Streamflow  Projections  for  the  upper  Gila  River   David  S.  Gutzler   Department  of  Earth  &  Planetary  Sciences   University  of  New  Mexico   gutzler@unm.edu     Submitted  to  the  New  Mexico  Interstate  Stream  Commission   for  Deliverables  2  and  3     UNM  Contract  No.  37675       final  version   December  10,  2013     Contents     1.    Introduction   .   .   .   .   .   .   .   .   .   .   .   .   3   2.    Historical  Streamflow  at  the  Gila  River  Gila  gage             .   .   .   .   .   5   .       .   .   10   .   .   .   17       3.    Dynamical  Projection  of  Streamflow  in  the  upper  Gila  River      .         4.    Statistical  Projection  of  Streamflow  in  the  upper  Gila  River        .     5.    Conclusions   .   .   .   .   .   .   .   .   .   .   .   .   22   .   .   .   .   .   .   .   .   .   .   .   .   25     6.    References       2   1.    Introduction   This  paper  discusses  two  approaches  to  estimating  projected  streamflows  in  the   upper  Gila  River  over  the  next  few  decades.  One  approach  employs  dynamical  models  of   the  climate  system  and  surface  hydrologic  system  to  calculate  projected  changes  in   streamflows.  The  second  approach  uses  statistics  of  current  observed  climate  variability  to   develop  an  empirical  model  for  use  in  projecting  future  flows.  This  paper  follows  an  earlier   document,  entitled  "Observed  and  Projected  Climate  Changes  and  Their  Effects  on  Snow-­‐ fed  Rivers  in  Southwestern  North  America"  (hereafter  referred  to  as  the  Review  Paper),   that  was  submitted  to  the  New  Mexico  Interstate  Stream  Commission  (ISC)  in  March  2013.     Taken  together  these  papers  have  been  drafted  for  the  purpose  of  providing  guidance  to   the  ISC  on  projected  future  flows  in  the  Gila  River,  for  use  regarding  decisions  on  water   allocations  within  New  Mexico  related  to  the  2004  Arizona  Water  Settlements  Act.       The  Gila  River  has  its  headwaters  in  the  Gila  Wilderness  of  southwestern  New  Mexico   (Figure  1)  and  flows  in  a  general  westward  direction  into  southern  Arizona  as  a  tributary  of   the  Lower  Colorado  River  (Thomson  2012).    The  Gila  River  is  fed  by  winter  snowpack  at   high  elevations  near  its  headwaters.  Summer  flows  are  augmented  by  warm  season  season   rainfall  associated  with  the  North  American  Monsoon  circulation.    The  Gila  River  is   arguably  the  southernmost  snow-­‐fed  river  in  North  America.  Future  flows  on  the  upper   Gila  River  will  be  controlled  by  climatic  variability  and  change  in  the  surface  water  budget   with  regard  to  precipitation  (P)  in  winter  and  summer,  and  by  temperature-­‐driven   variability  and  change  in  water  losses  due  to  evapotranspiration  off  the  surface  (E).  On  a   large  scale,  climate  models  project  that  the  surface  water  budget  P-­‐E  across  the  Southwest   will  tend  toward  drier  conditions  (a  negative  change  in  P-­‐E)  during  the  21st  Century   (Seager  et  al.  2008),  leading  to  projections  of  diminished  future  streamflows  in   southwestern  rivers  as  described  in  the  Review  Paper.     The  Review  Paper  summarized  recent  research  on  future  flows  in  the  Colorado  and   Rio  Grande  basins.    Several  studies  have  indicated  that  annual  flows  in  major  southwestern   snow-­‐fed  rivers  could  decline  by  approximately  20%  by  the  end  of  the  21st  Century.   Substantial  quantitative  uncertainties  are  inherent  in  this  general  projection,  although   there  is  a  very  strong  consensus  that  flows  are  expected  to  decrease  as  the  result  of  the   significantly  warmer  temperatures  projected  to  occur  in  the  middle  of  the  North  American     3   continent  this  century.    The  projected  temperature  increase  is  a  very  robust  projection  that   is  generated  by  all  modern  climate  models  in  response  to  much-­‐increased  concentrations   of  greenhouse  gases  that  are  currently  observed  and  will  inevitably  continue  to  increase  for   the  foreseeable  future  (IPCC  2007;  Karl  et  al.  2009).  Precipitation  projections  across  the   Southwest  are  considerably  less  robust  (Gutzler  and  Robbins  2011;  Cook  and  Seager  2013),   but  the  possibility  of  diminished  precipitation  plays  a  secondary  role  to  the  effect  of   increasing  temperature  on  projections  of  diminished  future  streamflow  (Hurd  and  Coonrod   2008,  2012).    Additional  uncertainty  due  to  the  interannual  and  decadal  variability  of   precipitation,  which  will  be  emphasize  in  this  report,  has  received  very  little  attention  to   date  in  studies  of  century-­‐scale  climate  change.     Section  2  of  this  paper  reviews  historical  flows  on  the  upper  Gila  River,  including   means,  variability  and  trends  in  the  data  record.  We  have  chosen  to  focus  on  the  flow   record  at  the  Gila  gage  (USGS  gage  number  09430500).  We  also  review  historical  climatic   variability  of  temperature  and  precipitation  in  southwestern  New  Mexico.     Downscaled  climate  change  projections  generated  by  dynamical  models  have  recently   been  applied  to  the  watershed  of  the  upper  Gila  River.  Section  3  assesses  a  new  set  of  such   streamflow  projections  generated  by  the  Bureau  of  Reclamation  as  part  of  its  West  Wide   Water  Assessment  projection  (Reclamation  2011a,  2011b).  We  analyze  runoff  at  the   location  of  the  Gila  gage  yielded  by  these  projections,  and  assess  the  quality  and  possible   limitations  of  these  dynamical  projections.  We  consider  the  Reclamation  projections  to   represent  the  current  state  of  the  art  in  dynamical  streamflow  projections  of  western   rivers.     Section  4  then  develops  an  empirical  projection  of  flow  at  the  Gila  gage.  Average   temperature  in  the  upper  Gila  basin  is  projected  to  increase  significantly  in  coming   decades,  and  may  depart  altogether  from  the  historical  envelope  of  variability  in  the   instrumental  record  by  mid-­‐century.  The  magnitude  of  streamflow  change  driven  largely   by  this  projected  temperature  change  can  be  estimated  by  statistical  analysis  of  the  effects   of  temperature  changes  on  streamflow  in  the  current  climate,  taken  together  with   projections  of  precipitation  variability  and  change.       4   The  results  in  Sections  3  and  4  represent  distinct  and  complementary  ways  to   estimate  projected  streamflow  change  in  the  upper  Gila  River.  Each  approach  -­‐-­‐  one   derived  from  dynamical  models,  the  other  from  statistical  extrapolation  using  observed   data  -­‐-­‐  includes  considerably  uncertainty.    However  we  will  show  that  these  two   approaches  yield  similar  estimates  of  change  for  the  period  2021-­‐2050  in  the  upper  Gila   River,  which  bolsters  confidence  that  either  approach  yields  reasonable  and  actionable   projections.     Principal  conclusions  are  then  summarized  in  Section  5.    We  include  both  an  estimate   of  average  future  flows,  and  -­‐-­‐  importantly  -­‐-­‐  place  the  projected  change  into  context  of   natural  variability.  The  projection  of  estimated  change,  and  its  magnitude  relative  to   decadal  and  interannual  variability,  are  offered  as  an  element  of  water  management   planning  for  the  upper  Gila  River  in  New  Mexico.     2.    Historical  streamflow  at  the  Gila  River  Gila  gage   To  set  projected  flows  into  historical  context,  we  first  review  the  observed  seasonal   and  interannual  record  of  streamflow  on  the  upper  Gila  River.  This  paper  will  focus  on   observed  and  projected  flows  at  the  Gila  gage  (USGS  gage  09430500)  on  the  upper  Gila   River.  The  location  of  the  Gila  gage  is  shown  by  a  red  square  in  Figure  1.  Annual  average   (mean)  flow  at  the  Gila  gage  for  the  entire  period  of  record,  Water  Years  1929-­‐2012,  is   155.6  cubic  feet  per  second  (cfs),  or  113×103  acre-­‐feet  per  year  (113  kaf/yr).     The  82-­‐year  average  (median)  flow  for  each  calendar  day  in  this  record  is  shown  as   the  thick  black  line  in  Figure  2.  Flows  average  about  60  cfs  from  October  through   December,  then  increase  to  about  100  cfs  by  the  end  of  February.  The  Spring  season   snowmelt  runoff  peak  occurs  in  March  and  April,  when  the  median  flow  peaks  near  200  cfs.   Flows  then  steadily  decrease  to  less  than  50  cfs  by  the  end  of  June.  A  secondary  peak  in  the   seasonal  hydrograph  of  median  flows,  about  80  cfs,  occurs  near  the  end  of  the  Water  Year   in  August-­‐September,  as  rainfall  associated  with  the  summer  monsoon  replenishes  flow  in   the  upper  Gila  River.     The  shape  of  the  seasonal  hydrograph  at  the  Gila  gage  is  quite  robust  in  the  historical   record.  Median  flows  based  on  just  the  first  half  (WY  1929-­‐1970)  and  second  half  (WY     5   1971-­‐2012)  of  the  observed  record  are  shown  in  Figure  2  as  thin  green  and  red  lines,   respectively.  Low  flow  periods  in  the  hydrograph,  in  October-­‐November  and  June-­‐early   July,  are  nearly  the  same  in  both  halves  of  the  data  record.  However  the  median  flows   during  higher  flow  periods  (December-­‐March,  April-­‐May,  and  late  July-­‐August)  are  greater   in  the  latter  half  of  the  record.  Annual  average  (mean)  flow  for  the  1929-­‐1970  period  is  128   cfs,  and  for  the  following  1971-­‐2012  period  is  183  cfs,  a  fluctuation  of  ±18%  about  the  82-­‐ year  average.  It  is  worth  noting  that  this  change  could  be  considered  a  statistically   significant  long-­‐term  increasing  trend,  if  we  had  no  other  information  to  suggest  that  flows   have  exhibited  multi-­‐decadal  natural  variability  associated  with  precipitation  fluctuations   for  a  much  longer  period  of  time.     In  addition  to  seasonal  variability,  the  Gila  River  exhibits  extensive  interannual  and   decadal  variability.  The  time  series  of  the  entire  observed  record  of  flow  at  the  Gila  gage,   with  annual  values  calculated  over  Water  Years  (Oct-­‐Sept),  is  shown  in  the  top  panel  of   Figure  3.    As  indicated  in  Figure  2,  the  second  half  of  the  data  record  has  a  considerably   higher  average  flow  than  the  first  half.  Notable  decade-­‐scale  low-­‐flow  periods  include  the   1950s-­‐1960s,  and  the  years  around  the  turn  of  the  21st  Century.  The  interannual  and   decadal  fluctuations  are  most  evident  in  terms  of  high  flow  years  (the  peaks  in  the  time   series  in  the  top  panel  of  Figure  3).  These  are  higher  during  decades  of  high  flow,  e.g.  the   cluster  of  years  with  annual  flow  exceeding  250  kaf  in  the  1980s  and  1990s.  Low  flow  years   exhibit  little  trend:    low  flow  years  in  the  annual  average  time  series  tend  to  reach  a   minimum  value  of  about  50  kaf/yr  throughout  the  data  record.     Most  of  the  interannual  and  decadal  variability  in  flow  at  the  Gila  gage  is  contained   within  the  winter  and  spring  months.  The  peaks  in  annual  flow  (high  flow  years)   correspond  to  peaks  in  Dec-­‐Jun  flow,  shown  in  the  middle  panel  of  Fig.  3.    The  spring   seasonal  maximum  in  streamflow  occurs  despite  the  observation  that  local  precipitation   peaks  in  the  summer,  not  the  winter,  in  southwestern  New  Mexico  (Gutzler  2012).     In  Sections  3  and  4,  we  will  develop  projections  for  future  flows  at  the  Gila  gage  that   focus  on  Dec-­‐Jun  condtions,  and  emphasize  changes  in  median  flows.  The  statistics  of   median  flows  are  less  affected  by  relatively  infrequent  very  high-­‐flow  years,  and  represent   a  more  stable  metric  of  average  flow  than  the  mean.  Median  observed  flow  at  the  Gila  gage   for  1951-­‐2012,  averaged  from  December  through  June,  is  56  kaf/yr.       6   Summer  season  flows  (bottom  panel)  are  much  smaller  than  cold  season  flows  in  all   but  a  few  years,  consistent  with  the  average  hydrographs  in  Fig.  2.  Recent  years  have   exhibited  higher  summer  flow  variability,  and  several  of  the  major  peaks  in  summer  flow   (1988,  2006)  follow  low  flow  seasons  in  the  Dec-­‐Jun  time  series  (Gutzler  2000).     A  considerable  fraction  of  interannual  variance  in  streamflow  is  associated  with  shifts   in  the  winter  large-­‐scale  atmospheric  storm  track,  forced  by  fluctuations  of  equatorial   Pacific  Ocean  temperature  (Molles  and  Dahm  1990;  Seager  et  al.  2005).  Winters  in  which   equatorial  Pacific  Ocean  temperature  is  anomalously  warm  (El  Niño)  tend  to  feature  a   southward-­‐displaced  storm  track,  yielding  higher  than  average  snowpack  and  high  March-­‐ April  streamflow  when  the  snow  melts.  Winters  in  which  equatorial  Pacific  temperature  is   cold  (La  Niña)  tend  to  lead  to  negative  snowpack  and  streamflow  anomalies.     Recent  research  indicates  that  ocean  temperature  anomalies  in  both  the  Pacific   (Gershunov  and  Barnett  1998;  Gutzler  et  al.  2002)  and  the  Atlantic  (McCabe  et  al.  2004)  are   largely  responsible  for  the  pronounced  decadal  fluctuations  of  cold  season  precipitation   variability  observed  in  data  from  southwestern  North  America.  The  Pacific  was  cold  and   the  Atlantic  was  warm  during  the  1950s  and  1960s,  leading  to  drought  conditions  across   the  southern  United  States;  Pacific  Ocean  temperatures  flipped  in  the  1970s  and  the   Southwest  was  relatively  very  wet  for  several  decades  thereafter.  The  Pacific  Decadal   Oscillation  appears  to  have  flipped  again  around  the  turn  of  the  21st  Century,  leading  to  a   return  of  lower  cold  season  precipitation  conditions  that  continue  to  the  present  day  (Fig.   3,  top  and  middle  panels).     The  high  amplitude  of  variability  observed  in  the  instrumental  record  of  precipitation   and  streamflow  is  almost  certainly  just  the  most  recent  expression  of  natural  interannual/   decadal  variability  in  southwestern  climate.  Recent  reconstructions  of  streamflow  on  the   Gila  River  just  downstream  from  the  Gila  gage  (Figure  4)  generated  by  the  Treeflow  project   (Meko  et  al.  2010;  Woodhouse  et  al.  2012)  suggest  decadal  variations  on  the  order  of   ±30%,  between  low  flows  of  ~250  kaf/yr  in  decadally-­‐filtered  data  to  high  flow  conditions   of  nearly  500  kaf/yr  (Figure  4,  bottom  panel).  On  a  percentage  basis,  this  level  of  natural   decadal  variability  is  somewhat  higher  than  the  larger  southwestern  rivers  discussed  in  the   Review  Paper,  which  tend  to  exhibit  decadal  fluctuations  on  the  order  of  ±20%.       7   Within  the  Spring  season  the  timing  of  flow  at  the  Gila  gage  has  changed  over  the   historical  period  of  record.    The  Center  of  Timing  (CT)  based  on  daily  flows  represents  the   day  at  which  half  the  total  flow  during  a  specific  period  of  time  passes  a  measurement  point   (Stewart  et  al.  2004).  We  have  calculated  the  CT  of  Gila  gage  flow  for  each  Water  Year  for   the  December-­‐June  period  (Figure  5).  Considering  just  the  December-­‐June  peak  flow   period,  instead  of  the  entire  Water  Year  as  is  customarily  done  in  other  studies,  removes   the  effect  of  strong  or  weak  monsoon  flows  on  the  calculation  so  that  the  CT  more  clearly   represents  variability  in  snowmelt  season  streamflow  timing  at  the  Gila  gage.  The  CT   exhibits  considerable  year-­‐to-­‐year  variability,  but  the  11-­‐year  running  average  in  Figure  5   shows  that  CT  at  the  Gila  gage  now  occurs  around  day  153  of  the  Water  Year,  in  the  first   week  of  March.  This  is  two  weeks  earlier  than  the  11-­‐year  running  average  value  of  CT  at   the  beginning  of  the  data  record  in  the  1930s.     The  causes  of  the  increase  in  flow  and  shift  toward  earlier  CT  at  the  Gila  gage  can  be   understood  by  examining  the  observed  climatic  variability  of  temperature  and   precipitation  in  southwestern  New  Mexico  (Figure  6).  The  time  series  in  Fig.  6  are  derived   from  monthly  data  averaged  over  New  Mexico  Climate  Division  4,  the  Southwestern   Mountains  division.  This  region  extends  across  a  much  larger  area  than  the  drainage  basin   of  the  Gila  River.  However  on  monthly  and  longer  time  scales  the  spatial  scale  of  weather  is   large,  so  Climate  Division  4  represents  a  reasonable  index  for  climatic  conditions  that  affect   Gila  River  streamflow,  which  we  will  exploit  in  Section  4  of  this  paper  to  develop  a  simple   statistical  model  of  projected  upper  Gila  River  streamflow.     As  shown  above,  snowfed  rivers  such  as  the  Gila  exhibit  highest  flows,  and  highest   interannual  fluctuations  in  flow,  that  are  closely  tied  to  the  winter  precipitation  that   accumulates  as  snowpack  and  melts  in  the  Spring  season.  We  focus  here  on  the   temperature  and  precipitation  records  most  relevant  to  variability  and  change  in   streamflow  during  the  peak  flow  season  from  December-­‐June.  Our  analysis  of  covariability   in  the  historical  record  shows  that  the  monthly  periods  that  correlate  best  with  peak  flow   season  streamflow  are  January-­‐April  for  temperature  and  November-­‐April  for   precipitation,  although  the  lag  correlations  between  precipitation  and  streamflow,  or   temperature  and  streamflow,  are  not  too  sensitive  to  this  specific  choice  of  cold  season   months.       8   Temperature  in  Jan-­‐Apr  in  Climate  Division  4  has  risen  by  more  than  2°F  since  the   1930s,  the  start  of  the  modern  era  of  climate  divisional  data  (Figure  6,  top  panel).   Essentially  all  of  the  increase  in  temperature  has  come  after  1970.  Decade-­‐average   temperatures,  shown  as  the  thick  red  line,  have  been  climbing  rather  steadily  since  the   1970s,  punctuated  by  considerable  interannual  variability  that  is  smoothed  out  by  the  11-­‐ year  running  average.  This  increase  is  projected  to  continue  in  the  coming  decades,  and  is   the  principal  cause  of  projected  declines  in  average  streamflow  in  the  Gila  River.  However   the  average  annual  flow  at  the  Gila  gage  generally  increased    during  the  late  20th  Century   period  of  warming,  relative  to  the  1951-­‐1980  average.     Precipitation  during  the  cold  season  exhibits  no  significant  long-­‐term  trend  since  the   1930s  (Figure  6,  bottom  panel).  The  decades  of  the  1950s  and  1960s  were,  on  average,   relatively  dry,  followed  by  wet  decades  in  the  1980s  and  1990s,  and  a  subsequent  decline   since  then.  Interannual  variability  of  precipitation  is  large  relative  to  any  long-­‐term   tendency  in  this  record.       As  shown  in  the  bottom  panel  of  Figure  7,  the  observed  record  (1932-­‐2012)  of  cold   season  precipitation  in  NM4  (summed  from  November  through  April  each  Water  Year)  is   correlated  at  a  level  of  r  =  0.83  with  subsequent  spring  season  flow  at  the  Gila  gage   (summed  from  December  through  June).  Thus  about  68%  (r2)  of  interannual  snowmelt-­‐ season  streamflow  variance  is  accounted  for  by  Nov-­‐Apr  precipitation  in  NM4  during  the   instrumental  period  of  record.  This  high  r2  value  is  easily  statistically  significant  at  the  5%   level  (assuming  one  degree  of  freedom  per  year),  providing  empirical  justification  for  the   use  of  NM4  precipitation  as  a  proxy  for  precipitation  falling  within  the  (much  smaller)   upper  Gila  watershed  contained  within  NM4.     The  top  panel  of  Figure  7  shows  NM4  temperature  in  the  late  winter/early  spring   (Jan-­‐Apr)  plotted  against  Dec-­‐Jun  Gila  gage  streamflow.    This  correlation  is  negative  as   expected  but  much  weaker  (r  =  -­‐0.20)  than  the  corresponding  precipitation  correlation  in   the  bottom  panel.  Nevertheless  the  negative  relationship  between  streamflow  and   temperature,  i.e.  warm  Jan-­‐Apr  temperature  associated  with  diminished  Dec-­‐Jun   streamflow,  is  statistically  significant  at  the  5%  level  and  it  will  be  exploited  in  Section  4   where  a  regression  model  of  streamflow  is  developed  and  assessed.       9   The  increasing  importance  of  warming  temperature  on  streamflow  can  already  be   detected  in  observed  data,  by  examining  the  declining  interannual  variance  of  Dec-­‐Jun  Gila   gage  streamflow  accounted  for  by  cold  season  precipitation.  For  the  1951-­‐1980  period,   Nov-­‐Apr  precipitation  accounted  for  75.4%  of  the  interannual  variance  of  Dec-­‐Jun   streamflow,  with  a  regression  coefficient  of  42,375  ac-­‐ft  of  total  flow  per  inch  of   precipitation  in  NM4.  That  is,  during  this  period  each  additional  inch  of  precipitation  over   the  Nov-­‐Apr  period  yielded  42,375  ac-­‐ft  of  Dec-­‐Jun  flow  at  the  Gila  gage.    During  the   subsequent  30-­‐year  averaging  period,  1981-­‐2010,  Nov-­‐Apr  precipitation  accounted  for  just   66.2%  of  Dec-­‐Jun  streamflow  variance,  as  temperature  variability  accounted  for  a  larger   fraction  of  streamflow  variability.  The  1981-­‐2010  regression  coefficient  was  30,755  ac-­‐ft  of   of  Dec-­‐Jun  flow  per  inch  of  NM4  precipitation.  As  temperature  increases,  the  streamflow   yield  in  the  Dec-­‐Jun  high  flow  season  decreases,  consistent  with  expectations  for  a  warming   climate.  Winters  with  high  precipitation  still  generate  relatively  high  flows  in  the  Gila  River,   but  the  flow  yield  per  unit  of  precipitation  is  decreasing.     3.    Dynamical  Projection  of  Streamflow  in  the  upper  Gila  River   The  Review  Paper  summarized  the  results  of  many  published  projections  of  future   streamflow,  principally  focusing  on  projected  flows  on  the  mainstem  Colorado  and  Rio   Grande  rivers.  While  these  projections  are  relevant  to  projected  flows  on  the  Gila  River,  the   only  published  results  for  the  upper  Gila  itself  (of  which  we  are  aware)  were  generated  and   disseminated  recently  by  the  U.S.  Bureau  of  Reclamation  (Reclamation  2011a,b).    These   reports  describe  the  results  of  a  new  suite  of  streamflow  projections  for  the  21st  Century   for  basins  across  the  western  United  States,  using  an  extensive  suite  of  global  model   projections  collectively  denoted  CMIP3  (Meehl  et  al.  2007).  These  are  the  same  global   climate  model  simulations  that  were  used  for  the  IPCC  (2007)  assessment  of  climate   change.  The  CMIP3  archive  includes  many  different  global  model  projections,  using  a  wide   range  of  21st  Century  greenhouse  gas  scenarios.  For  the  Reclamation  (2011a,b)   projections,  these  climate  model  simulation  were  used  as  input  to  the  VIC  hydrologic  model   (Liang  et  al.  1994)  to  generate  streamflow  projections  in  western  basins.     The  procedure  for  generating  these  dynamical  simulations  is  summarized  very  briefly   here,  with  full  details  given  in  the  BoR  reports  (Reclamation  2011a,b).  The  CMIP3  coarse     10   resolution  global  climate  models,  based  on  dynamical  representation  of  atmospheric  and   oceanic  climate  variables,  simulate  the  effects  of  changing  "boundary  conditions"   (greenhouse  gas  concentration,  solar  fluctuations,  volcanic  eruptions)  on  winds,   temperature,  precipitation,  storm  systems,  snowpack,  ocean  currents,  and  other  standard   climate  variables.  Over  the  North  American  continent,  these  climate  model  results  were   downscaled  to  much  finer  resolution  using  a  statistical  technique  (Wood  et  al.  2004).  The   downscaled  climate  variables  were  then  expressed  on  a  higher  resolution  grid  suitable  for   driving  a  land  surface/streamflow  model  (the  Variable  Infiltration  Capacity  or  VIC  model).   The  runoff  simulated  by  VIC,  averaged  over  multiple  simulations  driven  by  different   climate  models,  represents  the  dynamical  simulation  analyzed  here.   Uncertainty  in  these  simulations  derives  from  several  sources.  First,  we  depend  on  the   climate  models  to  represent  faithfully  the  response  of  large-­‐scale  climate  variables  to  the   imposed  forcing.  The  biggest  forcing  represented  by  the  CMIP3  models  comes  from   projected  increases  in  atmospheric  greenhouse  gas  concentration.  Uncertainty  in  the   coarse  resolution  climate  model  output  can  be  shown  explicitly  by  the  variation  in  results   generated  by  different  models  driven  by  the  same  climate  forcing  (Reclamation  2011a,b).     In  addition,  there  is  considerable  uncertainty  in  the  future  greenhouse  gas  forcing,  which   depends  on  economic  and  political  choices  made  by  countries  around  the  world  over  the   coming  decades.  We  have  chosen  a  midrange  scenario  of  greenhouse  gas  forcing  (A1B)  to   be  consistent  with  the  temperature  and  precipitation  projections  developed  by  Gutzler  and   Robbins  (2011).    Finally  -­‐-­‐  and  very  importantly  for  this  study  -­‐-­‐  we  depend  on  the  models   to  simulate  faithfully  the  natural  (unforced)  variability  of  climate  and  streamflow,  as   illustrated  by  the  observed  climate  statistics  described  in  the  previous  section.  It  is  very   difficult  to  quantify  these  individual  sources  of  uncertainty  using  available  data.     For  this  assessment  we  have  analyzed  the  output  of  simulations  of  flow  at  the  location   of  the  Gila  gage  (Reclamation  2011b),  available  online  at   http://gis.usbr.gov/streamflow_projections/. The  simulations  extend  backward  in   time  to  include  the  latter  half  of  the  20th  Century,  so  it  is  possible  to  directly  compare  more   than  a  half  century  of  model-­‐simulated  results  since  1951  with  the  record  of  observed   flows  described  in  the  previous  section.    We  have  used  39  separate  simulations  based  on   the  A1B  scenario  of  radiative  forcing  as  the  basis  for  analysis.  The  A1B  scenario  represents     11   a  "mid  range"  estimate  of  future  greenhouse  gas  concentrations,  although  the  differences  in   greenhouse  gas  forcing  among  plausible  scenarios  developed  by  the  IPCC  are  not  really   large  until  the  second  half  of  the  21st  Century.    Seager  et  al.  (2008)  and  Gutzler  and   Robbins  (2011)  used  the  suite  of  global  climate  models  forced  by  this  particular  scenario  in   their  studies  of  climate  change  across  the  Southwest.     Average  hydrographs  of  monthly  flow  at  the  Gila  gage,  derived  from  historical   observed  data  in  the  top  panel,  and  from  the  average  of  39  A1B-­‐forced  simulations  as   carried  out  by  Reclamation  (2011b)  in  the  bottom  panel,  are  shown  in  Figure  8.  The  top   panel  is  based  on  the  same  daily  streamflow  data  used  to  generate  Figure  2.  For  this  plot,   we  have  summed  the  daily  flow  values  into  monthly  averages  and  generated  mean  values   (not  median  values  as  was  shown  in  Fig.  2,  so  that  the  monthly  values  sum  to  the   corresponding  Water  Year  annual  mean  value)  for  two  successive  30-­‐year  averaging   periods.  The  1951-­‐1980  climatological  average  includes  the  major  drought  of  the  1950s.   The  following  30-­‐year  period,  1981-­‐2010,  is  the  current  "official"  30-­‐year  climatological   averaging  period.  The  current  average  shows  higher  flows  at  the  Gila  gage  in  the  winter   months  (December-­‐March)  and  again  in  summer  (particularly  August),  compared  to  the   earlier  1951-­‐1980  period.     Median  annual  average  flow  observed  at  the  Gila  gage  in  the  period  1951-­‐80  was  110   cfs.  The  following  30  years,  1981-­‐2010,  were  on  average  considerably  wetter:  average   annual  flow  at  the  Gila  gage  increased  to  182  cfs.  Thus  median  annual  flows  during  the   1981-­‐2010  averaging  period  were  65%  higher  than  during  the  1951-­‐1980  period,  a  huge   multidecadal  decadal  fluctuation  representing  the  transition  from  a  very  dry  period  to  a   very  wet  pluvial  period.     The  average  of  39  BoR  streamflow  simulations  is  shown  in  the  bottom  panel  of  Figure   8  with  the  daily  values  averaged  into  monthly  means.  Hydrographs  for  successive  30-­‐year   periods  for  both  retrospective  and  future  projected  climate  conditions  are  shown.  The   retrospective  simulations,  shown  using  the  same  line  color  conventions  as  for  the  observed   data,  show  that  the  VIC-­‐based  simulations  capture  the  shape  of  seasonal  hydrograph   reasonably  well  but  tend  to  overestimate  flows  relative  to  observations.  The  annual   average  (Water  Year  mean)  flow  rate  simulated  at  the  Gila  gage  is  199  cfs  for  1951-­‐1980   and  193  cfs  for  1981-­‐2010.    Thus  the  dynamical  simulations  of  Gila  flow  tend  to  show  a     12   decrease  between  the  two  most  recent  independent  30-­‐year  averaging  period,  whereas   actual  observations  for  the  same  periods  shows  an  increase  in  flow  at  the  Gila  gage.     A  complete  diagnosis  of  the  reasons  for  the  general  high  bias  of  simulated  streamflow   is  beyond  the  scope  of  this  study,  but  an  imperfect  match  with  observations  at  a  specific   point  is  not  surprising  considering  the  uncertainties  associated  with  model  resolution,  etc.   (Reclamation  2011b).  These  uncertainties  are  extremely  difficult  to  quantify  using  the   output  available.  Given  the  systematic  bias  between  model  output  and  pointwise   observations,  it  is  customary  to  consider  percentage  changes  in  the  model-­‐simulated   streamflows  rather  than  try  to  use  the  direct  output  from  a  dynamical  model  to  make   quantitative  projections  of  changes  in  streamflow.     Time  series  of  annual  flows  for  each  of  the  39  simulations  considered  are  shown  in       Figure  9.  The  various  simulations  clearly  exhibit  intermittent  high  flow  years  which   continue  to  skew  mean  flows.  The  time  series  of  median  values  of  all  39  simulations  each   year,  shown  as  a  thick  black  line  in  both  panels,  trends  slowly  but  steadily  downward   through  the  21st  Century.    (We  revert  back  to  median  streamflow  values  in  Fig.  9  to   minimize  the  effects  of  one  or  two  outlier  annual  values  on  each  39-­‐model  Water  Year   average;  a  time  series  of  mean  values  would  also  trend  downward  but  would  contain  much   more  interannual  variability.)   Although  precipitation  variability  accounts  for  most  of  the  variance  of  streamflow  in   the  historical  record  (Figure  7),  precipitation  change  is  not  the  principal  cause  of  long-­‐term   projected  streamflow  change  as  shown  in  Figures  8  and  9.    This  is  shown  by  considering   the  projected  changes  in  snowpack  and  precipitation  downscaled  from  global  model   projections  to  the  upper  Gila  watershed  (Figure  10).    There  is  very  little  projected   precipitation  change  except  for  the  summer,  when  downscaled  precipitation  decreases   somewhat  (bottom  panel).    However  snowpack  changes  in  the  cold  season  are  extreme   (top  panel)  despite  the  absence  of  simultaneous  precipitation  change.  Snowpack  is  nearly   eliminated  in  the  Gila  watershed  due  to  the  projected  temperature  increase  (shown  in  the   top  panel  of  Fig.  11),  a  result  that  has  been  highlighted  in  previous  studies  of  regional   climate  change  in  the  southwestern  U.S.  (Diffenbaugh  et  al.  2005;  NM  OSE  2006).       13   The  decrease  in  snowpack  acts  to  reduce  the  snowmelt  runoff  peak  that  is  projected   to  occur  in  coming  decades  (Fig.  8),  to  the  point  at  which  the  peak  in  streamflow  associated   with  snowmelt  runoff  is  effectively  spread  out  between  January  and  March  by  the  late  21st   Century  (red  curve  in  the  bottom  panel  of  Fig.  8).  The  decline  in  snowpack  shifts  the  Center   of  Timing  toward  earlier  dates,  as  is  already  seen  in  observations  (Fig.  5).  Warmer   temperatures  over  a  longer  snow-­‐free  season  increase  evapotranspiration  rates,  resulting   in  reduced  streamflow  year-­‐round  (Hurd  and  Coonrod  2008,  2012).     In  the  current  climate  a  downward  trend  in  streamflow  driven  by  warmer   temperatures  has  been  masked  by  the  increase  in  precipitation  that  occurred  in  the  late   20th  Century  (Fig.  6).  However  if  the  wet  decades  were  the  late  20th  Century  represent  an   episodic  decadal  fluctuation  of  precipitation  -­‐-­‐  and  the  recent  run  of  very  dry  years  early  in   the  21st  Century  (Fig.  11)  suggests  that  the  wet  period  may  be  over  -­‐-­‐  then  we  can  expect   the  temperature-­‐driven  streamflow  changes  illustrated  in  the  streamflow  projections  (Figs.   8  and  12)  to  become  more  evident  in  the  near  future.  This  is  the  scenario  outlined  by   Seager  et  al.  (2008),  which  they  described  as  an  "imminent  transition"  toward  long-­‐term   aridity  across  Southwestern  North  America.     Summer  precipitation  projections  tend  to  be  uncertain  in  both  CMIP3  (Gutzler  and   Robbins  2011)  and  CMIP5  (Cook  and  Seager  2013)  climate  model  simulations.  As  Figure  10   suggests,  some  climate  models  simulate  decreased  monsoon  precipitation  in  a  projected   warmer  climate.  Here  again,  observations  from  the  late  20th  Century  show  higher   streamflow,  associated  higher  precipitation,  in  a  warmer  climate.  The  Reclamation   simulations  in  the  bottom  panel  of  Figure  8  yield  little  change  in  summer  streamflow,  the   result  of  a  small  net  average  change  among  different  climate  models  that  simulate  a  wide   range  of  higher  or  lower  summer  streamflow.     Decadal  variability  represents  a  large  source  of  uncertainty  in  these  model   simulations.  Considerable  progress  has  been  made  in  the  simulation  of  interannual  ocean-­‐ atmosphere  variability  in  coupled  models,  especially  the  El  Niño-­‐Southern  Oscillation   (ENSO)  cycle,  and  the  CMIP3  climate  models  used  in  the  Reclamation  simulations  generally   do  a  credible  job  simulating  the  evolution  and  large-­‐scale  climatic  effects  of  ENSO  (IPCC   2007).       14   However  decadal  variability,  such  as  may  be  associated  with  the  Pacific  Decadal   Oscillation  or  Atlantic  Multidecadal  Variability  (McCabe  et  al.  2004),  is  more  problematic.   Atmospheric  models  that  are  provided  with  the  correct  ocean  temperature  fluctuations  can   reasonably  simulate  long-­‐term  drought  and  pluvial  episodes  (e.g.  Hoerling  and  Kumar   2003;  Seager  et  al.  2005;  Schubert  et  al.  2009)  but  getting  coupled  ocean-­‐atmosphere   models  to  generate  sufficient  decadal  variability  on  their  own  is  more  challenging.  Gutzler   et  al.  (2012)  showed  that  even  newer  and  more  sophisticated  coupled  models  from  the   new  CMIP5  archive  (Taylor  et  al.  2012),  successor  to  the  CMIP3  models  used  in  the   Reclamation  streamflow  simulations,  generate  annual  precipitation  variability  across  the   Southwest  that  contains  significantly  less  year-­‐to-­‐year  persistence  than  observed   precipitation.  In  other  words,  decadal  variability  associated  with  unforced  ocean-­‐ atmosphere  interactions  is  probably  underestimated  in  the  model  simulations  analyzed   here.     With  this  in  mind,  we  emphasize  again  that  the  dynamical  simulations  shown  in   Figure  8  yield  the  wrong  answer  for  late  20th  Century  variability.  The  observed  seasonal   hydrographs  for  the  Gila  gage  (top  panel)  show  increasing  flows  between  1951-­‐80  and   1981-­‐2010.  The  corresponding  Reclamation  dynamical  simulations  (bottom  panel)  show   decreasing  flows  between  the  same  periods.  The  difference  is  caused  by  the  failure  of  the   models  to  correctly  capture  the  increase  in  precipitation  observed  between  the  "drought   epoch"  (1951-­‐1980)  and  the  following  "pluvial  epoch"  (1981-­‐2010),  which  leads  to  higher   flows  in  the  upper  Gila  River  in  response  to  the  generally  heavier  precipitation  amounts.  On   the  other  hand,  the  models  do  respond  to  increasing  greenhouse  gases  in  the  late  20th   Century  by  increasing  the  temperature,  as  observed.  The  higher  temperatures  lead  to   decreases  in  simulated  snowpack  and  increases  in  simulated  evaporation,  hence  declining   flows.     How  should  we  assess  future  projections  in  streamflow,  considering  that  the   simulated  streamflow  over  the  past  60  years  is  changing  with  the  wrong  sign  relative  to   observations?  There  are  two  distinct  possible  interpretations.  First,  the  simulated  future   projections  could  be  considered  unreliable,  given  that  the  models  generate  the  wrong   answer  (decreasing  flow)  for  retrospective  streamflow  trend  over  the  half-­‐century  period   of  time  when  we  know  the  right  answer  (increasing  flow).  Alternatively,  the  simulated     15   future  trends  could  represent  a  reasonable  long-­‐term  answer,  keeping  in  mind  that  the   long-­‐term  trend  is  subject  to  considerable  uncertainty  on  decadal  time  scales.     The  alternative  possibility  amounts  to  concluding  that  the  retrospective  simulation  of   a  decrease  in  flow  over  the  latter  half  of  the  20th  Century  represents  the  "right  answer"  to   the  response  of  the  Gila  River  to  higher  temperatures,  but  the  simulated  decrease  was   overwhelmed  by  a  natural,  decadal  transition  in  precipitation  from  drought  to  pluvial   climatic  conditions  during  that  time.  If  this  is  the  proper  interpretation;  and  if  the  wetter   conditions  observed  in  the  late  20th  Century  represent  the  wet  phase  of  an  episodic,   decadal  fluctuation  in  precipitation  that  will  naturally  revert  back  toward  drier  conditions;     and  if  the  temperature  increases  over  the  next  few  decades  to  the  point  at  which  the  long-­‐ term  temperature  effect  overwhelms  the  decadal  variability  of  precipitation  variability;   then  the  projection  of  decreased  streamflow  in  the  coming  decades  may  in  fact  be  a   reasonable  basis  for  water  allocation,  despite  the  failure  of  the  dynamical  simulations  to   correctly  reproduce  late  20th  Century  changes  in  streamflow  in  the  upper  Gila  River.     It  is  my  professional  opinion  that  the  alternative  hypothesis  sketched  above  is  correct,   and  that  it  is  likely  that  the  long-­‐term  effects  of  increasing  temperature  on  snowpack  and   streamflow  will  become  comparable  to  the  decadal  variability  driven  largely  by  natural   precipitation  fluctuations  by  the  middle  of  the  21st  century.  This  opinion  is  supported  by   historical  observations  of  precipitation  (Figs.  6  and  11),  suggesting  that  late  20th  Century   wet  conditions  were  part  of  a  multi-­‐decadal  fluctuation  that  may  already  have  reverted   back  toward  dry  conditions,  and  by  the  steadier,  ongoing  increase  in  temperature  (Figs.  6,   11)  and  streamflow  timing  (Fig.  5)  that  are  entirely  consistent  with  long-­‐term  projections   of  a  21st  Century  warming  trend.     Hurd  and  Coonrod  (2008,  2012)  showed  that  streamflows  in  the  middle  Rio  Grande   (northeast  of  the  upper  Gila  basin)  are  projected  to  decrease  significantly  by  the  late  21st   Century  regardless  of  precipitation  projections.  Even  a  model  simulation  that  includes   higher  precipitation  amounts  in  the  late  21st  Century  yielded  smaller  Rio  Grande   streamflow  in  the  Hurd  and  Coonrod  study,  because  the  projected  increases  in   evapotranspiration  (associated  with  higher  temperature)  cause  the  water  budget   (Precipitation  minus  Evapotranspiration)  to  trend  downward  even  if  precipitation  trends   upward,  as  occurs  in  some  individual  climate  model  simulations.       16   If  we  assume  that  the  effect  of  increasing  temperature  to  produce  diminished   streamflow  is  at  least  qualitatively  reasonable,  we  can  use  the  dynamical  simulations  to  try   to  project  percentage  change  in  streamflow  in  coming  decades.  Median  annual  streamflow   at  the  Gila  gage  in  the  period  2021-­‐2050  in  39  BoR  simulations  is  157  cfs,  whereas  median   annual  flow  in  the  same  simulations  in  the  period  1951-­‐2012  is  170  cfs,  a  decrease  of  13   cfs/year  (about  8%  lower  in  2021-­‐2050).  Here  we  use  a  record  longer  than  the  official  30   year  averaging  period  to  establish  current  climatic  conditions,  in  order  to  include  both  dry   and  wet  historical  periods  in  our  definition  of  current  climate.     The  Reclamation  A1B-­forced  dynamical  simulations  indicate  a  decrease  in   annual  median  flow  at  the  Gila  gage  of  13  cfs,  or  about  8%,  between  the  periods   1951-­2012  and  2021-­2050.     4.    Statistical  Projection  of  Streamflow  in  the  upper  Gila  River   Statistical  models  of  streamflow  examine  the  climatic  factors  that  modulate   streamflow  in  the  current  climate,  as  demonstrated  by  observed  data,  and  use  the  observed   relationships  between  climate  and  streamflow  to  estimate  future  flows  based  on  projected   climatic  conditions.       The  relationship  between  interannual  fluctuations  of  cold  season  precipitation  (or   snowpack)  and  spring  streamflow  in  southwestern  rivers  is  strong  and  unassailable  -­‐-­‐  this   relationship  forms  the  basis  for  operational  seasonal  forecasts  of  streamflow  issued  early   each  calendar  year,  near  the  end  of  the  snow  accumulation  season.  Jones  (2007)  showed   that  80%  of  the  interannual  variance  of  the  spring  season  flow  in  the  late  20th  Century  in   the  upper  San  Juan  river  could  be  accounted  for  by  the  annual  1  April  measurement  of   snow  water  equivalent  at  a  single  SNOTEL  site  near  the  river's  headwaters.  Similarly,   Salgado  and  Gutzler  (2013)  showed  that  just  under  60%  of  late  20th  Century  spring  season   flow  in  the  upper  Pecos  River  could  be  accounted  for  by  winter  precipitation  averaged  over   New  Mexico  Climate  Division  2,  which  includes  the  Pecos  headwaters  in  northern  New   Mexico.  Figure  7  illustrates  an  analogous  relationship  between  interannual  fluctuations  of   observed  winter  precipitation  and  spring  streamflow  in  the  upper  Gila  River,  with  68%  of   interannual  Dec-­‐Jun  streamflow  variance  at  the  Gila  gage  accounted  for  by  Nov-­‐Apr   precipitation  averaged  over  the  NM4  Climate  Division.       17   These  statistical  models  of  interannual  streamflow  fluctuations  work  for  the  current   climate  because  year-­‐to-­‐year  variations  of  winter  precipitation  represent  the  major   climatic  factor  modulating  streamflow.  Statistical  projections  derived  from  the  statistics  of   current  climate  models  are  potentially  applicable  to  future  climatic  conditions  only  as  long   as  the  mean  and  variability  of  climate  remain  similar  to  present-­‐day  statistics  (Milly  et  al.   2008).  However,  if  the  climate  warms  to  the  point  at  which  temperature,  rather  than   precipitation,  becomes  a  primary  control  on  streamflow  changes,  then  a  precipitation-­‐ dominated  statistical  model  would  no  longer  be  applicable.  As  discussed  at  the  end  of   Section  2,  a  precipitation-­‐only  regression  model  already  exhibits  evidence  of  a  changing   climate:  Nov-­‐Apr  precipitation  accounted  for  a  decreasing  fraction  of  Dec-­‐Jun  streamflow   variance  in  1980-­‐2010  relative  to  1951-­‐1980,  and  the  yield  of  streamflow  per  unit  of  Nov-­‐ Apr  precipitation  declined  substantially  in  the  later  period.  As  climate  continues  to  change,   a  regression  model  derived  from  observed  statistics  becomes  increasingly  problematic.     The  potential  non-­‐applicability  of  statistical  models  as  discussed  above  has  been   discussed  at  length  by  Milly  et  al.  (2008),  whose  paper  has  the  evocative  title  "Stationarity   is  Dead."  Hoerling  and  Eischeid  (2007)  used  the  20th  Century  relationship  between  Palmer   Drought  Severity  Index  (PDSI)  and  Colorado  River  streamflow  to  estimate  future  flows  at   Lees  Ferry  based  on  PDSI  values  derived  from  temperature  and  precipitation  projected  by   a  climate  model.  They  projected  a  45%  reduction  in  Colorado  River  flows  using  this   statistical  model  by  2035-­‐2060  relative  to  the  1990-­‐2005  average,  a  dramatic  decline  that   is  roughly  double  the  reduction  in  flow  generated  directly  by  the  dynamical  model   projections  cited  earlier.  The  difference  has  been  attributed  to  the  increasing  role  of   temperature  in  projected  PDSI  values,  which  may  lead  to  overestimates  of  the  reduction  in   actual  surface  drying  due  to  the  way  in  which  surface  moisture  is  parameterized  in  the   PDSI  calculation  (Sheffield  et  al.  2012).  Given  this  uncertainty  I  would  assess  the  Hoerling   and  Eischeid  (2007)  streamflow  projection  with  skepticism  and  consider  it  to  represent  an   overestimate  of  likely  streamflow  reduction  in  the  Colorado  River.     Although  temperatures  are  already  increasing  significantly  in  southwestern  New   Mexico  (Figure  6),  projected  temperature  does  not  completely  leave  its  envelope  of   historical  variability  until  the  mid-­‐21st  Century  (Gutzler  and  Robbins  2011;  Gutzler  2012).   Furthermore  precipitation  trends  in  observations  or  projections  are  relatively  small     18   compared  to  the  magnitude  of  20th  Century  climate  variability  (Gutzler  and  Robbins  2011;   bottom  panel  of  Fig.  11).  Development  of  statistical  models  to  project  streamflow  in  the   upper  Gila  River  for  the  next  several  decades,  while  temperatures  are  still  within  historical   bounds,  therefore  seems  justifiable.     We  have  adapted  the  regressions  described  in  Fig.  7,  shown  as  curves  fit  to  the  scatter   plots  of  temperature  or  precipitation  vs.  streamflow,  and  have  thereby  generated  a   multivariable  regression  model  that  relates  annual  values  of  Nov-­‐Apr  precipitation   (denoted  PNovApr,  units  =  inches)  and  Jan-­‐Apr  temperature  (denoted  TJanApr,  units  =  °F)  in   New  Mexico  Climate  Division  4,  to  corresponding  annual  values  of  Dec-­‐Jun  average   streamflow  at  the  Gila  gage  (denoted  QDecJun,  units  =  kaf).     Observed  values  of  these  variables  for  the  period  1951-­‐2012  (as  in  the  previous   section,  we  wish  to  include  both  dry  and  wet  decadal  periods)  were  used  to  create  the   regression  model,  which  is:   QDecJun    =    9.29PNovApr    +    2.59(PNovApr)2    –    5.38TJanApr    +    208.6                                [1]   The  linear  precipitation  term  (the  first  term  on  the  right  hand  side  of  the  equation)   accounts  for  the  most  variance.  The  quadratic  precipitation  term  that  follows  is  needed  to   make  the  model  fit  low-­‐precipitation  years,  during  which  base  flow  in  the  drainage  basin   continues  even  when  precipitation  is  quite  low.  The  bottom  panel  in  Figure  7  shows  clearly   that  the  relationship  between  precipitation  and  streamflow  is  not  linear  at  both  the  high-­‐ and  low  ends  of  the  range  of  seasonal  precipitation  values.     The  third  term,  a  negative  linear  term  involving  Jan-­‐Apr  temperature,  plays  a  small   role  in  modulating  streamflow  in  the  historical  record  but  becomes  increasingly  important   as  temperatures  rise.  Although  interannual  fluctuations  of  temperature  are  not  highly   correlated  with  streamflow  in  the  historical  record  (Figure  7,  top  panel),  there  is  a  cluster   of  data  points  in  the  bottom-­‐right  corner  of  the  plot  describing  years  where  TJanApr  is  warm   (between  40°F  and  42°F)  and  QDecJun  is  very  low  (<50  kaf).  These  data  points  in  the   historical  record  of  temperature  are  a  harbinger  of  the  projected  warmer  climate  shown  in   the  top  panel  of  Fig.  11.  The  inclusion  of  this  temperature-­‐related  term  in  the  statistical   model  captures  the  effects  of  these  historical  years  in  depressing  streamflow  when  applied   to  projected  future  years  in  the  climate  record.       19   For  projections  of  temperature  and  precipitation,  we  use  a  time  series  that   incorporates  projected  climate  model-­‐based  trends  combined  with  observed  interannual   variability  developed  by  Gutzler  and  Robbins  (2011,  hereafter  denoted  GR2011).  The  21st   Century  trends  in  temperature  and  precipitation  used  for  the  GR2011  projections  use  the   same  set  of  CMIP3  global  climate  models,  forced  by  the  A1B  scenario  of  radiative  forcing,   that  was  used  to  drive  the  VIC  hydrological  model  to  make  the  Reclamation  projections   described  in  the  previous  section.    Interannual  variability  is  reproduced  from  exactly  100   years  earlier  in  the  20th  Century.  This  procedure  ensures  that  the  statistics  of  projected   interannual  and  decadal  variability  are  "realistic",  in  the  sense  that  the  variability  is  exactly   reproduced  from  the  observational  record.  For  southwestern  New  Mexico,  this  means  that   the  historic  drought  of  the  1950s  is  reproduced  (exactly,  in  terms  of  variability  about  the   projected  long-­‐term  trend)  in  the  decade  of  the  2050s.     Temperature  in  Jan-­‐Apr  increases  at  a  rate  of  7.6°F/century  in  the  GR2011  projection   (Figure  11,  top  panel).  The  7.6°F/century  warming  trend  brings  temperature  outside  the   envelope  of  historical  20th  Century  variability  by  the  second  half  of  the  21st  Century.  The   corresponding  precipitation  projection  for  NM4  in  Nov-­‐Apr  (bottom  panel  of  Figure  11)   exhibits  a  downward  trend  of  -­‐1.2  inches/century.    As  was  the  case  for  temperature,  20th   Century  variability  is  reproduced  by  construction  for  this  projection.  For  example,  the   increase  in  precipitation  over  the  decade  of  the  1970s  is  reproduced  in  the  decade  of  the   2070s,  with  the  time  series  in  the  2070s  shifted  downward  by  approximately  1  inch  due  to   the  long-­‐term  trend  derived  from  the  CMIP3  projection.  In  contrast  to  the  temperature   projection,  the  model-­‐projected  trend  in  precipitation  is  not  large  enough  in  the  21st   Century  for  precipitation  values  to  depart  from  historical  variability.  Thus,  while  the   projected  long-­‐term  trend  of  -­‐1.2  in/century  is  a  substantial  reduction,  the  overall  sense  of   21st  Century  climate  illustrated  in  these  projections  is  a  combination  of  much  warmer   temperatures  and  continued  interannual  and  decadal  variability  of  precipitation,  with  a   secondary  effect  associated  with  the  relatively  modest  downward  precipitation  trend.     Applying  the  regression  model  from  equation  [1]  to  the  GR2011  projection  of   temperature  and  precipitation  yields  a  statistical  estimate  of  future  flows  (for  Dec-­‐Jun)  as   shown  in  Figure  12.  The  portion  of  the  time  series  between  1951  and  2012,  shown  as  a   green  line,  is  the  actual  Dec-­‐Jun  flow  reproduced  from  the  middle  panel  of  Figure  3.  The     20   black  crosses  in  the  figure  represent  the  streamflow  as  predicted  from  the  regression   equation.  With  an  r-­‐squared  value  of  0.69,  the  time  series  of  crosses  is  highly  correlated   with  the  actual  observations  but  the  regression  values  do  not  exactly  reproduce  the   observations.     Flows  derived  from  regression  model  using  the  GR2011  projected  values  of   temperature  and  precipitation  for  2013-­‐2100  are  continued  as  the  black  line  in  Figure  12.   It  is  important  to  keep  in  mind  that  the  interannual  variability  of  the  GR2011  projection  is   synthetic,  so  individual,  specific  high  flow  and  low  flow  years  are  not  meaningful;  it  is  the   statistics  of  interannual  variability  that  are  the  projection  is  designed  to  capture.  The   overall  trend  of  projected  flows  is  seen  to  decrease  in  Figure  12  through  the  21st  Century,   although  individual  high  and  low  flow  years  are  present  throughout  the  projected  time   series.     Median  values  of  annual  QDecJun  streamflow  generated  by  this  statistical  model   during  the  1951-­2012  observed  period  over  which  the  model  was  developed  was   65.5  kaf,  with  very  large  interannual  variability  superimposed  on  the  mean.  Median   projected  QDecJun  flow  for  2021-­2050  is  60.7  kaf,  a  reduction  relative  to  1951-­2012  of   7.4%.     As  discussed  above,  a  common  limitation  of  statistical  models  applied  to  future   climate  is  their  applicability  when  climatic  conditions  change  beyond  the  envelope  of   historical  variability  in  observed  data  sets.  Temperature  in  the  Gila  headwaters  region  is   projected  to  emerge  from  its  range  of  historical  variability  by  the  middle  of  the  21st   century  (Fig.  11),  making  the  validity  of  statistical  models  to  project  future  streamflows  on   the  upper  Gila  problematic.  In  Fig.  12  the  statistical  model  projects  negative  flow  at  the  Gila   gage  with  increasing  frequency  after  2050,  when  the  temperature  term  in  the  regression   model  increases  in  magnitude  and  overwhelms  the  positive  contributions  to  QDecJun   represented  by  the  other  terms  in  the  model.     The  projected  decrease  of  7.4%  in  median  QDecJun    yielded  by  the  statistical  model  for   the  2021-­‐2050  period  is  almost  identical  to  the  8%  decrease  in  projected  in  median  annual   flow  for  that  period  derived  directly  from  the  suite  of  Reclamation  (2011a,b)  dynamical   models.  While  the  near-­‐match  in  these  projections  is  somewhat  fortuitous,  the  similarity  in     21   results  from  these  two  approaches  reinforces  our  confidence  that  the  projection  is  a   reasonable  one.   Based  on  the  similarity  of  the  results  derived  from  dynamical  models  and   statistical  models,  our  confidence  is  increased  in  making  an  approximate  projection   of  8%  reduction  in  upper  Gila  River  flow  by  2021-­2050,  relative  to  the  observed   median  flow  between  1951-­2012.   5.    Conclusions   The  principal  conclusions  of  this  study  are  as  follows:      1)     Our  best  estimate  of  the  effect  of  projected  climate  change  on  average  peak-­ season  flow  in  the  upper  Gila  River  is  a  reduction  of  approximately  8%  by  2021-­ 2050,  relative  to  a  baseline  period  of  1951-­2012.     We  assessed  future  flows  at  the  Gila  gage  using  two  different  techniques:  first,  an   analysis  of  a  multi-­‐model  ensemble  of  hydrologic  model  (VIC)  simulations  driven  by  an   ensemble  of  global  climate  models,  and  second,  an  empirical  model  based  on  historical   flows  at  the  Gila  gage  and  their  correlation  with  winter-­‐spring  precipitationa  and  spring   season  temperature.     Each  of  these  projection  techniques  is  subject  to  considerable  uncertainty,  associated   with  the  myriad  approximations  and  uncertainties  inherent  in  dynamical  modeling  of   extremely  complex  physical  systems  on  the  one  hand,  and  with  the  assumptions  built  into   statistical  extrapolation  of  observed  climate  variability  and  streamflow  on  the  other  hand.     Our  limited  confidence  in  either  approach  is  bolstered  significantly  by  reaching  similar   conclusions  using  the  two  approaches.      2)     Pronounced  multidecadal  natural  variability  will  continue  to  be  superimposed   on  the  projected  decrease  in  streamflow.     By  2021-­‐2050  the  projected  8%  decline  will  still  be  considerably  smaller  than  the   ±30%  variability  in  streamflow  associated  with  multi-­‐decadal  shifts  in  storm  tracks,  that   seems  to  have  been  responsible  for  the  pronounced  historical  alternation  between  drought   and  pluvial  episodes  for  centuries  in  the  Gila  River.  The  late  20th  Century  was  very  wet  by     22   historical  standards,  so  one  might  expect  a  considerable  decline  in  flows  relative  to  the   unrepresentative  1981-­‐2010  climatological  value  to  occur  in  coming  decades  even  in  the   absence  of  forced  climate  change.  The  projected  long-­‐term,  temperature-­‐drived  decline  in   streamflow  is  smaller  than     This  study  has  not  attempted  to  determine  whether  interannual  and  decadal   variability  should  be  expected  to  change  as  the  result  of  forced  climate  change  in  the  21st   Century.  The  projections  by  Gutzler  and  Robbins  (2011)  of  temperature  and  precipitation,   used  to  generate  the  statistical  projection  of  2021-­‐2050  flow  at  the  Gila  gage  discussed   here,  deliberately  and  artificially  kept  the  statistics  of  interannual  variability  fixed  by   superimposing  20th  Century  variability  onto  model-­‐projected  long  term  forced  changes  in   climate.  Absent  better  quantitative  guidance  from  dynamical  models,  we  think  it  is  prudent   to  assume  that  historical  interannual  and  decadal  variability  (such  as  illustrated  in  Fig.  4)   will  continue  in  the  21st  Century.       A  corollary  note  associated  with  the  huge  natural  variability  exhibited  in   southwestern  river  basins  is  that  projected  reductions  in  streamflow  are  highly  sensitive  to   the  baseline  period  from  which  the  reduction  is  calculated.  The  8%  reduction  quoted  here   is  deliberately  calculated  relative  to  a  long  climatological  baseline  that  includes  the  dry   decades  of  the  middle  20th  Century.  The  projected  reduction  would  be  much  greater  if  it   were  calculated  relative  to  a  shorter  and  wetter  baseline  period,  such  as  the  current  official   climate  normal  period  of  1981-­‐2010.     As  noted  in  conclusion  (1),  there  are  multiple  uncertainties  inherent  in  climate   projections  are  very  difficult  to  quantify.  In  qualitative  terms,  current  observational  trends   in  temperature,  streamflow  timing  and  the  declining  ratio  of  winter  precipitation/   streamflow  yield,  together  with  the  consistency  between  dynamical  and  statistical   projections,  all  support  the  conclusion  that  Dec-­‐June  streamflow  in  the  upper  Gila  River  is   likely  to  decline  somewhat  over  the  first  half  of  the  21st  Century  (and  beyond),  with  a  best   estimate  of  about  8%  relative  to  a  baseline  climatology  of  at  least  a  half-­‐century.  This  level   of  decline  would  still  be  considerably  less  than  the  natural  multidecadal  variability   expressed  in  instrumental  and  long-­‐term  proxy  records  of  streamflow.    Thus  for  planning   purposes,  climate  change  needs  to  be  considered  together  with  natural  variability.  From   this  perspective  the  principal  effect  of  climate  change  on  total  flow  over  the  first  half  of  the     23   21st  Century  will  be  to  exacerbate  low-­‐flow  drought  conditions  driven  by  episodic   precipitation  deficits  during  drought  years.        3)     The  timing  of  peak  streamflow  and  the  shape  of  the  seasonal  hydrograph  are   likely  to  change  considerably  over  the  next  several  decades.     Peak  season  flows  associated  with  snowmelt  runoff  are  projected  to  be  much  reduced   as  snowpack  is  diminished  in  association  with  warmer  temperatures.  A  much  greater   fraction  of  cold  season  precipitation  will  become  runoff  immediately  instead  of   accumulating  as  winter  snowpack,  then  melting  in  a  well-­‐defined  snowmelt  runoff  event.   Therefore,  spring  season  peak  flows  resulting  from  snowmelt  runoff  become  much   diminished  in  projections  of  future  streamflow  in  the  upper  Gila  basin.      4)     Possible  changes  in  the  secondary  streamflow  peak  in  summer  are  difficult  to   assess.     Summer  season  precipitation  remains  challenging  for  climate  models  to  simulate.     Projections  of  summer  streamflow  are  correspondingly  uncertain.  The  present  analysis  has   therefore  focused  on  flows  associated  with  snowpack,  which  comprise  the  high-­‐flow   portion  of  the  seasonal  hydrograph  at  the  Gila  gage.  Flows  were  assessed  for  the  extended   "peak  flow"  season  of  December-­‐June,  but  actual  changes  in  the  summer  monsoon  could   affect  the  quantitative  projection  of  Gila  River  streamflow  in  ways  that  are  not  accounted   for  in  this  study.       24   6.    References     Brown  R.D.,  and  P.W.  Mote,  2009:  The  response  of  Northern  Hemisphere  snow  cover  to  a  changing   climate.  Journal  of  Climate  22,  2124–2145.     Cook,  B.I.,  and  R.  Seager,  2013:  The  response  of  the  North  American  Monsoon  to  increased   greenhouse  gas  forcing  .  Journal  of  Geophysical  Research,  in  press.   Diffenbaugh,  N.S.,  J.S.  Pal,  R.J.  Trapp  and  F.  Giorgi,  2005:  Fine-­‐scale  processes  regulate  the  response   of  extreme  events  to  global  climate  change.  Proceedings  of  the  National  Academy  of  Sciences   102,  15774-­‐15778.   Gershunov,  A.,  and  T.P.  Barnett,  1998:  Interdecadal  modulation  of  ENSO  teleconnections.    Bulletin  of   the  American  Meteorological  Society  79,  2715–2725.   Gutzler,  D.S.,  2000:  Covariability  of  spring  snowpack  and  summer  rainfall  across  the  Southwest   United  States.  Journal  of  Climate  13,  4018–4027.       Gutzler,  D.S.,  2012:  Climate  and  drought  in  New  Mexico.  Chapter  4  in  Water  Policy  in  New  Mexico,   Brookshire  et  al.  (eds.),  RFF  Press,  56-­‐70.     Gutzler,  D.S.,  and  J.W.  Preston,  1997:  Evidence  for  a  relationship  between  spring  snow  cover  in   North  America  and  summer  rainfall  in  New  Mexico.  Geophysical  Research  Letters  24,  2207-­‐ 2010.   Gutzler,  D.S.,  D.M.  Kann  and  C.  Thornbrugh,  2002:    Modulation  of  ENSO-­‐based  long-­‐lead  outlooks  of   southwestern  US  winter  precipitation  by  the  Pacific  decadal  oscillation.  Weather  and   Forecasting  17,  1163–1172.     Gutzler,  D.S.,  and  T.O.  Robbins,  2011:  Climate  variability  and  projected  change  in  the  western   United  States:  regional  downscaling  and  drought  statistics.  Climate  Dynamics  37,  835-­‐849.     Gutzler,  D.S.,  S.J.  Keller  and  S.  Rocha,  2012:    Observed  and  projected  drying  trends  in  southwestern   North  America.    Results  presented  at  the  Fall  Meeting  of  the  American  Geophysical  Union,  San   Francisco  CA.     Hamlet,  A.F.,  P.W.  Mote,  M.P.  Clark  and  D.P.  Lettenmaier,  2005:  Effects  of  temperature  and   precipitation  variability  on  snowpack  trends  in  the  western  United  States.  Journal  of  Climate   18,  4545-­‐4561.   Hoerling,  M.,  and  A.  Kumar,  2003:  The  perfect  ocean  for  drought.  Science  299,  691-­‐694.   Hoerling,  M.,  and  J.  Eischeid,  2007:  Past  peak  water  in  the  Southwest.  Southwest  Hydrology,  Jan/Feb   issue,  6:18  ff.   Hurd,  B.H.,  and  J.  Coonrod,  2008:  Climate  change  and  its  implications  for  New  Mexico’s  water   resources  and  economic  opportunities.  Technical  Report  45.  New  Mexico  State  University   Agricultural  Experiment  Station,  New  Mexico  State  University,  Las  Cruces,  New  Mexico,  USA.   Hurd,  B.H.,  and  J.  Coonrod,  2012:  Hydro-­‐economic  consequences  of  climate  change  in  the  upper  Rio   Grande.  Climate  Research  53,  103-­‐118.       25   IPCC,  2007:    Climate  Change  2007:  The  Physical  Science  Basis.  Working  Group  I  Contribution  to  the   Fourth  Assessment  Report  of  the  Intergovernmenal  Panel  on  Climate  Change,  Cambridge   University  Press,  996  pp.   Karl,  T.R.,  J.M.  Melillo  and  T.C.  Peterson  (eds),  2009:  Global  Climate  Change  Impacts  in  the  United   States.  Cambridge  University  Press,  New  York,  New  York,  USA.   Jones,  K.M.,  2007:  Relationship  between  a  700  mb  "Dry/Wind"  Index  and  springtime  precipitation   and  streamflow  within  four  snowmelt-­‐dominated  basins  in  northern  New  Mexico  and   southern  Colorado.  Master  of  Water  Resources  Professional  Project,  University  of  New   Mexico,  48  pp.   Liang,  X.,  D.P.  Lettenmaier,  E.F.  Wood  and  S.J.  Burges,  1994:  A  simple  hydrologically  based  model  of   land  surface  water  and  energy  fluxes  for  General  Circulation  Models.    Journal  of  Geophysical   Research  99,  14415–14428.     Meehl  G.A.,  C.  Covey,  T.  Delworth,  M.  Latif  B.  McAvaney,  J.F.B.  Mitchell  and  R.J.  Stouffer,  2007:                   The  WCRP  CMIP3  multi-­‐model  dataset:  A  new  era  in  climate  change  research.  Bulletin  of  the   American  Meteorological  Society  88,  1383-­‐1394.     McCabe,  G.J.,  M.A.  Palecki  and  J.L.  Betancourt,  2004:    Pacific  and  Atlantic  Ocean  influences  on   multidecadal  drought  frequency  in  the  United  States.  Proceedings  of  the  National  Academy  of   Science  101,  4136-­‐4141.   Meko, D.M., C.A. Woodhouse and J.J. Lukas, 2010: TreeFlow: Streamflow reconstructions from tree rings. http://treeflow.info/   Milly,  P.C.D,  J.  Betancourt,  M.  Falkenmark,  R.M.  Hirsch,  Z.W.  Kundzewicz,  D.P.  Lettenmaier  and  R.J.   Stouffer,  2008:    Stationarity  is  dead:  Whither  water  management?  Science  319,  573-­‐574.     Molles,  M.C.,  Jr.,  and  C.N.  Dahm.  1990:    A  perspective  on  El  Niño  and  La  Niña:  Implications  for   stream  ecology.  Journal  of  the  North  American  Benthological  Society  9,  68–76.     NM  OSE,  2006:    The  Impact  of  Climate  Change  on  New  Mexico's  Water  Supply  and  Ability  to  Manage   Water  Resources.  Santa  Fe:  New  Mexico  Office  of  the  State  Engineer.     Reclamation,  2011a:  SECURE  Water  Act  Section  9503(c):  Reclamation  Climate  Change  and  Water.   U.S.  Department  of  the  Interior,  Bureau  of  Reclamation  Report  to  Congress,  206  pp.     Reclamation,  2011b:    West-­‐Wide  Climate  Risk  Assessments:  Bias-­‐Corrected  and  Spatially   Downscaled  Surface  Water  Projections.    U.S.  Department  of  the  Interior,  Bureau  of   Reclamation,  Technical  Services  Center,  Denver  CO,  122  pp.       Salgado,  M.,  and  D.S.  Gutzler,  2013:  Signals  of  a  changing  climate  in  Pecos  River  streamflow.  Results   presented  at  the  New  Mexico  Geological  Society  Spring  Meeting,  Socorro  NM.     Schubert,  S.,  et  al.  2009:    A  US  CLIVAR  project  to  assess  and  compare  the  responses  of  global  climate   models  to  drought-­‐related  SST  forcing  patterns:  Overview  and  results.  Journal  of  Climate  22,   5251-­‐5272.     26   Seager,  R.,  Y.  Kushnir,  C.  Herweijer,  N.  Naik  and  J.  Velez,  2005:  Modeling  of  tropical  forcing  of   persistent  droughts  and  pluvials  over  western  North  America:  1856-­‐2000.  Journal  of  Climate   18,  4065-­‐4088.     Seager,  R.,  et  al.,  2008:  Model  projections  of  an  imminent  transition  to  a  more  arid  climate  in   southwestern  North  America.  Science  316,  1181–1184.     Sheffield,  J.,  E.F.  Wood  and  M.  Roderick,  2012:    Little  change  in  global  drought  over  the  past  60   years.  Nature  491,  435-­‐438.   Stewart,  T.,  D.R.  Cayan  and  M.D.  Dettinger,  2005:  Changes  toward  earlier  streamflow  timing  across   western  North  America.  Journal  of  Climate  18,  1136–1155.   Taylor  K.E.,  R.J.  Stouffer  and  G.A.  Meehl,  2012:  An  overview  of  CMIP5  and  the  experiment  design.   Bulletin  of  the  American  Meteorological  Society  93,  485–498.     Thomson,  B.M.,  2012:  Water  resources  in  New  Mexico.  Chapter  4  in  Water  Policy  in  New  Mexico,   Brookshire  et  al.  (eds.),  RFF  Press,  25-­‐55.     Wood,  A.W.,  L.R.  Leung,  V.  Sridhar,  and  D.P.  Lettenmaier,  2004:  Hydrologic  implications  of   dynamical  and  statistical  approaches  to  downscaling  climate  model  outputs.  Climatic  Change   15,  189–216.     Woodhouse,  C.A.,  D.W.  Stahle  and  J.  Villanueva-­‐Diaz,  2012:  Rio  Grande  and  Rio  Conchos  water   supply  variability  from  instrumental  and  paleoclimatic  records.  Climate  Research  51,  125-­‐ 136.       27   Fig  1   Figure 1. Map of the upper Gila basin, adapted with permission from "The Gila and San Francisco Rivers" by Jerold Widdison for the Utton Transboundary Resources Center. Red square indicates the location of the Gila gage (USGS gage 09430500), which is the principal analysis point for this study. The green square indicates the location of the Solomon gage (USGS gage 09448500) for which tree ring-based reconstructed flows are illustrated in Figure 4. Fig  2   O   N        D     J   F      M   A   M    J    J   A   S   Figure 2. Hydrographs for streamflow at the Gila gage on the Gila River. The thick black line shows the median daily flow for each day of the Water Year (e.g. day 1 = Oct 1, day 365 = Sep 30) for the 82-year period Oct 1928 – Sep 2012 (WY 1929-2012). The thin green line shows the median flow based on just the first half of the period of record (WY 1929- 1970); the thin red line shows the median daily flow based on just the second half of the record (WY 1971-2012). Months of the year are indicated between tick marks on the x-axis. Fig  3   Figure 3. Annual time series of streamflow at the Gila gage, 1929-2012. Thin line in each panel represents annual data; thick line is an 11-year running average. Top: Annual flow (kaf) for the entire Water Year (October-September). Middle: 7-month average streamflow for December-June, the high-flow portion of the year. Bottom: Monsoon season (July-September) flow (note much-expanded y-axis). Fig  4   Figure 4. Time series of observed and reconstructed flow on the Gila River at the Solomon gage (USGS gage 09448500, shown as the green square in Figure 1). The black line in each panel shows annual flow derived from gage data, with a decadal smoother applied to emphasize long-period fluctuations. The blue line in each panel shows the reconstruction based on tree ring analysis using dendrochronology sites that demonstrate a strong correlation with Gila@Solomon flows. The calculated regression between tree ring records and Solomon gage flows during the instrumental data record is extended backward in time to generate the flow reconstruction. Data and graphics adapted from the treeflow.info website (Meko et al. 2010). Fig  5   Figure 5. Center of timing of December-June streamflow at the Gila gage. The Center of Timing is the day at which half of the total flow between December and June each year has passed the gage. Days are measured relative to the start of each Water Year on October 1. The days corresponding to 1 February, 1 March and 1 April are labelled on the right-hand axis. Fig  6   Figure 6. Time series of seasonal temperature (top) and precipitation (bottom) for New Mexico Climate Division 4, which includes the headwaters of the Gila River. Top: temperature averaged over 4 months (Jan-Apr) from 1931-2012. Thin red line shows annual data; thick red line shows an 11-year running average through the annual data. Bottom: precipitation averaged over 6 months (Nov-Apr each Water Year), with thin and thick lines similar to temperature panel. Fig  7   Figure 7. Scatter plots of observed temperature (top) and precipitation (bottom) in New Mexico Climate Division 4, plotted against observed peak season streamflow (Dec-Jun) at the Gila gage. Top: Temperature averaged over 4 months (Jan-Apr) vs. Dec-Jun flow. The line shows a best-fit linear regression. Correlation between the data and the regression line is -0.20. Bottom: Precipitation averaged over 6 months (Nov-Apr each Water Year) vs. Dec-Jun flow. The line shows a best-fit quadratic regression. Correlation between the data and the regression curve is 0.83. See text for descriptions of these regressions, and the multvariate regression model that incorporates both temperature and precipitation. Fig  8   Figure 8. Seasonal hydrographs for successive 30 year periods at the Gila gage. Top: Observed monthly mean flows at the Gila gage. Dashed black line shows 1951-1980 mean; solid blue line shows 1981-2010 mean. Bottom: Streamflow values derived from the mean of 39 climate model driven simulations (Reclamation, 2011b). Black and blue lines correspond to the same periods as the observations in the top panel; green and red dashed lines represent 2021-2050 and 2070-2099 averages based on projected climate conditions. Fig  9   Figure 9. Time series of annual flow at the Gila gage in 39 simulations by the VIC land surface/runoff model (Reclamation, 2011). Each VIC simulation is driven by a different global climate model simulation. The radiative forcing for each of the 39 simulations is the A1B scenario as defined by the IPCC (2002). Dashed blue lines represent each simulation. For clarity, the 39 simulations are split into two groups: 19 simulations are shown in panel (a) and 20 simulations are shown in panel (b). The solid black line in each panel is the annual median value of all 39 simulations for each Water Year. Fig  10   Δ Median Precipitation [mm] Δ Median Snow Water [mm] NARCCAP Gila Basin: 21st Century change 0 0 O N D J F M A M J J A S Figure 10. Change in median snow water (top panel) and precipitation (bottom panel), for each day of the water year, between a simulation of current climate (1968-2000) and a simulation using the same climate model for future climate (2038-2070). Calculations were made using output from the NARCCAP ensemble of downscaled climate models, including just the model gridpoints covering the upper Gila basin upstream of the location of the Gila gage. Fig  11   Figure 11. Projections of 21st Century temperature (top) and precipitation (bottom) in New Mexico Climate Division 4, generated by Gutzler and Robbins (2011). The initial segments of each time series, from 1951-2012, are observed data as shown in Figure 6. Projected monthly temperature and precipitation are derived by reproducing interannual variability from 20th Century observations in the 21st Century, then adding the linear trend for the 21st Century derived from the average of an ensemble of global climate models forced by the A1B radiative forcing scenario. Thick black lines in each panel indicate 11-year running averages. Fig  12   Figure 12. Time series of Dec-Jun flow at the Gila gage. The green line shows the observed time series from 1951-2012, reproduced from the middle panel of Figure 3. Black x's show the results of a regression model of Dec-Jun flow based on Nov-Apr precipitation and Dec-Apr temperature, as illustrated in the scatter plots presented in Figure 7. This model accounts for 69% of the observed variability of Dec-Jun streamflow at the Gila gage. The black line shows the continuation of the streamflow record into the future, using the same regression model for streamflow applied to projected NM4 precipitation and temperature as derived by Gutzler and Robbins (2011). Note that in extreme dry or hot years the regression model can project unphysical negative flows. Negative flows are generated by the model with increasing frequency after 2050, as temperatures in NM4 warm up beyond the envelope of historical variability.