | 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                          | 1.15                                    | N - 2 0 0 2 2 4 0 0 0                                                                            | 5.35<br>2.60<br>DOC<br>Hean<br>6.65<br>5.40         | Ta M                                           | 2.50<br>0.50<br>mnins<br>Hean<br>2.50                 | Amm<br>N - 2 2 2 2 2 2 2 2 4 2 2 2                                              | 0.04<br>0.03<br>monfum<br>Hean<br>0.06<br>0.04<br>0.02<br>0.04<br>0.02<br>0.03<br>0.01                                 | 2 2 2 2 2 2 2 4 2 2                           | 0.22<br>0.26<br>rates<br>Hean<br>0.19<br>0.23<br>0.28<br>0.22<br>0.27<br>0.27<br>0.26<br>0.28<br>0.28<br>0.28                                 | 2 2 Wit N 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                  | 0.30<br>0.21<br>ldahl<br>rogen<br>Mean<br>0.30<br>0.23<br>0.16<br>0.28<br>0.17<br>0.16<br>0.22<br>0.16                                         | Tot<br>Phosp<br>N -<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 0.02<br>0.01<br>at Dishorous<br>Hean<br>0.02<br>0.01<br>0.00<br>0.01<br>0.01<br>0.01<br>0.01                                         | 2<br>2<br>2<br>Phos<br>N<br>-<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>4<br>2<br>2                                         | 0.00<br>0.00<br>d React<br>phate<br>Hean<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.          |
| ••        | 707<br>708<br>Stn<br>709<br>710<br>711<br>732<br>714<br>733<br>715<br>716<br>735<br>718<br>719                                    | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2   | 1.50<br>1.00<br>RSP<br>Mean<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00        | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2         | 1.65<br>0.63<br>bidity<br>Mean<br><br>1.17<br>0.93<br>0.63<br>0.95<br>0.63<br>0.73<br>1.70<br>0.53<br>0.70<br>0.47                                 | 2<br>0<br>N<br>0<br>0<br>0<br>0<br>0<br>0<br>2<br>4<br>0<br>0                                    | 1.15                                    | N - 2 0 0 2 4 0 0 0 0                                                                            | 5.35<br>2.60<br>DOC<br>Hean<br>6.65<br>5.40         | T8 N N 2 0 0 0 2 4 0 0 0 0 0                   | 2.50<br>0.50<br>mnins<br>Hean<br>2.50                 | 2 2 Amm N - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                 | 0.04<br>0.03<br>monfum<br>Hean<br>0.06<br>0.04<br>0.02<br>0.04<br>0.02<br>0.03<br>0.01<br>0.02<br>0.03                 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2         | 0.22<br>0.26<br>Pates<br>Hean<br>0.19<br>0.23<br>0.28<br>0.22<br>0.27<br>0.27<br>0.26<br>0.28<br>0.28<br>0.28<br>0.28<br>0.28                 | 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                        | 0.30<br>0.21<br>ldahl<br>rogen<br>Mean<br>0.30<br>0.23<br>0.16<br>0.28<br>0.17<br>0.16<br>0.22<br>0.16<br>0.29                                 | Tot Phosp N - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                  | 0.02<br>0.01<br>at Dishorous<br>Hean<br>0.02<br>0.01<br>0.00<br>0.02<br>0.01<br>0.01<br>0.00<br>0.00                                 | Phos<br>Phos<br>N -<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2      | 0.00<br>0.00<br>d React<br>phate<br>Hean<br><br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0             |
|           | 707<br>708<br>Stn<br>709<br>710<br>711<br>732<br>714<br>733<br>715<br>716<br>735<br>718<br>719<br>720                             | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2   | 1.50<br>1.00<br>RSP<br>Mean<br><br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00    | Tur N                                         | 1.65<br>0.63<br>bidity<br>Mean<br>1.17<br>0.93<br>0.63<br>0.95<br>0.63<br>0.73<br>1.70<br>0.53<br>0.70<br>0.47<br>0.40                             | 2<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                | 1.15                                    | N - 2 0 0 0 2 4 0 0 0 0 0 0 0                                                                    | 5.35<br>2.60<br>DOC<br>Hean<br>6.65<br>5.40         | T8 N 2 0 0 0 2 4 0 0 0 0 0 0                   | 2.50<br>0.50<br>mnins<br>Hean<br>2.50                 | A                                                                               | 0.04<br>0.03<br>monfum<br>Hean<br>0.06<br>0.04<br>0.02<br>0.04<br>0.02<br>0.03<br>0.01<br>0.02<br>0.03                 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2         | 0.22<br>0.26<br>Pates<br>Hean<br>0.19<br>0.23<br>0.28<br>0.22<br>0.27<br>0.27<br>0.26<br>0.28<br>0.28<br>0.28<br>0.28<br>0.28                 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                          | 0.30<br>0.21<br>ldahl<br>rogen<br>Mean<br>0.30<br>0.23<br>0.16<br>0.28<br>0.17<br>0.16<br>0.20<br>0.15<br>0.19                                 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                              | 0.02<br>0.01<br>at Dishorous<br>Mean<br>0.02<br>0.01<br>0.00<br>0.02<br>0.01<br>0.01<br>0.00<br>0.01<br>0.00                         | 2<br>2<br>2<br>Phos<br>N<br>-<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 0.00<br>0.00<br>d React;<br>phate<br>Hean<br><br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0            |
|           | 707<br>708<br>Stn<br>                                                                                                             | N - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 1.50<br>1.00<br>RSP<br>Mean<br><br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00    | Tur N                                         | 1.65<br>0.63<br>bidity<br>Mean<br>1.17<br>0.93<br>0.63<br>0.95<br>0.63<br>0.73<br>1.70<br>0.53<br>0.70<br>0.47<br>0.40<br>0.45                     | 2<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 1.15                                    | 2 2 N - 2 0 0 0 2 4 4 0 0 0 0 0 0 0 0                                                            | 5.35<br>2.60<br>DOC<br>Hean<br>6.65<br>5.40         | T8 N - 2 0 0 0 2 4 0 0 0 0 0 0                 | 2.50<br>0.50<br>mnins<br>Hean<br>2.50                 | Aim N - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                     | 0.04<br>0.03<br>monium<br>Hean<br>0.06<br>0.04<br>0.02<br>0.02<br>0.03<br>0.01<br>0.02<br>0.03                         | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2         | 0.22<br>0.26<br>Pates<br>Hean<br>0.19<br>0.23<br>0.28<br>0.22<br>0.27<br>0.27<br>0.26<br>0.28<br>0.28<br>0.28<br>0.28<br>0.28                 | 2 2 Kje Hit N 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2              | 0.30<br>0.21<br>ldahl<br>rogen<br>Mean<br>0.30<br>0.16<br>0.28<br>0.17<br>0.16<br>0.22<br>0.16<br>0.20<br>0.15<br>0.10                         | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                              | 0.02<br>0.01<br>at Dishorous<br>Hean<br>0.02<br>0.01<br>0.00<br>0.02<br>0.01<br>0.01<br>0.00<br>0.01<br>0.00                         | 2 2 Phos N - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                        | 0.00<br>0.00<br>d React;<br>phate<br>Hean<br><br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0            |
|           | 707<br>708<br>Stn<br><br>709<br>710<br>711<br>732<br>716<br>733<br>715<br>716<br>735<br>719<br>720<br>721<br>737                  | N - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 1.50<br>1.00<br>RSP<br>Mean<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.0 | Tur N                                         | 1.65<br>0.63<br>bidity<br>Mean<br>1.17<br>0.93<br>0.63<br>0.53<br>0.73<br>1.70<br>0.53<br>0.70<br>0.47<br>0.40<br>0.45<br>0.68                     | 2<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 1.15                                    | 2<br>2<br>2<br>0<br>0<br>0<br>2<br>4<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 5.35<br>2.60<br>DOC<br>Hean<br>6.65<br>5.40         | T8 N - 2 0 0 0 2 4 0 0 0 0 0 0 0 0 0           | 2.50<br>0.50<br>mnins<br>Hean<br>2.50                 | Aim N - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                     | 0.04<br>0.03<br>Hean<br>0.06<br>0.04<br>0.02<br>0.02<br>0.03<br>0.01<br>0.02<br>0.03<br>0.01<br>0.02                   | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2         | 0.22<br>0.26<br>rates<br>Hean<br>0.19<br>0.23<br>0.28<br>0.27<br>0.27<br>0.26<br>0.28<br>0.28<br>0.28<br>0.28<br>0.28<br>0.28                 | 2 2 Kjenit N                                                   | 0.30<br>0.21<br>ldahl<br>rogen<br>0.30<br>0.23<br>0.16<br>0.28<br>0.17<br>0.16<br>0.29<br>0.16<br>0.20<br>0.15<br>0.14                         | Tot Phosp N - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                  | 0.02<br>0.01<br>at Dis<br>horous<br>Hean<br>0.02<br>0.01<br>0.00<br>0.01<br>0.01<br>0.01<br>0.00<br>0.01<br>0.01<br>0.00<br>0.01     | 2 2 Phos H - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                        | 0.00<br>0.00<br>d React;<br>phate<br>Hean<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.         |
|           | 707<br>708<br>Stn<br><br>709<br>710<br>711<br>732<br>714<br>733<br>715<br>716<br>735<br>718<br>719<br>720<br>721<br>737<br>723    | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2   | 1.50<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00                               | Turn N                                        | 1.65<br>0.63<br>bidity<br>Mean<br>1.17<br>0.93<br>0.63<br>0.95<br>0.63<br>0.73<br>1.70<br>0.53<br>0.70<br>0.47<br>0.46<br>0.45<br>0.68<br>0.35     | 2<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 1.15                                    | 2<br>2<br>2<br>0<br>0<br>0<br>2<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 5.35<br>2.60<br>DOC<br>Hean<br>6.65<br>5.40         | T8 N N 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0     | 2.50<br>0.50<br>mnins<br>Hean<br>2.50                 | Amm N - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                     | 0.04<br>0.03<br>Hean<br>0.06<br>0.04<br>0.02<br>0.02<br>0.03<br>0.01<br>0.02<br>0.03<br>0.01<br>0.02<br>0.03           | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2         | 0.22<br>0.26<br>Pates<br>Hean<br>0.19<br>0.23<br>0.28<br>0.27<br>0.27<br>0.26<br>0.28<br>0.28<br>0.28<br>0.28<br>0.28<br>0.28<br>0.29<br>0.29 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                          | 0.30<br>0.21<br>ldahl<br>rogen<br>Mean<br>0.30<br>0.16<br>0.28<br>0.17<br>0.16<br>0.22<br>0.16<br>0.20<br>0.15<br>0.10                         | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                              | 0.02<br>0.01<br>at Dishorous<br>Hean<br>0.02<br>0.01<br>0.00<br>0.02<br>0.01<br>0.01<br>0.00<br>0.01<br>0.00                         | 2 2 Phos N - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                        | 0.00<br>0.00<br>d React<br>phate<br>Hean<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.          |
| ••        | 707<br>708<br>Stn<br><br>709<br>710<br>711<br>732<br>716<br>733<br>715<br>716<br>735<br>719<br>720<br>721<br>737                  | N - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 1.50<br>1.00<br>RSP<br>Mean<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.0 | Tur N                                         | 1.65<br>0.63<br>bidity<br>Mean<br>1.17<br>0.93<br>0.63<br>0.53<br>0.73<br>1.70<br>0.53<br>0.70<br>0.47<br>0.40<br>0.45<br>0.68                     | 2<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 1.15                                    | 2<br>2<br>2<br>0<br>0<br>0<br>2<br>4<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 5.35<br>2.60<br>DOC<br>Hean<br>6.65<br>5.40         | T8 N - 2 0 0 0 2 4 0 0 0 0 0 0 0 0 0           | 2.50<br>0.50<br>mnins<br>Hean<br>2.50                 | Aim N - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                     | 0.04<br>0.03<br>Hean<br>0.06<br>0.04<br>0.02<br>0.02<br>0.03<br>0.01<br>0.02<br>0.03<br>0.01<br>0.02                   | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2         | 0.22<br>0.26<br>rates<br>Hean<br>0.19<br>0.23<br>0.28<br>0.27<br>0.27<br>0.26<br>0.28<br>0.28<br>0.28<br>0.28<br>0.28<br>0.28                 | 2 2 Kjenit N                                                   | 0.30<br>0.21<br>ldahl<br>rogen<br>0.30<br>0.23<br>0.16<br>0.28<br>0.17<br>0.16<br>0.29<br>0.16<br>0.20<br>0.15<br>0.14                         | Tot Phosp N - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                  | 0.02<br>0.01<br>at Dis<br>horous<br>Hean<br>0.02<br>0.01<br>0.00<br>0.01<br>0.01<br>0.01<br>0.00<br>0.01<br>0.01<br>0.00<br>0.01     | 2 2 Phos H - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                        | 0.00<br>0.00<br>d React<br>phate<br>Hean<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.          |
|           | 707<br>708<br>Stn<br>710<br>711<br>732<br>714<br>733<br>715<br>716<br>735<br>718<br>719<br>720<br>721<br>737<br>723<br>728        | N · 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 1.50<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00                               | Tur N                                         | 1.65<br>0.63<br>bidity<br>Mean<br>1.17<br>0.93<br>0.63<br>0.95<br>0.63<br>0.73<br>1.70<br>0.53<br>0.70<br>0.47<br>0.40<br>0.45<br>0.35<br>0.38     | 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                          | 1.15<br>0.82                            | N - 2 0 0 0 2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                      | 5.35<br>2.60<br>DOC<br>Hean<br>6.65<br>5.40<br>2.27 | 78 N N - 2 O O O O O O O O O O O O O O O O O O | 2.50<br>0.50<br>nnins<br>Hean<br>2.50<br>0.50         | Amm. N - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                    | 0.04<br>0.03<br>monfum<br>Hean<br>0.06<br>0.04<br>0.02<br>0.03<br>0.01<br>0.02<br>0.03<br>0.01<br>0.02<br>0.01<br>0.02 | Nit N - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2   | 0.22<br>0.26<br>Pates<br>Hean<br>0.19<br>0.23<br>0.28<br>0.22<br>0.27<br>0.26<br>0.28<br>0.28<br>0.28<br>0.28<br>0.28<br>0.28<br>0.29         | 2 2 Nit N 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                  | 0.30<br>0.21<br>ldahl<br>rogen<br>0.30<br>0.23<br>0.16<br>0.29<br>0.16<br>0.22<br>0.16<br>0.19<br>0.20<br>0.15<br>0.16                         | Tot Phosp N - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                  | 0.02<br>0.01<br>at Dis<br>horous<br>Hean<br>0.02<br>0.01<br>0.00<br>0.01<br>0.01<br>0.01<br>0.00<br>0.01<br>0.01<br>0.01<br>0.01     | 2 2 2 Phoss N - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                     | 0.00<br>0.00<br>0.00<br>d React;<br>phate<br>Hean<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0. |
|           | 707<br>708<br>Stn<br>709<br>710<br>711<br>732<br>714<br>733<br>715<br>716<br>735<br>718<br>719<br>720<br>721<br>737<br>723<br>728 | 222222222222222222222222222222222222222 | 1.50<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00                               | Tur N                                         | 1.65<br>0.63<br>bidity<br>Mean<br><br>1.17<br>0.93<br>0.63<br>0.95<br>0.63<br>0.73<br>1.70<br>0.53<br>0.70<br>0.47<br>0.40<br>0.45<br>0.68<br>0.35 | 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                          | 1.15                                    | N - 2 0 0 0 2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 4                                                      | 5.35<br>2.60<br>DOC<br>Hean<br>6.65<br>5.40<br>2.27 | 78 N N 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0     | 2.50<br>0.50<br>nnins<br>Hean<br>2.50<br>0.50<br>0.50 | Aim N - 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 0.04<br>0.03<br>Mean<br>0.06<br>0.04<br>0.02<br>0.02<br>0.03<br>0.01<br>0.02<br>0.03<br>0.01<br>0.02<br>0.03           | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2         | 0.22<br>0.26<br>Pates<br>Hean<br>0.19<br>0.23<br>0.28<br>0.22<br>0.27<br>0.26<br>0.28<br>0.28<br>0.28<br>0.28<br>0.28<br>0.28<br>0.29         | 2 2 Nit N 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                  | 0.30<br>0.21<br>ldahl<br>rogen<br>Mean<br>0.30<br>0.16<br>0.28<br>0.16<br>0.22<br>0.16<br>0.20<br>0.15<br>0.16<br>0.14<br>0.18                 | Tot Phosp N - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                  | 0.02<br>0.01<br>at Dishorous<br>Hean<br>0.02<br>0.01<br>0.00<br>0.01<br>0.01<br>0.01<br>0.00<br>0.01<br>0.00<br>0.01<br>0.00<br>0.01 | 2 2 2 Phoss N - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                     | 0.00<br>0.00<br>d React;<br>phate<br>Hean<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.         |
|           | 707<br>708<br>Stn<br>710<br>711<br>732<br>714<br>733<br>715<br>716<br>735<br>718<br>719<br>720<br>721<br>737<br>723<br>728        | N · 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 1.50<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00                               | Tur N                                         | 1.65<br>0.63<br>bidity<br>Mean<br>1.17<br>0.93<br>0.63<br>0.95<br>0.63<br>0.73<br>1.70<br>0.53<br>0.70<br>0.47<br>0.40<br>0.45<br>0.35<br>0.38     | 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                          | 1.15<br>0.82                            | N - 2 0 0 0 2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                      | 5.35<br>2.60<br>DOC<br>Hean<br>6.65<br>5.40<br>2.27 | 78 N N - 2 O O O O O O O O O O O O O O O O O O | 2.50<br>0.50<br>nnins<br>Hean<br>2.50<br>0.50         | Amm. N - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                    | 0.04<br>0.03<br>monfum<br>Hean<br>                                                                                     | Nit N - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2   | 0.22<br>0.26<br>Pates<br>Hean<br>0.19<br>0.23<br>0.28<br>0.22<br>0.27<br>0.26<br>0.28<br>0.28<br>0.28<br>0.28<br>0.28<br>0.28<br>0.29         | 2 2 Nit N 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                  | 0.30<br>0.21<br>ldahl<br>rogen<br>Mean<br>0.30<br>0.16<br>0.28<br>0.17<br>0.16<br>0.22<br>0.16<br>0.19<br>0.10<br>0.19<br>0.10<br>0.11<br>0.18 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                              | 0.02<br>0.01<br>at Dishorous<br>Hean<br>0.02<br>0.01<br>0.00<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01                                 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                   | 0.00<br>0.00<br>d React;<br>phate<br>Hean<br><br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0            |

<sup>\*</sup> all units mg/L except Turbidity(ftu) MB - Moberly Bay JB - Jackfish Bay TB - Tunnel Bay

Survey: 4 July 1988 open water stations (surface water)

| Bay                                    | Stn                                                                |                     | lcium<br>Mean                                               | Mag<br>N                                | mesium<br>Mann                                       |                            | Socium                                               |               | assium                               |                       | alinity                                                     |                                         | lphate                                               | Chl         | oride                                                | Condu                           | ctivity                                                          | ٠.,              | рH                              |
|----------------------------------------|--------------------------------------------------------------------|---------------------|-------------------------------------------------------------|-----------------------------------------|------------------------------------------------------|----------------------------|------------------------------------------------------|---------------|--------------------------------------|-----------------------|-------------------------------------------------------------|-----------------------------------------|------------------------------------------------------|-------------|------------------------------------------------------|---------------------------------|------------------------------------------------------------------|------------------|---------------------------------|
|                                        |                                                                    |                     |                                                             | N                                       | Hean                                                 | , N                        | Hean                                                 | N             | Mean                                 | · N                   | Mean                                                        | N                                       | Mean                                                 | N           | Hean                                                 | N                               | Hean                                                             | N                | Mean                            |
| 18                                     | 701                                                                | 4                   | 50.20                                                       | 4                                       | 5.35                                                 |                            | 240.00                                               | 4             | 9.45                                 |                       | 193.00                                                      | 4                                       | 74.80                                                | •           |                                                      | •                               | ****                                                             | •                |                                 |
|                                        | 803                                                                | 2                   | 47.50                                                       | 2                                       | 5.15                                                 |                            | 245.00                                               | 2             | 9.40                                 |                       | 193.00                                                      | 2                                       |                                                      |             | 286.00                                               |                                 | 1395.00                                                          | - 4              | 7.3                             |
|                                        | 804                                                                | 2                   | 32.50                                                       | 2                                       | 4.15                                                 |                            | 140.00                                               | 2             | 6.55                                 |                       | 124.00                                                      |                                         | 76.10                                                |             | 278.00                                               |                                 | 1390.00                                                          | 2                | 7.3                             |
|                                        | 805                                                                | 2                   | 20.00                                                       | 2                                       | 3.35                                                 |                            | 53.50                                                | 2             | 2.50                                 |                       |                                                             | . 2                                     | 31.20                                                |             | 166.00                                               |                                 | 590.00                                                           | 2                | 7.0                             |
|                                        | 702                                                                | 2                   | 22.00                                                       | 2                                       | 3.30                                                 |                            | 56.50                                                | 2             | 2.50                                 | 2                     | 74.00                                                       | 2                                       | 20.00                                                |             | 63.50                                                |                                 | 408.00                                                           | 2                | 7.10                            |
|                                        | 806                                                                | 2                   | 29.50                                                       | 2                                       | 4.05                                                 |                            | 121.00                                               | 2             |                                      |                       | 75.00                                                       | 2                                       | 19.50                                                |             | 67.50                                                |                                 | 412.00                                                           | 2                | 7.2                             |
|                                        | 807                                                                | 2                   | 18.00                                                       | 2                                       | 3.10                                                 | 2                          |                                                      | Ž             | 5.15                                 | 2                     | 114.00                                                      | 2                                       | 39.80                                                |             | 141.00                                               |                                 | 766.00                                                           | 2                | 7.10                            |
|                                        | 808                                                                | 2                   | 18.50                                                       | 2                                       | 3.15                                                 | 2                          |                                                      | 2             | 2.05                                 | 2                     | 64.50                                                       | S                                       | 13.90                                                | . 2         | 46.00                                                | 2                               | 316.00                                                           | 2                | 7.2                             |
|                                        | 809                                                                | 2                   | 24.50                                                       | 2                                       | 3.70                                                 | ž                          | ,                                                    | 2             | 2.15                                 | 2                     | 67.50                                                       | . 2                                     | 16.20                                                | 2           |                                                      |                                 | 337,00                                                           | . 5              | 7.10                            |
|                                        | 810                                                                | 2                   | 18.50                                                       | 2                                       | 3.10                                                 | 2                          |                                                      | . –           | 3.80                                 | 2                     | 92.00                                                       | 2                                       | 29.10                                                |             | 102.00                                               |                                 | 573.00                                                           | . 2              | 7.10                            |
|                                        | 811                                                                |                     | 17.50                                                       | 2                                       | 3.10                                                 | 2                          |                                                      | 2             | 2.17                                 | 2                     | 63.50                                                       | - 2                                     | 13.80                                                |             | 45.50                                                |                                 | 303.00                                                           | 2                | 7.30                            |
|                                        | 812                                                                | 2                   | 16.50                                                       | 2                                       |                                                      | -                          | 33.00                                                | 2             | 1.70                                 | . 2                   | 61.50                                                       | 2                                       | 11.90                                                | 2           |                                                      |                                 | 274.00                                                           | 2                | 7.2                             |
|                                        | 813                                                                | . 2                 | 18.00                                                       | 2                                       | 3.00                                                 | 2                          | 30.80                                                | 5             | 1.70                                 | . 2                   | 59.00                                                       | 2                                       | 12.10                                                | 2           | 37.10                                                | 2                               | 257.00                                                           | 2                | 7.30                            |
|                                        | 814                                                                | Ž                   | 19.00                                                       | 2                                       | 3.20                                                 | 2                          | 41.00                                                | 2             | 1.90                                 | 2                     | 66.00                                                       | 2                                       | 13.20                                                | . 2         | 41.50                                                | 2                               | 323.00                                                           | 2                | 7.10                            |
| 1                                      | 815                                                                | 2                   | 14.50                                                       | · . =                                   | 3.30                                                 |                            | 45.50                                                | 2             | 2.05                                 | 2                     | 68.00                                                       | 2                                       | 15.60                                                | 2           | 52.50                                                | 2                               | 327.00                                                           | 2                | 7.10                            |
|                                        | 703                                                                |                     |                                                             | 5                                       | 3.10                                                 | 2                          | 14.70                                                | 2             | 1.00                                 | 2                     | 56.50                                                       | 2                                       | 7.18                                                 | 2           | 13.40                                                | 2                               | 423.00                                                           | - 2              | 7.30                            |
|                                        |                                                                    | 4                   | 16.00                                                       | 2                                       | 3.05                                                 | 2                          |                                                      | 2             | 1.22                                 | . 2                   | 54.00                                                       | 2                                       | 8.27                                                 | 2           | 22.30                                                | 2                               | 199.00                                                           | 2                | 7.40                            |
| ٠.                                     | 704                                                                |                     | 17.00                                                       | 4                                       | 3.05                                                 | 4                          | 24.00                                                | 4             | 1.45                                 | 4                     | 58.00                                                       | 4                                       | 10.30                                                | 4           | 28.00                                                | 4                               | 234.00                                                           | 4                | 7.2                             |
|                                        | 705                                                                | 2                   | 13.50                                                       | S                                       | 2.90                                                 | 2                          | 11.90                                                | 2             | 0.89                                 | 5                     | 48.50                                                       | 2                                       | 5.33                                                 | 2           | 13.80                                                |                                 | 138.00                                                           | 2                | 7.5                             |
|                                        | 816                                                                | . 2                 | 14.00                                                       | 2                                       | 2.95                                                 | 2                          | 11.40                                                | 2             | 0.83                                 | 2                     | 50.50                                                       | 2                                       | 6.24                                                 | 2           | 14.10                                                | 2                               | 160.00                                                           | . 5              | 7.5                             |
|                                        | 817                                                                | 2                   | 14.00                                                       | . Z                                     | 2.95                                                 |                            |                                                      | 2             | 1.09                                 | 2                     | 50.50                                                       | 2                                       | 6.62                                                 | 2           | 14.70                                                |                                 | 159.00                                                           | 2                | 7.4                             |
|                                        | 818                                                                |                     | 13.50                                                       | 2                                       | 2.90                                                 | 2                          |                                                      | 2             | 0.71                                 | 2                     | 48.00                                                       | 2                                       | 4.95                                                 | 2           | 8.55                                                 |                                 | 135.00                                                           | 2                | 7.5                             |
| . • .                                  | 819                                                                | 2                   | 13.00                                                       | . 2                                     | 2.90                                                 | 2                          |                                                      | 2             | 0.66                                 | . 2                   | 46.50                                                       | 2                                       | 4.38                                                 | . 2         | 6.00                                                 | 2                               | 122.00                                                           | 2                | 7.6                             |
|                                        | 706                                                                | 2                   | 14.50                                                       | 2                                       | 2.95                                                 | 2                          | 14.50                                                | . 2           | 1.00                                 | 2                     | 51.50                                                       | 2                                       | 6.90                                                 | 2           | 17.00                                                |                                 | 170.00                                                           | 2                | 7.4                             |
|                                        | 707                                                                |                     | 15.00                                                       | 2                                       | 2.95                                                 | 2                          | 13.50                                                | 2             | 0.87                                 | 2                     | 51.50                                                       | 2                                       | 7.67                                                 | 2           | 15.50                                                |                                 | 168.00                                                           | 2                | 7.40                            |
| •                                      | 708                                                                | Z                   | 13.00                                                       | 2                                       | 2.90                                                 | 2                          | 5.45                                                 | 2             | 0.65                                 | 2                     | 47.00                                                       | 2                                       | 4.33                                                 | 2           | 5.80                                                 |                                 | 121.00                                                           | 2                | 7.6                             |
|                                        |                                                                    |                     | lcium                                                       | Mag                                     | mesium                                               | \$                         | odium                                                | Pot           | assium                               | ALI                   | alinity                                                     | Su                                      | Iphate                                               | Chl         | oride                                                | Condu                           | ctivity                                                          |                  | pH                              |
| Bay                                    | Stn                                                                | N                   | Hean                                                        | N                                       | Mean                                                 | N                          |                                                      | N,            | Hean                                 | N                     | Mean                                                        | Ņ                                       | Mean                                                 | N           | Hean                                                 |                                 | Hean                                                             |                  | Hean                            |
| JB                                     | 709                                                                | 2                   | 15 50                                                       |                                         | 7.00                                                 | -                          |                                                      | •             | ****                                 | •                     |                                                             | •                                       |                                                      |             |                                                      | •                               | ••••                                                             | •                |                                 |
| 36                                     |                                                                    | _                   | 15.50                                                       | 2                                       | 3.00                                                 | 2                          | 16.00                                                | 2             | 1.06                                 | 2                     | 52.50                                                       | 2                                       | 7.74                                                 | . 2         | 18.00                                                | . 2                             | 177.00                                                           | . 2              | 7.3                             |
|                                        | 710                                                                | 2                   | 14.00                                                       | 2                                       | 2.90                                                 | 5                          | 9.30                                                 | 2             | 0.81                                 | 2                     | 49.00                                                       | 2                                       | 5.79                                                 | 2           | 10.40                                                | 2                               | 144,00                                                           | 2                | 7.4                             |
| 100                                    | 711                                                                |                     | 13.50                                                       | 2                                       | 2.80                                                 | 2                          | 2.90                                                 | 2             | 0.56                                 | . 2                   | 45.50                                                       | 2                                       | 3.66                                                 | 2           | 3.35                                                 | 2                               | 107.00                                                           | 2                | . 7.7                           |
|                                        | 732                                                                | 2                   | 15.00                                                       | 2                                       | 2.95                                                 | 2                          | 11.10                                                | 2             | 0.90                                 | 2                     | 50.50                                                       | 2                                       | 6.23                                                 | . 5         | 13.00                                                | . 2                             | 154.00                                                           | 2                | 7.5                             |
|                                        | 714                                                                | 2                   | 14.00                                                       | 2                                       | 2.85                                                 | 2                          | 3.20                                                 | 2             | 0.59                                 | 2                     | 46.00                                                       | 2                                       | 3.96                                                 | 2           | 3.80                                                 | 2                               | 109.00                                                           | 2                | 7.6                             |
|                                        | 733                                                                | 2                   | 13.50                                                       | 5                                       | 2.85                                                 | 2                          | 2.80                                                 | . 2           | 0.57                                 | . 2                   | 45.50                                                       | 2                                       | 3.68                                                 | 2           | 3.25                                                 | . 5                             | 107.00                                                           | 2                | 7.7                             |
|                                        | 715                                                                | 2                   | 14.00                                                       | 2                                       | 2.85                                                 | . 2                        |                                                      | . 5           | 0.71                                 | 2                     | 48.50                                                       | . 2                                     | 5.12                                                 | 2           | 8.85                                                 |                                 | 134,00                                                           | 2                | 7.5                             |
|                                        | 716                                                                | 4                   | 14.00                                                       | 4                                       | 2.85                                                 | 4                          | 2.72                                                 | 4             | 0.56                                 | . 4                   | 45.50                                                       | 4                                       | 3.73                                                 | 4           | 3.08                                                 |                                 | 106.00                                                           | 4                | 7.7                             |
|                                        |                                                                    |                     | 14.00                                                       | 2                                       | 2.85                                                 | 2                          | 2.60                                                 | . 2           | 0.55                                 | 2                     | 45.50                                                       | 2                                       | 3.54                                                 | 2           | 2.85                                                 | 2                               | 105.00                                                           | . 2              | 7.7                             |
|                                        | 735                                                                | 2                   |                                                             |                                         | 2.85                                                 | 2                          | 5.55                                                 | . 2           | 0.68                                 | . 2                   | 47.00                                                       | 2                                       | 4.45                                                 | 2           | 6.35                                                 |                                 | 123.00                                                           | 2                | 7.6                             |
|                                        | 735<br>718                                                         | . 5                 | 14.00                                                       | 5                                       |                                                      | -                          |                                                      |               |                                      | 2                     | 45.00                                                       | 2                                       | 3.18                                                 | 2           | 1,80                                                 | 2                               | 99.50                                                            | Ž                | 7.8                             |
|                                        | 735<br>718<br>719                                                  | 2                   | 14.00                                                       | 2                                       | 2.85                                                 | Ž                          | 1.70                                                 | 2             | 0.52                                 | ے د                   | 73.00                                                       | _                                       |                                                      |             |                                                      |                                 |                                                                  |                  |                                 |
|                                        | 735<br>718<br>719<br>720                                           | 2 2                 | 14.00<br>13.50                                              | _                                       |                                                      |                            | 1.70                                                 | 2             | 0.52                                 | 2                     | 51.00                                                       |                                         | 3.19                                                 | 2           | 1.80                                                 |                                 |                                                                  | 2                | 7.9                             |
|                                        | 735<br>718<br>719<br>720<br>721                                    | 2 2                 | 14.00<br>13.50<br>14.00                                     | 2                                       | 2.85                                                 | 2                          |                                                      | _             |                                      |                       |                                                             |                                         |                                                      | 2           | 1.80                                                 | 2                               | 102.00                                                           | 2                |                                 |
|                                        | 735<br>718<br>719<br>720<br>721<br>737                             | 2 2 2 2             | 14.00<br>13.50                                              | 2<br>2                                  | 2.85<br>2.85                                         | 2 2 2                      | 1.70                                                 | 2             | 0.52                                 | 2                     | 51.00                                                       | 2                                       | 3.19<br>3.18                                         |             | 1.80<br>1.80                                         | 2                               | 102.00<br>100.00                                                 | 2                | 7.9<br>7.8<br>7.7               |
|                                        | 735<br>718<br>719<br>720<br>721<br>737<br>723                      | 2 2                 | 14.00<br>13.50<br>14.00                                     | 2 2                                     | 2.85<br>2.85<br>2.85                                 | 2 2                        | 1.70<br>1.70                                         | 2             | 0.52<br>0.51                         | 2                     | 51.00<br>45.00                                              | 2                                       | 3.19<br>3.18                                         | 2           | 1.80<br>1.80<br>4.25                                 | 2 2                             | 102.00<br>100.00<br>111.00                                       | 2                | 7.8<br>7.7                      |
|                                        | 735<br>718<br>719<br>720<br>721<br>737                             | 2 2 2 2             | 14.00<br>13.50<br>14.00<br>14.00                            | 2 2 2                                   | 2.85<br>2.85<br>2.85<br>2.85                         | 2 2 2                      | 1.70<br>1.70<br>3.60                                 | 2 2 2         | 0.52<br>0.51<br>0.57                 | 2<br>2<br>2           | 51.00<br>45.00<br>46.00                                     | 2 2                                     | 3.19<br>3.18<br>3.91                                 | 2           | 1.80<br>1.80                                         | 2<br>2<br>2<br>2                | 102.00<br>100.00                                                 | 2                | 7.8<br>7.7<br>7.8               |
| <br>TB                                 | 735<br>718<br>719<br>720<br>721<br>737<br>723                      | 2 2 2 2 2 2         | 14.00<br>13.50<br>14.00<br>14.00<br>14.00                   | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 2.85<br>2.85<br>2.85<br>2.85<br>2.85<br>2.85         | 2 2 2 2                    | 1.70<br>1.70<br>3.60<br>1.40<br>1.30                 | 2 2 2         | 0.52<br>0.51<br>0.57<br>0.50<br>0.50 | 2<br>2<br>2<br>2<br>2 | 51.00<br>45.00<br>46.00<br>45.00<br>44.50                   | 2 2 2                                   | 3.19<br>3.18<br>3.91<br>3.10<br>3.09                 | 2<br>2<br>2 | 1.80<br>1.80<br>4.25<br>1.40<br>1.30                 | 2<br>2<br>2<br>2<br>2           | 102.00<br>100.00<br>111.00<br>98.50<br>97.50                     | 2<br>2<br>2<br>2 | 7.8<br>7.7<br>7.8<br>7.8        |
| <br>1B                                 | 735<br>718<br>719<br>720<br>721<br>737<br>723<br>728               | 2 2 2 2 2 2 2       | 14.00<br>13.50<br>14.00<br>14.00<br>14.00<br>13.50          | 2<br>2<br>2<br>2<br>2                   | 2.85<br>2.85<br>2.85<br>2.85<br>2.85<br>2.85<br>2.85 | 2<br>2<br>2<br>2<br>2<br>2 | 1.70<br>1.70<br>3.60<br>1.40<br>1.30                 | 2 2 2 2       | 0.52<br>0.51<br>0.57<br>0.50<br>0.50 | 2<br>2<br>2<br>2<br>2 | 51.00<br>45.00<br>46.00<br>45.00<br>44.50                   | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 3.19<br>3.18<br>3.91<br>3.10<br>3.09                 | 2<br>2<br>2 | 1.80<br>1.80<br>4.25<br>1.40<br>1.30                 | 2 2 2 2                         | 102.00<br>100.00<br>111.00<br>98.50<br>97.50                     | 2<br>2<br>2      | 7.8<br>7.7<br>7.8<br>7.8        |
| TB                                     | 735<br>718<br>719<br>720<br>721<br>737<br>723<br>728<br>712<br>713 | 2 2 2 2 2 2 2 2 4   | 14.00<br>13.50<br>14.00<br>14.00<br>13.50<br>12.50<br>14.00 | 2 2 2 2 2 2 2 4                         | 2.85<br>2.85<br>2.85<br>2.85<br>2.85<br>2.85<br>2.85 | 2 2 2 2 2 2 2 4            | 1.70<br>1.70<br>3.60<br>1.40<br>1.30<br>3.80<br>2.55 | 2 2 2 2 2 2 4 | 0.52<br>0.51<br>0.57<br>0.50<br>0.50 | 2 2 2 2 2 2 4         | 51.00<br>45.00<br>46.00<br>45.00<br>44.50<br>46.50<br>45.50 | 2 2 2 2 2 4                             | 3.19<br>3.18<br>3.91<br>3.10<br>3.09<br>3.94<br>3.51 | 2 2 2 2     | 1.80<br>1.80<br>4.25<br>1.40<br>1.30<br>4.35<br>2.70 | 2 2 2 2 2 4                     | 102.00<br>100.00<br>111.00<br>98.50<br>97.50<br>113.00<br>105.00 | 2 2 2 2          | 7.8<br>7.7<br>7.8<br>7.8<br>7.7 |
| •••••••••••••••••••••••••••••••••••••• | 735<br>718<br>719<br>720<br>721<br>737<br>723<br>728               | 2 2 2 2 2 2 2 2 4 2 | 14.00<br>13.50<br>14.00<br>14.00<br>14.00<br>13.50          | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 2.85<br>2.85<br>2.85<br>2.85<br>2.85<br>2.85<br>2.85 | 2 2 2 2 2 2 2 4            | 1.70<br>1.70<br>3.60<br>1.40<br>1.30<br>3.80<br>2.55 | 2 2 2 2       | 0.52<br>0.51<br>0.57<br>0.50<br>0.50 | 2 2 2 2 2 2 2 4 2     | 51.00<br>45.00<br>46.00<br>45.00<br>44.50                   | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 3.19<br>3.18<br>3.91<br>3.10<br>3.09                 | 2<br>2<br>2 | 1.80<br>1.80<br>4.25<br>1.40<br>1.30                 | 2<br>2<br>2<br>2<br>2<br>2<br>2 | 102.00<br>100.00<br>111.00<br>98.50<br>97.50                     | 2<br>2<br>2<br>2 | 7.8<br>7.7<br>7.8<br>7.8        |

<sup>\*</sup> all units mg/L except Conductivity(umhos/cm)

MB - Moberly Bay JB - Jackfish Bay proper TB - Tunnel Bay

Survey: 4 July 1988 open water (surface water)

Metal means\*

|     |     | Alumi             | TURN        | Arsenic          | Beryllium  | Iren     | Hercury            | Cocinium  | Chromium  | Copper    | <u> Hanganese</u> | Rickel    | Lend       | Zinc     |
|-----|-----|-------------------|-------------|------------------|------------|----------|--------------------|-----------|-----------|-----------|-------------------|-----------|------------|----------|
| Bay | Stn | N N               |             | N Mean           | N Henn     | H Hean   | N Mean             | H Hean    | N Henn    | N Hean    | H Nean            | N Keen    | N Mean     | N Hean   |
|     |     | the second second |             |                  |            |          | • ••••             |           | • ••••    |           |                   |           |            |          |
| MB  | 701 |                   | .508        | 4 <0.001         | 4 40.901   | 4 0.505  | 4 0.053            | 4 0.003   | 4 0.045   | 4 0.018   | 4 0.348           | 4 0.006   | 4 0.018    | 4 0.81   |
|     | 893 |                   | .445        | 2 <0.001         | 2 <0.001   | 2 0.490  | 2 0.025            | 2 0.003   | 2 0.035   | 2 <0.010  | 2 0.340           | 2 0,003   | 2 <0.010   | 2 8.83   |
|     | 804 |                   | .205        | 2 <0.001         | 2 <0.001   | 2 0.190  | 2 <0.020           | 2 <0.805  | 2 0.021   | 2 0.008   | 2 0.123           | 2 <0.005  | 2 <0.010   | 2 4.80   |
|     | 805 |                   | .120        | 2 40.001         | 2 <0.001   | 2 0.000  | 2 <0.010           | 2 <0.005  | 2 0.011   | 2 0.009   | 2 0.076           | 2 <0.005  | 2 <0.010.  | 2 < 0.90 |
|     | 702 |                   | .067        | 2 <0.001         | 2 <0.901   | 2 0.115  | 2 <0.010           | 2 <0.0002 | 2 0.012   | 2 0.003   | 2 0.073           | 2 <0.002  | 2 <0.005   | 2 0.90   |
|     | 806 |                   | .260        | 2 <0.001         | 2 40,001   | 2 0.215  | 2 <0.010           | 2 <0.005  | 2 0.022   | 2 0.009   | 2 0.179           | 2 <0,005  | 2 <0.010   | 2 0.01   |
|     | 507 |                   | <b>.040</b> | 2 <0.001         | 2 <0.001   | 2 0.075  | 2 <0.010           | 2 <0.005  | 2 0.007   | 2 <0.002  | 2 0.056           | 2 <0.005  | 2 <0.010   | 2 < 9.00 |
|     | 808 |                   | .120        | 2 <0.001         | 2 <0.001   | 2 0.090  | 2 <0.010           | 2 <0.005  | 2 <0.010  | 2 0.007   | 2 0.068           | 2 <0.005  | 2 <0.010   | 2 <0.00  |
|     | 809 |                   | .200        | 2 <0.001         | 2 <0.001   | 2 0.140  | 2 4.015            | 2 <0.805  | 2 <0.010  | 2 0.809   | 2 0.115           | 2 <0.005  | 2 <0.010   | 2 < 9.90 |
|     | 810 | A Company         | -055        | 2 <0.010         | 2 <0,001   | 2 0.080  | 2 <0.010           | 2 < 0.005 | 2 0.008   | 2 <0.082  | 2 0.055           | 2 <0.005  | 2 <0.010   | 2 4.10   |
|     | 811 |                   | .078        | 2 <0.001         | 2 <0.005   | 2 0.203  | 2 <0.010           | 2 9.004   | 2 0.011   | 2 6.807   | 2 0.044           | 2 0.013   | 2 0.007    | 2 8.60   |
|     | 812 |                   | .050        | 2 49.001         | ି 2 ≪0.001 | 2 0.070  | 2 <0.018           | 2 <0.005  | 2 0.007   | 2 0.003   | 2 0.042           | 2 < 9.005 | 2 <0.018 - | 2 49.00  |
|     | 813 | and the second    | -055        | 2 <0.001         | 2 40.001   | 2 0.065  | 2 <0.010           | 2 <0.005  | 2 0.009   | 2 0.003   | 2 0.038           | 2 <0.005  | 2 < 0.010  | 2 4.0    |
| •   | 814 | 2 (               | -110        | 2 <4.001         | 2 <0.001   | 2 0.090  | 2 0.035            | 2 <0.005  | 2 0.011   | 2 8.106   | 2 0.062           | 2 <0.005  | -2- 0.020- | 2 4.0    |
|     | 815 | 2 (               | .055        | 2 4.001          | 2 <0.001   | 2 8.850  | 2 <0.010           | 2 <0.005  | 2 < 0.005 | 2 0.903   | 2 0.016           | 2 9.007   | 2 40.010   | 2 4.1    |
|     | 703 | 2 (               | .037        | 2 <0. 01         | 2 <6.001   | 2 8.844  | 2 <0.010           | 2 <0.0002 | 2 <0.005  | 2 <8.002  | 2 0.027           | 2 <6.002  | 2 <0.005   | 2 4.1    |
|     | 704 | - 4 (             | .047        | 4 <∪.001         | 4 49.001   | 4 8.059  | <b>4 &lt;0.019</b> | 4 <0.0002 | 4 <0.005  | 4 <0.002  | 4 0.033           | 4 <0.962  | 4 <0.005   | 4 : 8.0  |
|     | 705 | 2 (               | 0.040       | 2 40.001         | 2 49,001   | 2 49.050 | 1 < ୩.010          | 2 <0.005  | 2 <0.005  | 2 0.004   | 2 0.011           | 2 <0.005  | 2 40.010   | 2 4.     |
|     | 816 |                   | 0.035       | 2 <0.001         | 2 40.001   | 2 0.050  | ₹ <b>0.010</b>     | 2 <0.005  | 2 <0.005  | 2 0.003   | 2 0.016           | 2 <0.005  | 2 <0.010   | 2 4.     |
|     | 706 | . 2 (             | 0.045       | 2 <0.001         | 2 49.001   | 2 8.070  | 2 <0.010           | 2 <0.005  | 2 < 9.005 | 2 0.003   | 2 0.022           | 2 <0.005  | 2 <0.010 、 | 2 4.8    |
| 1.  | 707 | <b>S</b> (        | 0.034       | 2 <0.001         | 2 40.001   | 2 0.030  | 2 <0.010           | 2 <0.0002 | 2 0.006   | 2 <0.002  | 2 0.016           | 2 <0.002  | 2 <0.905   | 2 1.1    |
|     | 708 | 2 1               | 0.016       | 2 <0.001         | 2 4.001    | 2 0.026  | 2 <0.010           | 2 <4.0002 | 2 0.002   | 2 <0.002  | 2 0.007           | 2 <0.002  | 2 <0.005   | 2 0.0    |
|     |     | Alum              | inus        | Arsenic          | Beryllium  | Iron     | Mercury            | Cachinum  | Chronium  | Copper    | Hanganesa         | Mickel    | Lead       | Zinc     |
| Bay | Stn |                   | Hear        | N Hean           | H Hear .   | N Meun   | H Heen             | N Menn    | N Nean    | N Near    | N Hean            | N Hears   | N Hean     | N Kee    |
|     | 700 |                   |             | 3 3 501          | 2 4 004    | 0 0 050  | 2 -0 040           | 9 -9 005  | 2         | 2 2 22    |                   |           |            |          |
|     | 789 |                   | 0.035       | 2 <0.001         | 2 4.001    | 2 8.050  | 2 <0.010           | 2 <0.005  | 2 <0.085  | 2 <0.002  | 2 0.020           | 2 4.005   | 2 <0.010   | 2 40.0   |
|     | 732 |                   | 0.026       | 2 4.001          | 2 ◀.001    | 2 0.031  | 2 <0.010           | 2 <0.0002 | 2 0.002   | 2 <0.002  | 2 0.014           | 2 <0.002  | 2 <0.005   | 2 40.    |
|     | 715 |                   | 0.020       | 2 <8.001         | 2 ≪3.001   | 2 4.926  | 2 <0.010           | 2 <0.0002 | 2 0.002   | 2 <0.002  | 2 <0.010          | 2 <0.002  | 2 <0.005   | 2 6.     |
|     | 716 |                   | 0.013       | 4 <b>4.81</b> 1  | 4 ≪.001    | 4 ≪0.020 | <b>4 &lt;0.010</b> | 4 <0.0002 | 4 <0.001  | 4 <0.002  | 4 0.004           | 4 <0.002  | 4 <0.005   | 4 0.1    |
| 18  | 713 | 4                 | 0.015       | 4 <0.081         | 4 48.001   | 4 <0.020 | 4 <0.010           | 4 <0.0002 | 4 <0.001  | 4 <0.002  | 4 0.003           | 4 <0.002  | 4 <0.005   | 4 8.1    |
|     | 832 | 3                 | 0.975       | 3 <b>49.08</b> 1 | 3 <4.001   | 3 4.024  | 3 <0.010           | 2 <0.0002 | 2 0.002   | 2 <0.002  | 2 0.006           | 2 <0.002  | 2 <0.085   | 2 8.0    |
|     | 833 | 2                 | 0.013       | 2 40.001         | 2 40.001   | 2 <0.020 | 2 <0.010           | 2 <0.0002 | 2 <0.001  | 2 < 0.002 | 2 0.003           | 2 <0.002  | 2 < 9.005  | 2 0.0    |

| * 8 | и | uni | tz | ma. | Æ |
|-----|---|-----|----|-----|---|
|     |   |     |    |     |   |

#### Range of detection limits:

MB - Moberly Bay

JB - Jackfish Bay proper

TB - Turnet Bay

Aluminum <.003 -- <.10
per Arsenic <.001
Beryllium <.0005 -- <.05
iron <.001 -- <.10

Mercury <.01 Cadmium <.002 -- <.015 Chromium <.005 -- <.10

Copper

<.0805 -- <.10

Mengamase <.0005 -- <.01
Nicket <.001 -- <.10
Lead <.005 -- <.15

Zinc

<.0005 -- <.10

|   | The Late of the Cartier |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|---|-------------------------|--|--|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|   |                         |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4<br>M      |
|   |                         |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Di-         |
|   |                         |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.7<br>1.5  |
|   |                         |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|   |                         |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|   |                         |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|   |                         |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|   |                         |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.7         |
|   |                         |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|   |                         |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|   |                         |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|   |                         |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|   |                         |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 1         |
|   |                         |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|   |                         |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | į.          |
|   |                         |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|   |                         |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4           |
|   |                         |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|   |                         |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|   |                         |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1           |
|   |                         |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1           |
|   |                         |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [-].<br>[-] |
|   |                         |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e in<br>Jet |
|   |                         |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|   |                         |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|   |                         |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Å.          |
|   |                         |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.5<br>k.   |
| • |                         |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F.          |
|   |                         |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|   |                         |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|   |                         |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|   |                         |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14          |
|   |                         |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|   |                         |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|   |                         |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ú.          |
|   |                         |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|   |                         |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|   |                         |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|   |                         |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11          |
|   |                         |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , T         |
|   |                         |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|   |                         |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | l           |
|   |                         |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|   |                         |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|   |                         |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|   |                         |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|   |                         |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|   |                         |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|   |                         |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|   |                         |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|   |                         |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <br>        |
|   |                         |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 4         |
|   |                         |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|   |                         |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|   |                         |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 {         |
|   |                         |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|   |                         |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · ·         |
|   |                         |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <i>.</i>    |
|   |                         |  |  | The second secon |             |
|   |                         |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|   |                         |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| i |                         |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |



|  | 방문 기가 가는 것이다. |  |  |
|--|---------------|--|--|
|  |               |  |  |
|  |               |  |  |
|  |               |  |  |
|  |               |  |  |
|  |               |  |  |
|  |               |  |  |
|  |               |  |  |
|  |               |  |  |
|  |               |  |  |
|  |               |  |  |
|  |               |  |  |
|  |               |  |  |
|  |               |  |  |
|  |               |  |  |
|  |               |  |  |
|  |               |  |  |
|  |               |  |  |
|  |               |  |  |
|  |               |  |  |
|  |               |  |  |
|  |               |  |  |
|  |               |  |  |
|  |               |  |  |
|  |               |  |  |
|  |               |  |  |
|  |               |  |  |
|  |               |  |  |
|  |               |  |  |
|  |               |  |  |
|  |               |  |  |
|  |               |  |  |
|  |               |  |  |
|  |               |  |  |
|  |               |  |  |
|  |               |  |  |
|  |               |  |  |
|  |               |  |  |
|  |               |  |  |
|  |               |  |  |
|  |               |  |  |
|  |               |  |  |
|  |               |  |  |
|  |               |  |  |
|  |               |  |  |
|  |               |  |  |
|  |               |  |  |
|  |               |  |  |
|  |               |  |  |
|  |               |  |  |
|  |               |  |  |



### You can get involved!

Public involvement is an important part of the RAP process! Programs to involve all those interested in or responsible for water quality in the four northern Lake Superior areas of concern are now underway. To find out more about what is planned for your community, and how you can get involved, call our toll free number, 1-800-465-6854, and leave a message for:

- Pat Inch, RAP Coordinator Peninsula Harbour
- Jim Murphy, RAP Coordinator Jackfish Bay
- Jake Vander Wal, RAP Coordinator Thunder Bay/Nipigon Bay

Environment Ontario P.O. Box 5000, 435 James Street South Thunder Bay, Ontario P7C 5G6

> Remedial Action Plan Plan d'Assainissement

Canada ® Ontario





NORTH SHORE
OF LAKE SUPERIOR
REMEDIAL ACTION PLANS



## Are you concerned about water quality in Lake Superior?

So are the Federal and Provincial governments.

The International Joint Commission (IJC) has identified 42 polluted areas on the Great Lakes as areas of concern for which clean-up or remedial action plans (RAPs) must be prepared. Seventeen of these areas are located in Ontario, four on northern Lake Superior.

Under the Canada-Ontario Agreement Respecting Great Lakes Water Quality, Environment Ontario and Environment Canada are coordinating the development of the 17 Canadian RAPs. The Ministry of Natural Resources is playing an important role in the North Shore of Lake Superior Remedial Action Plans. Each RAP will: define the boundaries of the affected area; identify the sources and causes of the pollution; identify the uses which are impaired; recommend remedial measures to restore desired uses; include an implementation timetable; identify the agencies responsible for implementing the RAP; and contain a process for measuring the degree to which restoration is achieved.

The contents of this brochure will familiarize you with the reasons why there are four northern Lake Superior areas of concern: Thunder Bay, Jackfish Bay, Peninsula Harbour and Nipigon Bay.





#### Thunder Bay

Pollution problems in Thunder Bay identified around 1970 included gross pollution by raw sewage, bottom deposits of sludge and rotting woodwastes, floating sludgemats, foaming, and mercury and PCB contamination of sediments and fish.

Since that time, pollution abatement measures have been taken by the municipality and industry to improve water quality, but problems still exist.

Fish continue to die because of high loadings of organic wastes to the Kaministiquia River during low summer flow periods. The discharge of toxics, including persistent chlorinated organics to Thunder Bay from pulp and paper mills, have serious consequences to the Lake Superior ecosystem because many of these compounds do not break down easily, may cause cancer and genetic mutations, and may bioaccumulate in the food chain. A portion of the inner harbour has sediment seriously contaminated with dioxins, furans, pentachlorophenols, creosote and other toxic pollutants as a result of

historical problems associated with the wood preserving industry. Fish are contaminated with mercury, PCBs and other contaminants. As well, bacterial contamination has resulted in periodic closures of Chippewa Beach.

#### Jackfish Bay

Water quality in Jackfish Bay, which has been monitored since 1969, is degraded as a result of industrial discharge to Blackbird Creek.

Although pollution control measures have resulted in less pollution entering the creek and therefore, Jackfish Bay, serious pollution problems remain.

Toxic chemicals, including persistent chlorinated organics, are present. The water is discoloured. There are high levels of bacteria. Blackbird Creek and parts of Jackfish Bay are unable to support normal aquatic life owing to effluent toxicity and contamination of sediments. Fish are also contaminated with mercury.

## Northern Lake Superior Areas of Concern

#### Peninsula Harbour

Prior to 1984, water quality surveys indicated that the main impacts on this area of concern were: bacterial contamination; aesthetic impairment (odour and foam); high levels of mercury in fish and bottom sediments; and organic enrichment of the lake bottom.

Although measures have been undertaken to improve the water quality, pollution is still a problem.

Toxic chemicals, including persistent chlorinated organics from an industrial discharge, find their way to Lake Superior. Sediments remain contaminated with mercury as a result of historical discharges.

While fish in Peninsula Harbour are healthier now than in the past as a result of decreasing PCB and mercury concentrations, these contaminants still present a problem.

#### Nipigon Bay

Nipigon Bay receives municipal wastewater from Red Rock and Nipigon, as well as industrial wastewater from a pulp and paper mill.

Before 1974, pollution resulted in odours, tainting of fish flesh and changes to the aquatic community which included the replacement of clean water organisms by pollution tolerant forms.

Improvements to wastewater treatement since 1974 have contributed to improved water quality in the bay. However, water quality continues to be impaired.

Presently, there is an occasional taste problem in the drinking water. Furthermore, the industrial effluent which contains toxic chemicals including persistent chlorinated organics, remains concentrated in the surface water layer of Nipigon Bay.





## **Open House**

A cleanup or remedial action plan (RAP) is required for dealing with water pollution in Jackfish Bay.

You can get involved! Attend an open house to learn about the Jackfish Bay RAP and to meet and talk with the federal-provincial team coordinating the development of the RAP.

Thursday, December 1, 1988
2:00 p.m.-4:00 p.m. or 7:00 p.m.-9:00 p.m.
Terrace Bay Recreation Centre
Highway 17 and Selkirk Avenue
Terrace Bay, Ontario POT 2W0

For further details please contact:
Jim Murphy
RAP Coordinator
Environment Ontario
3rd Floor, 435 James Street South
Thunder Bay, Ontario P7C 5G6
1-800-465-6854 (Toll Free)

Remedial Action Plan Plan d'Assainissement

Canada © Ontario

## Jackfish Bay pollution is studied

By DARCEY CHERNYSH North Shore Bureau

TERRACE BAY — Before they can plan their next move, the Jackfish Bay Public Advisory Committee must first determine how extensive pollution is in the bay, said the committee chairman.

First the group has to document if there is a pollution problem and, if so, how big of a problem it is. "So, we don't exactly know what the next step

will be," said Jon Ferguson.

The committee has hired a consulting firm to test sediment content and depth at three locations along the Blackbird Creek system, including what is commonly referred to as Lake C which is closest to Lake Supe-

Samples were taken in early December and Ferguson said there is no word yet when the test results will be available. He also explained that the Ministry of the Environment will also

be festing the samples.

Water quality in Jackfish Bay has been monitored for the past 20 years and, despite pollution control measures, pollution remains a problem. Industrial discharge in Blackbird Creek has left the water incapable of supporting normal aquatic life and parts of the bay itself cannot sustain normal aquatic life because of the toxic effluent and sediment contamination.

Even though the Kimberly-Clark paper mill has taken pollution control measures, Ferguson explained there is concern pollution could still be a problem further along the creek sys-

"It could be worse," he said, "But there might be no difference (either).

If a problem is seen the group will have to determine what clean-up action could be feasible. Removal of the contaminated sediment could be an option while another scenerio might see the sediment buried so deep such a move would be inappropriate.

The committee has to wait for the test results before even attempting to outline a plan of action, he added.

In the province, 17 polluted areas within the Great Lakes system have been identified as problem areas requiring investigation and clean-up. A remedial action plan is being developed to restore the water quality for each area with involvement from different levels of government and various interest groups.

Canada and the United States, through the International Joint Commission, are both examining the impact of pollution on the Great Lakes and establishing remedial action plans. The action plan will identify specific measures to control existing sources of pollution, abate environmental contamination already present and restore beneficial uses

Other areas in the region with remedial action plan groups include Marathon's Peninsula Harbor, Nipigon Bay and Thunder Bay.

# Study of Blackbird Creek system selects options to restore water quality

The Jackfish Bay Remedial Action Plan (RAP) Team, in consultation with the Public Advisory Committee (PAC), has commissioned a study of the Blackbird Creek system. This study will answer a number of questions which will assist the PAC and the RAP Team in selecting remedial options to restore the water quality and aquatic habitat of Jackfish Bay.

There were five specific questions put to the consultant. These are:

- \* Are the historic contaminants in Blackbird Creek and its associated lakes contributing to the overall toxic/contaminant load to Lake Superior? If so, where are the sources and how significant are they.
- \* If the pollutants, contained within the sediments of Blackbird Creek and its associated lakes, were to remain in place,

The Jackfish Bay Remedial for what period of time would the ction Plan (RAP) Team, in they continue to contribute to the Lake Superior contaminant livisory Committee (PAC), load?

\* What remedial options are available to assist in the natural recovery of Blackbird Creek and its associated lakes and what are the costs of each option?

In the 1984 feasibility study of outfall alternatives, prepared for Kimberly-Clark of Canada Ltd., five options were proposed for effluent dispersion. The costs estimated for each option in this report were based upon 1984 dollars and construction methods. What costs would be essential with each option based upon current market conditions?

\* Assuming that Kimberly-Clark of Canada Ltd. were to cease discharging effluent into Blackbird Creek system, how long would it take for the system to recover to background conditions (sediment and Water)?

The study has been completed and will be circulated for PAC review in early August. The PAC has also had the opportunity to review some introductory information regarding question four and a Preliminary Baseline Study of Vegetation and Rehabilitation Potential. This study outlines the use of wetlands as a cleaning system for Blackbird contaminants.

The PAC will be meeting to discuss this report on August 8, 7 p.m. at Birchwood Terrace in Terrace Bay. This meeting will become the first in a series of meetings where the PAC will review options and recommend what action will best achieve the water use goals for Jackfish Bay. PAC meetings are always open to the public.

| 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |       |  |            | A Commence |              | 4.4                                                                                                                                                                                                                               | 10, 20,                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|-------|--|------------|------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |       |  |            |            |              |                                                                                                                                                                                                                                   |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |       |  | the second |            |              |                                                                                                                                                                                                                                   |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |       |  | •          |            |              |                                                                                                                                                                                                                                   |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |       |  |            |            |              |                                                                                                                                                                                                                                   | X                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |       |  |            |            |              |                                                                                                                                                                                                                                   |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |       |  |            |            | 14.          |                                                                                                                                                                                                                                   | 100                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |       |  |            |            |              |                                                                                                                                                                                                                                   |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |       |  |            |            |              |                                                                                                                                                                                                                                   |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |       |  |            |            | 415 J. + 181 |                                                                                                                                                                                                                                   |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |       |  |            |            |              |                                                                                                                                                                                                                                   |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |       |  |            |            |              |                                                                                                                                                                                                                                   |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  | e e e |  |            |            |              |                                                                                                                                                                                                                                   |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |       |  |            |            |              |                                                                                                                                                                                                                                   |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |       |  |            |            |              |                                                                                                                                                                                                                                   | V.                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |       |  |            |            |              |                                                                                                                                                                                                                                   |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |       |  |            |            |              |                                                                                                                                                                                                                                   |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |       |  |            |            |              |                                                                                                                                                                                                                                   |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |       |  |            |            |              |                                                                                                                                                                                                                                   | 4                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |       |  |            |            |              |                                                                                                                                                                                                                                   |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |       |  |            |            |              |                                                                                                                                                                                                                                   |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |       |  |            |            |              |                                                                                                                                                                                                                                   |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |       |  |            |            |              |                                                                                                                                                                                                                                   |                                       |
| THE COLUMN TWO IS NOT  |  |       |  |            |            |              |                                                                                                                                                                                                                                   |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |       |  |            |            |              |                                                                                                                                                                                                                                   |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |       |  |            |            |              |                                                                                                                                                                                                                                   |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |       |  |            |            |              |                                                                                                                                                                                                                                   |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |       |  |            |            |              |                                                                                                                                                                                                                                   |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |       |  |            |            |              |                                                                                                                                                                                                                                   |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |       |  |            |            |              |                                                                                                                                                                                                                                   |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |       |  |            |            |              |                                                                                                                                                                                                                                   | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |       |  |            |            |              |                                                                                                                                                                                                                                   |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |       |  |            |            |              |                                                                                                                                                                                                                                   |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |       |  |            |            |              |                                                                                                                                                                                                                                   |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |       |  |            |            |              |                                                                                                                                                                                                                                   |                                       |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |       |  |            |            |              |                                                                                                                                                                                                                                   |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |       |  |            |            |              |                                                                                                                                                                                                                                   |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |       |  |            |            |              | e e grande de la companya de la comp<br>La companya de la co |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |       |  |            |            |              |                                                                                                                                                                                                                                   |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |       |  |            |            |              |                                                                                                                                                                                                                                   |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |       |  |            |            |              |                                                                                                                                                                                                                                   |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |       |  |            |            |              |                                                                                                                                                                                                                                   |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |       |  |            |            |              |                                                                                                                                                                                                                                   |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |       |  |            |            |              |                                                                                                                                                                                                                                   |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |       |  |            |            |              |                                                                                                                                                                                                                                   |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |       |  |            |            |              |                                                                                                                                                                                                                                   |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |       |  |            |            |              |                                                                                                                                                                                                                                   |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |       |  |            |            |              |                                                                                                                                                                                                                                   |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |       |  |            |            |              |                                                                                                                                                                                                                                   |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |       |  |            |            |              |                                                                                                                                                                                                                                   |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |       |  |            |            |              |                                                                                                                                                                                                                                   |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |       |  |            |            |              |                                                                                                                                                                                                                                   |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |       |  |            |            |              |                                                                                                                                                                                                                                   |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |       |  |            |            |              |                                                                                                                                                                                                                                   |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |       |  |            |            |              |                                                                                                                                                                                                                                   |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |       |  |            |            |              |                                                                                                                                                                                                                                   |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |       |  |            |            |              |                                                                                                                                                                                                                                   |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |       |  |            |            |              |                                                                                                                                                                                                                                   |                                       |
| The second secon |  |       |  |            |            |              |                                                                                                                                                                                                                                   |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |       |  |            |            |              |                                                                                                                                                                                                                                   |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |       |  |            |            |              |                                                                                                                                                                                                                                   |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |       |  |            |            |              |                                                                                                                                                                                                                                   |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |       |  |            |            |              |                                                                                                                                                                                                                                   |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |       |  |            |            |              |                                                                                                                                                                                                                                   |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |       |  |            |            |              |                                                                                                                                                                                                                                   |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |       |  |            |            |              |                                                                                                                                                                                                                                   |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |       |  |            |            |              |                                                                                                                                                                                                                                   |                                       |

APPENDIX 6.2 CHRONOLOGICAL DEVELOPMENT OF PUBLIC INVOLVEMENT



| <u>Date</u>        | <u>Activity</u>                                                     |
|--------------------|---------------------------------------------------------------------|
| December 1, 1988   | Jackfish Bay Open Houses                                            |
| May 9, 1989        | Introductory PAC Meeting                                            |
| May 18, 1989       | PAC Meeting #2                                                      |
| June 22, 1989      | Jackfish Bay Tour and PAC Meeting #3                                |
| July 13, 1989      | Lake "A" Tour and PAC Meeting #4                                    |
| August 10, 1989    | PAC Meeting #5                                                      |
| September 14, 1989 | PAC Meeting #6                                                      |
| October 19, 1989   | Kimberly-Clark Mill Tour                                            |
| November 9, 1989   | PAC Meeting #7                                                      |
| November 21, 1989  | Technical Terms Information Sessions                                |
| November 25, 1989  | MISA Presentation for all four North<br>Shore of Lake Superior PACs |
| December 7, 1989   | PAC Meeting #8                                                      |
| January 4, 1990    | PAC Meeting #9                                                      |
| February 1, 1990   | PAC Meeting #10                                                     |
| February 22, 1990  | PAC Meeting #11                                                     |

| March 22-24        | Making a Great Lake Superior Conference                                     |
|--------------------|-----------------------------------------------------------------------------|
| March 29, 1990     | PAC Meeting #12                                                             |
| April 4, 1990      | PAC Meeting #13                                                             |
| May 17, 1990       | PAC Meeting #14                                                             |
| June 21, 1990      | PAC Meeting #15                                                             |
| July 26, 1990      | PAC Meeting #16                                                             |
| September 9, 1990  | PAC Open House to present Water Use<br>Goals to Public                      |
| September 27, 1990 | PAC Meeting #17                                                             |
| November 22, 1990  | PAC Meeting #18                                                             |
| December 13, 1990  | PAC Meeting #19                                                             |
| February 18, 1991  | PAC Meeting #20                                                             |
| March 23, 1991     | Remedial Options Workshop for all four<br>North Shore of Lake Superior PACs |
| April 11, 1991     | PAC Meeting #21                                                             |
| May 23, 1991       | PAC Meeting #22                                                             |
| August 8, 1991     | PAC Meeting #23                                                             |

APPENDIX 6.3 PAC TERMS OF REFERENCE



#### JACKFISH BAY REMEDIAL ACTION PLAN PUBLIC ADVISORY COMMITTEE (PAC) TERMS OF REFERENCE

#### THE REMEDIAL ACTION PLAN (RAP) PROCESS AND THE PAC

#### The RAP Process

The RAP Process will produce a plan that, when implemented, will restore and protect beneficial uses of Jackfish Bay.

The RAP will build on past and ongoing efforts and will be consistent with the requirements of the Great Lakes Water Quality Agreement of 1987 and the Canada-Ontario Agreement Respecting Great Lakes Water Quality.

A Canadian federal-provincial RAP Team has been created to coordinate the development of a Remedial Actin Plan.

#### The Public Advisory Committee (PAC)

The PAC will operate as an advisory body to the RAP Team, representing a variety of views on key aspects of the RAP preparation and implementation. The PAC will consider all views presented by the general public in formulating its consensus.

#### Objectives of the PAC

- to represent the range of community interests and concerns;
- to provide a focal point for the views and positions of the public in the development of the Jackfish Bay Remedial Action Plan;
- to assist the RAP team in implementing a public information program for the general public, in part by acting as a liaison between the PAC and its member organizations; and
- to provide a basis for generating community support for implementation of the final plan.

#### **ROLES AND RESPONSIBILITIES**

#### PAC: Group Responsibilities

The role of the PAC is to advise the RAP Team throughout the RAP development and implementation process. The PAC will:

- confirm and prioritize beneficial water uses to be restored;
- review results of research;
- provide input to and review descriptions of environmental conditions, sources and proposed remedial options, and the draft RAP document;
- contribute to and review the statements of goals and environmental conditions;

- identify parties responsible for implementation of remedial measures;
- review and comment on the scheduling of remedial measures;
- assist the RAP Team in designing a process to evaluate the effectiveness of remedial action measures;
- review and provide input on the overall public involvement program for both the planning and implementation phases; and
- review each stage of the Jackfish Bay RAP for consistency with goals and objectives of the PAC.

#### PAC: Individual Member Responsibilities

It is the responsibility of each individual appointed to the PAC to:

- prepare for and attend all PAC meetings;
- represent the views, interests and values of their respective group(s) (if they represent a group). This means communicating all information and viewpoints back to the group(s) to seek support and positions on issues discussed at PAC meetings and to convey the group's positions back to the PAC; and
- promote community awareness, understanding and support for implementation of the RAP.

In addition, attendance at open houses and meetings for the general public (2 to 3 meetings per year) by PAC representatives would be desirable.

#### MEMBERSHIP AND REPRESENTATION

#### General

It is the intent of the RAP Team to have a wide range of community representation on the PAC. Membership on the PAC shall attempt to include individuals representing community organizations, local government agencies and the general public having a direct effect on, or being directly affected by, the water quality of Jackfish Bay. The PAC may also include groups or individuals having an interest in the uses and management of local waters.

#### **PAC Organization**

Initially, the PAC shall meet and determine operating rules of procedure, including frequency of meetings, time, location, the need for additional members, etc., and shall review these rules of procedure with the RAP Team. The RAP Coordinator or alternate shall attend all PAC meetings.

Agenda and supporting reports shall be distributed in advance of any meeting in order to ensure that all members of the PAC are kept fully informed.

The PAC may appoint sub-committees to address specific issues. Members of the sub-committees need not be members of the PAC.

PAC meetings are open for anyone to attend as an observer. Adequate notice of all PAC meetings shall be provided to PAC members, interested parties and the public.

The PAC can meet as often as necessary during the day, evenings or on weekends, as determined by the membership.

#### **Facilitator**

Services of a facilitator to assist the PAC will be provided to the PAC by the RAP team.

Specific duties of the facilitator may include organizing meeting dates and locations, preparing agenda and minutes, circulation of reports, and attendance at PAC meetings.

#### Chairmanship

A Chairman shall preside over PAC meetings. The Chairman's objective shall be to discuss all issues fairly and manage the meeting so as to achieve a consensus on each issue for presentation to the RAP Team.

The criteria for selection of a Chairman must centre on the individual's ability to oversee and direct the workings of a diverse grouping of interests in meeting the PAC's objectives. Appointment of the Chairman shall be made by the PAC as a whole.

The PAC may determine whether an alternate to the Chairman should be designated and whether the Chair should be rotated.

| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1900年11日,1900年11日,1900年1日,1900年11日,1900年11日,1900年11日,1900年11日,1900年11日,1900年11日,1900年11日,1900年11日,1900年11日,190 | \$ 14.52 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 그 그리 사람들은 학생 교통이 가고 있다. 그리고 그리는 그 하는 그들은 사람들이 들어보고 하는 것으로 들었다.                                                 |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                | * !:     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 하는 일을 하는 것이 되었다. 그의 이 가장 아니라 있다. 전 사람들이 가는 사람들이 되었다. 그는 사람들이 되었다.                                              | 1        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 그들이 그는 내가 하는 보이는 그를 보는 것이 되었다. 이 그는 것은 사람들은 그를 보는 것이 없는 것이 없다. 그는                                              |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                |          |
| District also                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 하는 사람들이 되었다. 그는 사람은 사람들은 수 없었다. 그는 사람들은 사람들은 사람들이 가장 없는 것이다.                                                   |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 이는 보는 하는 것들이 모든 이 이 사람이 되었다면 하는 사람이 되었다. 이 보안 하는 것은 사람이 되었다는 것은 것은 것은 사람들이 되었다.                                |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 그의 말하고 있다면 하는데 그는 어느 하는데 보다는데 그는데 얼마를 하는데 하는데 그를 하는데 되었다.                                                      |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                | . in 1/2 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                |          |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                |          |
| ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 얼마는 한 경우를 하는 것이 없는 사람들은 경우를 하는 것이 살아 있다. 얼마를 앞먹었다고 하고 있었다.                                                     |          |
| 000000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                | :        |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                |          |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                |          |
| TO THE PERSON NAMED IN COLUMN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 그들은 것 이번 그런 그렇고 있는 사람들은 생기도 생각하고 되었다. 그런 그는 사람이 본 시간 모든 것은 함께만                                                 |          |
| •-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                | 4.       |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                | : X      |
| ah at revenue at a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                |          |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                | : 1      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 경기하는 그렇게 하는 아이들은 얼마 그렇게 되었다. 그 사람들은 얼마를 하는 것이 얼마를 하는 것이 되었다. 그는 사람들은 사람들이 얼마나 되었다.                             |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                | . II.    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 와 가진 아니는 아이는 얼마나 아마다를 하다니까 가는데, 나는 바로 나는 항상이는 얼마나 되는데 되었다.                                                     |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                |          |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                | :• :     |
| CORPUS ALICANO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |          |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                |          |
| -0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                |          |
| contract of parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                |          |
| esemble money.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                | Party.   |
| Concession and a concession of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |          |
| 100000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                |          |
| ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                |          |
| **************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |          |
| SECTION SECTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                |          |
| - Andrewson and |                                                                                                                |          |
| and the second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                |          |



| 그는 어머니 그렇게 그는 그들이는 눈이 하면 그래요? 그는 그 얼마들이 어떻게 하는 그 그들이 하는 것 같습니다.              |  |
|------------------------------------------------------------------------------|--|
| 医乳腺性 医二氏性试验 电电极管连接 医乳糖素 电二十二二二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十              |  |
|                                                                              |  |
| 가이님의 아니라 하는 물에 다른 경우에 가는 하는 물 이 물론 경기에 가는 이 등 하나 되는 중이다는데                    |  |
| 그 생기 그 하나는 이 그들이 그 아니는 그리는 그는 그리는 이 그는 하는 것을 받는 것 같아.                        |  |
| 그는 생기 눈이 다 가입니다. 사람들이 가면 하는 것 같아 그렇게 되었다. 그들이 가는 때문에 되었다.                    |  |
|                                                                              |  |
| 그들이 가고 있는데 이렇게 되었는데 되는데 되는 생각이 되었다. 그는 사람들이 되는 사람들이 다른데 없었다.                 |  |
| 图 (图1) 11 12 12 12 12 13 14 14 14 14 14 14 14 14 14 14 14 14 14              |  |
| 그리는 사람이 되는 어떤 어머니는 사람이 되고 하면 보고 가장 되었다.                                      |  |
| 아이들 아이들 아이지 시민 모양하는 사고 있었다면 아이들에 되었다면 하셨다.                                   |  |
| 어느 어느 아내는 아들이 들어 가는 아니는 사람들이 가는 아니는 그 아내는 것이 되었다면 하는 것                       |  |
| 하트를 보고 그 이번 하는 것은 생물을 하는 것이 하는 방법을 모르는 모습을 받아 있다. 모습                         |  |
| 그는 말이 되는 것이 그를 하는 것도 되었다. 그 것은 그렇게 회가들을 모르는 것만 되었다는 것도 없다.                   |  |
| 목숨이 걸었다는 것 않아 그는 사람들이 살아가는 하는 일하다는 가요? 나는 한 물로지 나를 했다.                       |  |
| 그리는 이 사람들이 가는 이 사람들이 가지 않는 것이 되는 것이 되었다. 그 사람들은 생각이 되었다.                     |  |
|                                                                              |  |
|                                                                              |  |
|                                                                              |  |
| 하는 경우가 생님, 하는데 한 경우리는 경우를 하는데 얼마나 하는데 가운데 나를 가기 없다.                          |  |
|                                                                              |  |
|                                                                              |  |
| 그렇게 있다. 그리는 사람에 가는 사람이 있는 사람들이 있는 지수는 그는 사람들이 가는 사람들이 되었다.                   |  |
|                                                                              |  |
| 사이는 이 사람들은 아니는 생각 하는 사람들은 사람들이 가는 것이 말하게 되었다. 그는 아이들이 나는                     |  |
| 근근하다 소리들의 너무서 이름도 하는만 나는 것이다. 소리를 그렇게 다니 이름을 모른다고 다                          |  |
|                                                                              |  |
| 그 사람들은 아들 그 때문에 되면 가장 하는 생님이 아들어 되는 것이 없는 사람들이 하는 것이다.                       |  |
| 요즘 얼마 가지만에 가는 것 같은 것이는 것이 않는 얼마 한 것 같은 것은 것은 것이 없었다.                         |  |
| 그 중 경하는 것이 되었다. 남자 여러가는 그를 보고 있는 것이 생활되고 있는데 하고 있는데 이 이름을 받는데 하는데 없는데 하고 있다. |  |
| 그 우리는 등 당소의 문화가 문화 등록 하지 않는 것은 그 일 그렇게 되는 것 같아.                              |  |
| 게 되길 경기에 가는 아이들 이외 되었다. 이번 하이트는 사람들이 하는 아니는 모양을 되어                           |  |
| 문헌 어느는 어느 이 그렇게 살아 보는 그 아느 그 그 그 아니는 생님들이 하는 것이라는 모양한                        |  |
|                                                                              |  |
|                                                                              |  |
|                                                                              |  |
|                                                                              |  |
|                                                                              |  |
|                                                                              |  |
|                                                                              |  |
|                                                                              |  |
|                                                                              |  |
|                                                                              |  |
|                                                                              |  |
|                                                                              |  |
|                                                                              |  |
|                                                                              |  |
|                                                                              |  |
|                                                                              |  |
|                                                                              |  |
|                                                                              |  |
|                                                                              |  |
|                                                                              |  |
|                                                                              |  |
|                                                                              |  |
|                                                                              |  |
|                                                                              |  |
|                                                                              |  |
|                                                                              |  |
|                                                                              |  |
|                                                                              |  |
|                                                                              |  |
|                                                                              |  |
|                                                                              |  |
|                                                                              |  |
|                                                                              |  |
|                                                                              |  |
|                                                                              |  |
|                                                                              |  |
|                                                                              |  |

## JACKFISH BAY PUBLIC ADVISORY COMMITTEE WATER USE GOALS

#### SHORT-TERM WATER USE GOAL

Reduction of toxins, particularly chlorinated organic compounds, from point sources in order to meet or exceed Federal and Provincial guidelines.

#### LONG-TERM WATER USE GOALS

#### 1. Safe Drinking Water

Jackfish Town cottagers should be able to drink the water from Jackfish Bay following standard treatment methods; and the water entering the Jackfish Bay area of Lake Superior from the Blackbird Creek system must be safe for consumption.

#### Fisheries

The fish habitat and spawning areas in Blackbird Creek and Jackfish Bay must return to a healthy hospitable state.

The fishery of Blackbird Creek and Jackfish Bay must be part of a balanced and healthy aquatic community.

All fish caught in Blackbird Creek and Jackfish Bay must be safe for consumption at any size or quantity and have contaminant levels that are less than, or at most, equal to background levels.

#### 3. Recreational Uses

The water in Jackfish Bay must be clean and odourless for swimming, boating and scuba diving. Blackbird Creek and Jackfish Bay must be returned to natural conditions in order to support trapping and hunting. The aesthetic of Blackbird Creek and Jackfish Bay should be improved in order to encourage tourism and educational trips.

#### 4. Wastewater Receiver

Blackbird Creek and Jackfish Bay can continue to be used for mill effluent discharge providing that it does not impair beneficial uses, inhibit indigenous biota or produce other adverse impacts on the ecosystem.

#### 5. Delisting

Water quality conditions should be improved to the point that Jackfish Bay is no longer an area of concern as defined by the Great Lakes Water Quality Agreement.

| . 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | igang keradagan paggaran dalah Mangapagan berhasi dalam keradagan berhasi pada berhasi dalam digit perbebahan |                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |                |
| i i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                               |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |                |
| 1 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                               |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 한 16 이 이번 이 사람들은 회에 보고 하는 사람들이 되는 사람들이 되는 것이 되었다. 그는 사람들이 되었다.                                                |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |                |
| 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                               |                |
| · .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 그렇다는 사람이 되는 사람들이 가는 사람들이 되는 사람들이 되었다. 그렇게 되었다면 그렇게 되었다.                                                       |                |
| ı.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 가는 이들 만 해 하는 것은 교육 레이트인 보이는 이번 환경에는 요하는 사람이 가는 사람이 하나를 모르게 된다.                                                |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 이 이번 눈살 그림, 저어 나는 밥 가지 않고 말했다. 나는 이 아니는 이 아니는 이 아니는 아니는 것 같습니다.                                               |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |                |
| or a constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                               |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |                |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                               |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |                |
| ŀ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 되는 하는 문제는 이번들은 한 문문으로 만든 사람들은 이 분들은 사고하다고 이 위에 관점 하는 사람이 되었다.                                                 |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |                |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                               |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 그는 그 의원 경화 회의 기업을 하는 방에 된 이 보는 하는 것 같아 하는 것 같아 함께 가는 것 같아.                                                    |                |
| and Control of the Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                               |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |                |
| ŀ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                               |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               | 1. Tu          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |                |
| is and control of the last                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 지근 회사는 가는 것이 되었다면 하다. 항상 학교는 사람이 가는 사람들이 가지 않는 것이 없는 것이다.                                                     |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 그들면 되는 사람들은 사람들이 살아 하면 하면 하는 사람들이 살아 나는 사람들이 살아 그 모든 사람이 나를 했다.                                               |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 가게 되는 아이 전에는 반대되었다. 아이는 아이를 하는 것 같은 사람들이 모든 아이들은 사람들이 되었다.                                                    |                |
| and the state of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                               |                |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                               |                |
| advo-si ili                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                               |                |
| - Stanoope and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                               |                |
| common en po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 그런 가는 아이를 가는 아이들은 그림에 가장 보고 그는 어떻게 된다는 모든 네 되는 아니를 가고싶다면 뭐 먹다.                                                |                |
| desirence.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                               |                |
| and confidence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                               |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |                |
| of substrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 등 보는 사람들은 그는 사람이 되는 이 사람들이 되어 가는 사람들은 사람들이 살아 살아 먹는 것이다.                                                      |                |
| and the same                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                               |                |
| A. Commission of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                               |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               | 1.             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |                |
| and the same                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                               |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |                |
| and compared to the compared t |                                                                                                               |                |
| water states                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                               |                |
| - Annead from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                               |                |
| determina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                               |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |                |
| all thomps have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |                |
| area or a second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                               |                |
| Annie Communication of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                               |                |
| - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                               |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |                |
| terrainment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                               |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               | and the second |

## Remedial Action Plan Plan d'Assainissement

Canada Ontario ®

Canada-Ontario Agreement Respecting Great Lakes Water Quality L'Accord Canada-Ontario relatif à la qualité de l'eau dans les Grand Lacs