MINIMUM WAGE INCREASES, WAGES, AND LOW-WAGE EMPLOYMENT: EVIDENCE FROM SEATTLE

Ekaterina Jardim
Mark C. Long
Robert Plotnick
Emma van Inwegen
Jacob Vigdor
Hilary Wething
Working Paper 23532
http://www.nber.org/papers/w23532
NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
June 2017

We thank our study collaborators, Jennifer Romich, Scott W. Allard, Heather D. Hill, Jennifer Otten, Scott Bailey, and Anneliese Vance-Sherman. We thank the state of Washington's Employment Security Department for providing access to data, and Matthew Dunbar for assistance in geocoding business locations. We thank the Laura and John Arnold Foundation, the Smith Richardson Foundation, the Russell Sage Foundation, and the City of Seattle for funding and supporting the Seattle Minimum Wage Study. The Evans School of Public Policy and Governance provided financial and administrative support. Partial support for this study came from a Eunice Kennedy Shriver National Institute of Child Health and Human Development research infrastructure grant, R24 HD042828, to the Center for Studies in Demography \& Ecology at the University of Washington. We are grateful to conference session participants at the 2016 fall Association for Public Policy and Management and 2017 Population Association of America meetings; to seminar participants at the University of California-Irvine, Montana State University, National University of Singapore, University of Houston, and University of British Columbia; members and guests of the Seattle Economic Council, and to the Seattle City Council and their staff for helpful comments on previous iterations of this work. We also thank Sylvia Allegretto, Marianne Bitler, David Card, Raj Chetty, David Cutler, Arin Dube, David Neumark, and Michael Reich for discussions which enriched the paper. Any opinions expressed in this work are those of the authors and should not be attributed to any other entity. Any errors are the authors' sole responsibility. The Seattle Minimum Wage Study has neither solicited nor received support from any 501(c)(4) labor organization or any 501(c)(6) business organization. The views expressed herein are those of the authors and do not necessarily reflect the views of the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies official NBER publications.
© 2017 by Ekaterina Jardim, Mark C. Long, Robert Plotnick, Emma van Inwegen, Jacob Vigdor, and Hilary Wething. All rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is given to the source.

Minimum Wage Increases, Wages, and Low-Wage Employment: Evidence from Seattle Ekaterina Jardim, Mark C. Long, Robert Plotnick, Emma van Inwegen, Jacob Vigdor, and Hilary Wething
NBER Working Paper No. 23532
June 2017
JEL No. H7,J2,J3

Abstract

This paper evaluates the wage, employment, and hours effects of the first and second phase-in of the Seattle Minimum Wage Ordinance, which raised the minimum wage from $\$ 9.47$ to $\$ 11$ per hour in 2015 and to $\$ 13$ per hour in 2016. Using a variety of methods to analyze employment in all sectors paying below a specified real hourly rate, we conclude that the second wage increase to $\$ 13$ reduced hours worked in low-wage jobs by around 9 percent, while hourly wages in such jobs increased by around 3 percent. Consequently, total payroll fell for such jobs, implying that the minimum wage ordinance lowered low-wage employees' earnings by an average of $\$ 125$ per month in 2016. Evidence attributes more modest effects to the first wage increase. We estimate an effect of zero when analyzing employment in the restaurant industry at all wage levels, comparable to many prior studies.

Ekaterina Jardim Daniel J. Evans School of Public Policy and Governance University of Washington Box 353055 Seattle, WA 98195 erosh@uw.edu Mark C. Long Daniel J. Evans School of Public Policy and Governance University of Washington Box 353055 Seattle, WA 98195 marklong@uw.edu Robert Plotnick Daniel J. Evans School of Public Policy and Governance University of Washington Box 353055 Seattle, WA 98195 plotnick@uw.edu

Emma van Inwegen
Daniel J. Evans School of Public Policy and Governance
University of Washington
Box 353055
Seattle, WA 98195
emmavani@uw.edu
Jacob Vigdor
Daniel J. Evans School of Public Policy and Governance
University of Washington
Box 353055
Seattle, WA 98195
and NBER
jvigdor@uw.edu

Hilary Wething Daniel J. Evans School of Public Policy and Governance University of Washington Box 353055 Seattle, WA 98195 hwething@uw.edu

Minimum Wage Increases, Wages, and Low-Wage Employment: Evidence from Seattle

1. Introduction

Economic theory suggests that binding price floor policies, including minimum wages, should lead to a disequilibrium marked by excess supply and diminished demand. Previous empirical studies have questioned the extent to which this prediction holds in the labor market, with many estimates suggesting a negligible impact of higher minimum wages on employment. This paper, using rich administrative data on employment, earnings and hours in Washington State, re-examines this prediction in the context of Seattle's minimum wage increases from \$9.47 to $\$ 11 /$ hour in April 2015 and to $\$ 13 /$ hour in January 2016. It reaches a markedly different conclusion: employment losses associated with Seattle's mandated wage increases are in fact large enough to have resulted in net reductions in payroll expenses - and total employee earnings - in the low-wage job market. The contrast between this conclusion and previous literature can be explained largely if not entirely by data limitations that we are able to circumvent in our analysis. Most importantly, much of the literature examines the impact of minimum wage policies in datasets that do not actually reveal wages, and thus can neither focus precisely on low-wage employment nor examine impacts of policies on wages themselves.

Theory drastically oversimplifies the low-skilled labor market, often supposing that all participants possess homogeneous skill levels generating equivalent productivity on the job. In reality, minimum wages might be binding for the least-skilled, least-productive workers, but not for more experienced workers at the same firm. Empirically, it becomes challenging to identify the relevant market for which the prediction of reduced employment should apply, particularly when data do not permit direct observation of wages. Previous literature, discussed below, has
typically defined the relevant market by focusing on lower-wage industries, such as the restaurant sector, or on lower-productivity employees such as teenagers.

This paper examines the impact of a minimum wage increase for employment across all categories of low-wage employees, spanning all industries and worker demographics. We do so by utilizing data collected for purposes of administering unemployment insurance by Washington's Employment Security Department (ESD). Washington is one of four states that collect quarterly hours data in addition to earnings, enabling the computation of realized hourly wages for the entire workforce. As we have the capacity to replicate earlier studies' focus on the restaurant industry, we can examine the extent to which use of a proxy variable for low-wage status, rather than actual low-wage jobs, biases effect estimates.

We further examine the impact of other methodological choices on our estimates. Prior studies have typically drawn "control" cases from geographic regions immediately adjoining the "treatment" region. This could yield biased effect estimates to the extent that control regions alter wages in response to the policy change in the treatment region. Indeed, in our analysis simple geographic difference-in-differences estimators fail a simple falsification test. We report results from synthetic control and interactive fixed effects methods that fare better on this test. We can also compare estimated employment effects to estimated wage effects, more accurately pinpointing the elasticity of employment with regard to wage increases occasioned by a rising price floor.

Our analysis focusing on restaurant employment at all wage levels, analogous to many prior studies, yields minimum wage employment impact estimates near zero. Estimated employment effects are higher when examining only low-wage jobs in the restaurant industry, and when examining total hours worked rather than employee headcount. Even when analyzing
low-wage employment across all sectors, employment elasticities as conventionally calculated lie within the range established in prior literature, if somewhat on the high side.

Our analysis reveals a major limitation of conventional elasticity computation methods, however. When comparing percent changes in employment to percent changes in wage, conventional methods assume that the impact of a minimum wage policy on wages is equal to the statutory increase in the minimum. This is often a necessity, as analysis is performed using datasets that do not permit the estimation of policy impacts on wages themselves. We show that the impact of Seattle's minimum wage increase on wage levels is much smaller than the statutory increase, reflecting the fact that most affected low-wage workers were already earning more than the statutory minimum at baseline. Our estimates imply, then, that conventionally calculated elasticities are substantially underestimated. Our preferred estimates suggest that the rise from $\$ 9.47$ to $\$ 11$ produced disemployment effects that approximately offset wage effects, with elasticity estimates around -1 . The subsequent increase to as much as $\$ 13$ yielded more substantial disemployment effects, with net elasticity estimates closer to $-3 .{ }^{1}$

While these findings imply that Seattle's minimum wage policy served to decrease total payroll expenses on low-wage employees, and by extension those employees' earnings, several caveats are in order. These estimates pertain to a minimum wage increase from what had been the nation's highest state minimum wage to an even higher level, and might not indicate the effects of more modest changes from lower initial levels. In fact, our finding of larger impacts of the rise from $\$ 11$ to $\$ 13 /$ hour than the rise from $\$ 9.47$ to $\$ 11 /$ hour suggests non-linearity in the response. Second, our data do not capture earnings in the informal sector, or by contractors, and minimum wage policies could conceivably lead employers and workers to shift towards these

[^0]labor market arrangements. Some employers may have shifted jobs out of Seattle but kept them within the metropolitan area, in which case the job losses in Seattle overstate losses in the local labor market. Because of limitations of our data, smaller single-site employers are overrepresented in our sample, and these businesses may react differently than larger multi-site employers - though survey evidence, discussed below, indicates that multi-site employers were if anything more likely to report staffing reductions in the wake of the minimum wage increase. Finally, the mechanisms activated by a local minimum wage ordinance might differ from those associated with a state or federal increase; it is reasonable to expect that policies implemented at a broader geographic scale offer fewer opportunities to reallocate employment in response.

We emphasize that any analysis of the welfare implications of a minimum wage increase must consider how income gains and losses distribute across the low-wage workforce. Some low-wage workers are household heads responsible for maintaining a family's standard of living. Others are secondary or tertiary earners whose income is less necessary for basic survival. Our previously reported longitudinal analysis of experienced workers suggests that their earnings have held steady or slightly increased over the time period examined here (The Seattle Minimum Wage Study Team, 2016). A pattern of gains for experienced workers coupled with losses for new entrants would be consistent with qualitative evidence indicating employers' focus on hiring employees who do not require on-the-job training. In future work we anticipate studying effect heterogeneity in detail by linking administrative payroll data to other administrative data with more socioeconomic and demographic information on individual workers.

2. Challenges in estimating the impact of minimum wage increases

Traditional competitive models of the labor market suggest that an increase in a binding minimum wage will cause reductions in employment. Any number of modifications to the standard model can raise doubts about this prediction. These include the presence of monopsony power, the possibility that higher wages intensify job search and thus improve employeeemployer match quality, and the possibility that some low-wage workers exhibit symptoms of a "backward-bending" supply curve associated with a need to earn a subsistence income. Even in the absence of these theoretical modifications, there has long been debate regarding the empirical magnitude of the theorized effect.

Over the course of the past 25 years, a robust literature has developed with researchers using a variety of strategies to estimate the effect of minimum wages on employment and other outcomes. While this literature has often generated significant debate over econometric specifications and data sources, the heavy reliance on proxies for low-wage employment in the absence of actual wage data has figured less prominently. ${ }^{2}$

2.1 What is the relevant labor market?

Previous literature has not examined the entire low-wage labor market but has focused instead on lower-wage industries such as the restaurant sector, or on stereotypically lowerproductivity employees such as teenagers. Studies of the restaurant industry harken back to Card and Krueger (1994), which utilized a case study approach to estimate the employment effects of New Jersey's then-new minimum wage ordinance. The authors argue that fast-food restaurants

[^1]are not just a leading employer of low-wage workers, but also display high rates of compliance with minimum-wage regulations. Many authors have subsequently chosen the restaurant and fast food industry to study federal and state level minimum wages (Addison, Blackburn and Cotti, 2012, 2014; Dube, Lester and Reich, 2010; Dube, Lester and Reich, 2016; Neumark, Salas and Wascher, 2014; Totty, 2015; Allegretto, Dube, Lester and Reich, 2016). Other authors have focused on retail (Kim and Taylor, 1995; Addison, Blackburn and Cotti, 2008).

Another strand of studies estimates the effect of minimum wages on teenagers. These studies argue that teenagers are typically at the bottom of the wage and earnings distribution and make up a large share of the low-wage workforce. Studies of minimum wage effects on teenagers have occurred at the federal and state level (Card, 1992, Allegretto, Dube, and Reich, 2011; Neumark and Wascher, 1994, 1996, 2004, 2008, 2011; Neumark, Salas, and Wascher, 2014).

Using restaurant or retail employees or teenagers as proxies for the entire low-wage labor market might lead to biased minimum wage effects. Intuitively, a sample mixing jobs directly affected by the minimum wage with others for which the price floor is irrelevant would generally skew estimated impacts towards zero. Isolating one industry, such as the fast food industry, may lead to downwardly biased wage and employment effects due to heterogeneity in wages in the industry (i.e., some workers whose wages are above the minimum wage will be misclassified as belonging to the "treatment" group). The estimates capture the minimum wage's net effects on all restaurant employees, not the effects on low-wage employees, which would likely be stronger. Similarly, using teenagers may lead to artificially large employment estimates as this group omits other low-wage workers, particularly those that have a stronger attachment to the labor force and are full-time full-year workers, for whom the wage-elasticity of demand may be
smaller. On the other hand, since some teens earn wages well above the minimum, including them in the sample would lead to artificially low estimates of the impacts for that demographic group.

This discussion begs the question of what, exactly, should count as a low-wage job. An intuitive approach - and the one pursued in this analysis - focuses on jobs that pay below a certain (inflation-adjusted) hourly wage. ${ }^{3}$ Analysis of employment at or below a specified wage threshold may overstate disemployment effects to the extent that minimum wage policy may cause some employers to raise wages of workers from below to above the threshold. A more purist approach would focus on jobs that entail any of a variety of tasks for which there are no specialized skill requirements, which any able-bodied person might perform. Practically, few if any employment datasets contain such information.

In theory, analysis of employment at or below a specific real wage level will be unproblematic if the wage distribution can be effectively partitioned into a component affected by minimum wage policy and an unaffected counterpart. Imagining a reaction function relating pre-policy to post-policy wages, the partition would be associated with a fixed point. It is not clear that any such fixed point exists. Our analysis below is informed by efforts to estimate reaction functions, which reveal little evidence of significant responses to the minimum wage above relatively low thresholds. We also report the results of sensitivity analyses that vary the threshold substantially.

[^2]
2.2 Debates over methodology

While much of the previous literature has elided the difficult problem of identifying the relevant labor market by using simple industry or demographic proxies, there has been no shortage of debate over causal estimation strategy. The traditional approach uses variation in state-based minimum wages and estimates minimum wage-employment elasticities using a twoway fixed effect OLS regression (Neumark and Wascher, 2008). This approach assumes parallel pre-trends across treatment and control states and estimates the overall impact of minimum wages on wage and employment of multiple minimum wages over time. The two-way fixed effect approach has come under criticism in recent years because there are spatial patterns in minimum wage adoption (Allegretto, Dube, Lester and Reich, 2016). States with higher minimum wages are concentrated in the Northeast and West coast, regions that have different employment patterns from states in the South and parts of the Midwest. If this underlying regional pattern affects state employment trends differentially, then the parallel trends assumption of the two-way fixed effects model does not hold. Subsequently, difference-indifferences estimation strategies, which weight all states without a higher minimum wage equally as their control region, may bias employment elasticity estimations to be more negative than they are in reality.

To account for this issue, researchers have argued for a variety of different specifications. These include: the use of local area controls, such as division-period fixed effects or a border discontinuity approach, (Allegretto, Dube and Reich, 2011; Dube, Lester and Reich, 2010; 2016; Allegretto, Dube, Lester, Reich, 2016); the use and order of region-specific time trends (Addison, Blackburn, Cotti, 2012, 2014); the use of a synthetic control to identify control regions
with pre-trend employment levels similar to the treatment region (Neumark, Salas, and Wascher; 2014); and linear factor estimation (Totty, 2015). ${ }^{4}$

Local area control designs assume that neighboring counties or states within a census division region are more similar in trends and levels than regions further away. Researchers using local-area controls (Dube, Lester and Reich 2010, 2016; Allegretto, Dube, Reich, 2011) show strong and significant earnings elasticity estimates but insignificant employment elasticities near zero. While it is reasonable to think that nearby regions share many background characteristics with the treated region, a local area control design will yield biased estimates when policies have spillover effects in nearby areas, such as when businesses raise wages in response to a wage increase in a nearby jurisdiction.

The notion that nearby regions offer the best match on background characteristics is itself a matter of debate. Using a synthetic matching estimator approach, Neumark, Salas, and Wascher (2014) show that local areas are not picked as donors in the synthetic estimator of panel national data, and thus should not be used as the control region. Allegetto, Dube, Lester and Reich (2016) rebut this claim noting a recent paper found statistically significant larger mean absolute differences in covariates not related to the minimum wage for noncontiguous counties compared to contiguous counties (Dube, Lester and Reich, 2016). ${ }^{5}$

A final strand of estimation has used linear factor estimation and interactive fixed effects.
Totty (2015) utilizes Pesaran's (2006) common correlated effects estimators as a linear factor estimation. Pesaran's common correlated effects estimators do not estimate common factor and

[^3]common factor loadings, like the interactive fixed effects estimator, but rather use cross-sectional averages of the dependent and independent variables as a proxy for factors. Totty also uses an interactive fixed effects estimator, identical to ours, which involves estimating the common factors and factor loadings across space and over time and finds insignificant and null employment effects of minimum wages.

3. Policy Context

In June 2014, the City of Seattle passed a Minimum Wage Ordinance, which gradually increases the minimum wage within Seattle City boundaries to $\$ 15$ an hour. The phase-in rate differs by employer size, and offers some differentiation for employers who pay tips or health benefits. The minimum wage rose from the state's $\$ 9.47$ minimum to as high as $\$ 11$ on April 1, 2015. The second phase-in period started on January 1, 2016, when the minimum wage reached $\$ 13.00$ for large employers (see Table 1 for details). In this paper, we study the first and second phase-in periods of the Seattle Minimum Wage Ordinance (hereafter, the Ordinance) during which the minimum wage rose from $\$ 9.47$ to $\$ 13$ for most businesses - a 37.3% increase. ${ }^{6}$ This ordinance, which at the time would have raised Seattle's minimum wage to the highest in the country, came toward the beginning of a wave of state and local minimum wage laws passed in 2012-2016. ${ }^{7,8}$

[^4]
4. Data

We study the impact of the 2015 and 2016 minimum wage hikes in Seattle using
administrative employment data from Washington State covering the period 2005 through the third quarter of 2016. Washington's Employment Security Department collects quarterly payroll records for all workers who received wages in Washington and are covered by Unemployment Insurance (UI). ${ }^{9}$ Washington is one of four states in the US that collects not only data on earnings, but also on hours worked during the quarter. Employers are required to report actual hours worked for employees whose hours are tracked (i.e. hourly workers), and report either actual hours worked or total number of hours assuming a 40 hour work week for employees whose hours are not tracked (i.e. salaried workers). ${ }^{10}$

This unique dataset allows us to measure the average wage paid to each worker in each quarter. ${ }^{11}$ We measure hourly wage rate as total quarterly earnings divided by quarterly hours worked, which corresponds to average hourly earnings, or realized hourly wage rate. As such, we can identify jobs that would appear to be affected by an increase in the minimum wage, and track

[^5]trends in both employment counts and calculated average hourly wages. ${ }^{12}$ As a result, unlike the prior literature, we can plausibly identify low-wage jobs across industries and in all demographic groups, obviating the need for proxies based on those factors. We can estimate effects solely for low-wage jobs within all industries.

The data identify business entities as UI account holders. Firms with multiple locations have the option of establishing a separate account for each location, or a common account. Geographic identification in the data is at the account level. As such, we can uniquely identify business location only for single-site firms and those multi-site firms opting for separate accounts by location. ${ }^{13}$ We therefore exclude multi-site single-account businesses from the analysis, referring henceforth to the remaining firms as "single-site" businesses. As shown in Table 2, in Washington State as a whole, single-site businesses comprise 89% of firms and employ 62% of the entire workforce (which includes 2.7 million employees in an average quarter).

Multi-location firms may respond differently to local minimum wage laws. On the one hand, firms with establishments inside and outside of the affected jurisdiction could more easily absorb the added labor costs from their affected locations, and thus would have less incentive to respond by changing their labor demand. On the other hand, such firms would have an easier time relocating work to their existing sites outside of the affected jurisdiction, and thus might reduce labor demand more than single-location businesses. Survey evidence collected in Seattle at the time of the first minimum wage increase, and again one year later, increase suggests that

[^6]multi-location firms were in fact more likely to plan and implement staff reductions. ${ }^{14}$ Our employment results may therefore be biased towards zero.

The ESD data exclude jobs not covered by the UI program, such as contract employment generating IRS 1099 forms instead of W-2s, or jobs in the informal economy paid with cash. Our estimates may overstate actual reductions in employment opportunities if employers respond to the minimum wage by shifting some jobs under the table or outsourcing workers on payroll to contractor positions.

The ESD data contain industry (NAICS) codes, which permit us to estimate results using the restaurant industry proxy used in much of the prior literature (Addison, Blackburn and Cotti, 2012, 2014; Dube, Lester and Reich, 2010; Dube, Lester and Reich, 2016; Neumark, Salas and Wascher, 2014; Totty, 2015; Allegretto, Dube, Lester and Reich, 2016). ${ }^{15}$

We measure employment both as the number of jobs (headcount) and the number of hours worked during the quarter. Because the data provide information on all jobs that were on payroll during a quarter, including jobs which lasted only for a few weeks or even days, we follow prior studies in focusing on the number of beginning-of-quarter jobs, defined as a personemployer match which existed both in the current and previous quarter. ${ }^{16}$ The hours worked measure includes all employment, regardless of whether a person-employer match persists for more than one quarter. Because the hours measure captures shifts in staffing on both the intensive and extensive margins, we focus on it in our preferred specifications.

[^7]
5. Methodology

5.1 Determining a threshold for low-wage employment analysis

As indicated in section 2 above, we focus our analysis on jobs with calculated hourly wages below a fixed (inflation-adjusted) threshold. This proxy for low-skilled employment will produce accurate estimates of the impact of minimum wage increases to the extent that a wage threshold accurately partitions the labor market into affected and unaffected components. It will overstate employment reductions if the threshold is set low enough that the minimum wage increase causes pay for some work to rise above it. This concern is particularly relevant given previous evidence of "cascading" impacts of minimum wage increases on slightly higher-paying jobs (Neumark, Schwizer, and Wascher, 2004). It may understate proportional employment and wage effects if set too high, as effects on relevant jobs will be diluted by the inclusion of irrelevant positions in the analysis.

Imagining a reaction function linking initial wages to post-increase wages, we aim to identify a fixed point above which there does not appear to be any impact - that is, the point where this reaction function strikes the 45 -degree line. Directly estimating a reaction function would require a longitudinal analysis of wages paid before and after a wage increase, complicated in this application by the high turnover rates common in the low-wage job market. ${ }^{17}$ We instead present results of a repeat-cross-section analogue in Figure 1. This exercise estimates a series of difference-in-differences and synthetic control models to estimate the impact of Seattle's minimum wage increases on the number of hours worked in jobs with average wages in bins of width $\$ 1$, up to the $\$ 39-40 /$ hour level. ${ }^{18}$ We expect minimum wage increases to result in negative estimates at the lowest wage rates, positive estimates at slightly

[^8]higher wage rates, and negligible estimates at the highest wage rates. The empirical question is where, exactly, the transitions lie.

The upper panels of Figure 1 show large declines in the hours worked in jobs paying less than $\$ 11 /$ hour by the $4^{\text {th }}$ quarter of 2015 relative to the baseline $2^{\text {nd }}$ quarter of 2014 , when the Ordinance was passed. This result is to be expected given the intervening minimum wage increase from $\$ 9.47$ to $\$ 11 /$ hour. Both difference-in-differences and synthetic control methods show evidence of an increase in jobs paying between $\$ 11$ and $\$ 12$ per hour. Across these two specifications, there is not consistent evidence of systematic increases in the number of hours worked in jobs paid between $\$ 12$ and any other threshold. ${ }^{19}$ The synthetic control estimates, which, as we explain below, we consider more reliable, suggest some increase in work paid at wage rates up to roughly $\$ 18 /$ hour. Above that level, point estimates are generally small, with the majority unable to reject the hypothesis of no effect even at the highly conservative 50% confidence level. ${ }^{20}$

The lower panels repeat this analysis examining transitions from the baseline quarter to the $3^{\text {rd }}$ quarter of 2016, at which time the minimum wage had reached as high as $\$ 13 /$ hour.

Predictably, the data show marked drops in the number of hours worked for wages under \$13. The preferred synthetic control estimates show remarkably little evidence of significant increases in hours worked at wages above that level. ${ }^{21}$

While the preponderance of evidence suggests that a low-wage threshold slightly above the statutory minimum poses little risk of miscoding jobs as lost when they have really been

[^9]promoted to higher wage levels, in our preferred specifications we report findings based on a relatively conservative $\$ 19$ threshold. The $\$ 19$ threshold is roughly twice the initial value of the minimum wage, a level beyond which cascading effects are less likely to occur (Neumark, Schwizer, and Wascher, 2004). ${ }^{22}$

5.2 Causal identification strategy

We estimate effect of the Ordinance on changes in employment and wages in Seattle relative to the $2^{\text {nd }}$ quarter of 2014, when the Ordinance was passed. From this baseline period, we analyze effects over the next nine calendar quarters. The first three correspond to the period after the Ordinance was passed but before the first phase-in; this period is considered "post-treatment" in our analysis so that we can assess whether anticipatory effects ensued. The minimum wage reached as high as $\$ 11 /$ hour in the fourth through sixth quarters after baseline and as high as \$13/hour in the remaining quarters. The "pre-treatment" period includes quarterly observations beginning in 2005.

Though we are interested in the cumulative effect of the minimum wage, we analyze variation in year-over-year changes in each outcome. This approach differences out seasonal fluctuations, and conforms to a standard time-series approach used in the prior literature. We define the year-over-year change in outcome Y as follows:

$$
\begin{equation*}
\Delta Y_{r t}=Y_{r t} / Y_{r, t-4}-1 \tag{1}
\end{equation*}
$$

where r denotes region (e.g. Seattle or comparison region), and t denotes quarter (with t ranging from -33 to 9 , and $t=0$ corresponding to the quarter during which the Ordinance was passed).

[^10]We begin with three candidate causal identification strategies. We will subject these strategies to a basic falsification test utilizing pre-treatment data before proceeding to the main analysis.

First, we consider a simple difference-in-differences specification, in which the outcomes of the treated region (Seattle in our case) are compared to the outcomes of a neighboring control region. We consider two different control regions. Comparison of Seattle to immediately surrounding King County can be thought of as equivalent to the contiguous county specification used by Dube, Lester and Reich (2010). Next, we compare growth rates in employment in Seattle to Snohomish, Kitsap, and Pierce Counties (abbreviated to SKP), which surround King County but do not share a border with Seattle (see Figure 2). Since a higher minimum wage might have a spillover effect on the parts of King County immediately adjacent to Seattle, we chose the counties which have similar local economic climates to Seattle's, but are not immediately adjacent to Seattle, as a candidate control region. We expect SKP to experience a smaller (if any) spillover effect of the Ordinance compared to King County, and thus yield a less biased estimate of its impact. ${ }^{23}$

In both cases, we estimate the following difference-in-differences specification:

$$
\begin{equation*}
\Delta Y_{r t}=\alpha_{r}+\psi_{t}+\sum_{q=1}^{9} \beta_{q} T_{r t}+\varepsilon_{r t} \tag{2}
\end{equation*}
$$

where α_{r} is a region fixed effect, ψ_{t} is a period fixed effect, β_{q} is the treatment effect of the Ordinance in quarter $t=q$ (corresponding to the nine quarters after the Ordinance was passed), $T_{r t}$ is an indicator that equals one for the treated region during which $t=q$, and $\varepsilon_{r t}$ is an idiosyncratic shock.

[^11]In equation (2), $q=1$ corresponds to the third quarter of 2014, the first quarter after the Ordinance had been passed; $q=4$ corresponds to the second quarter of 2015, when the first phase-in of the Ordinance occurred; $q=7$ corresponds to the first quarter of 2016, when the second phase-in occurred; and $q=9$ corresponds to the third quarter of 2016, the last period of data currently available. Since our interest is in the cumulative effect of the Ordinance on each outcome, we convert these coefficients into cumulative changes, using the following rules. For quarters one to three $\beta_{q}^{\text {cum }}=\beta_{q}$; for quarters four to eight, $\beta_{q}^{\text {cum }}=\left(1+\beta_{q}\right)\left(1+\beta_{q-4}\right)-1$; and for quarter nine $\beta_{9}^{c u m}=\left(1+\beta_{9}\right)\left(1+\beta_{5}\right)\left(1+\beta_{1}\right)-1$. We present all results in terms of cumulative changes, and adjust the standard errors accordingly using the delta method.

The model in Equation 2 is a standard two-way fixed effect specification used in the literature (Neumark and Wascher, 2008). As pointed out in Bertrand, Duflo, and Mullainathan (2004), local economic outcomes in this model are not independent from each other, because they come from the same region. We account for this correlation by clustering the standard errors at the region and year level.

Difference-in-differences specifications assume that the treated and control region have the same trends in the absence of the policy (parallel trends assumption), and will generally fail to produce consistent treatment effect estimates if this assumption is not true. It is prudent to be especially cautious about the parallel trends assumption given that the greater Seattle region experienced rapid economic growth coming out of the Great Recession, and the pace of recovery could have varied in different sub-regions. As we show below, our two difference-in-differences specifications fail a falsification test, which suggests divergent trends.

To overcome this concern, we estimate the impact of the minimum wage using two methods which allow for flexible pre-policy trends in control and treated regions: the synthetic
control estimator (Abadie and Gardeazabal, 2003) and the interactive fixed effects estimator (Bai, 2009). Both methods have been used in the regional policy evaluation literature and applied to the minimum wage as well (see Allegretto, Dube, Reich and Zipperer (2013) for an application of synthetic control, and Totty (2015) for an application of interactive fixed effects).

Both methods assume that changes in employment in each region can be represented as a composition of K unobserved linear factors $\mu_{t k}$:

$$
\begin{equation*}
\Delta Y_{r t}=\sum_{k=1}^{K} \lambda_{r k} \mu_{t k}+\sum_{q=1}^{9} \beta_{q} T_{r t}+\varepsilon_{r t} \tag{3}
\end{equation*}
$$

where $\mu_{t k}$ is an unobserved factor, common across all regions in each year-quarter, and $\lambda_{r k}$ is a region-specific factor loading, constant across time.

The unobserved factors can be thought of as common economic shocks which affect all regions at the same time, such as an exchange rate shock, common demand shock, or changes in weather. However, regions are allowed to have different sensitivity in response to these shocks. As a result, the treated and control regions are no longer required to have parallel trends.

Though both the synthetic control and interactive fixed effects estimators have the same underlying model, their implementation is quite different. The synthetic control estimator does not explicitly estimate the factors or factor loading, and uses pre-policy observations to find an optimal set of (weighted) control regions, which collectively match the pre-policy trend in the treated region. Denote Seattle by $r=1$ and denote $r=2, \ldots, R$ all potential control regions. Then the weights for synthetic control can be found by minimizing forecasting error in the prepolicy period:

$$
\begin{equation*}
\min _{w_{r}} \sum_{t=-33}^{0}\left(\Delta Y_{r=1, t}-\sum_{r=2}^{R} w_{r} \Delta Y_{r t}\right)^{2}, \tag{4}
\end{equation*}
$$

subject to the constraints $\sum_{r} w_{r}=1$ and $\forall r w_{r} \geq 0 .{ }^{24}$ Given a set of weights $\widehat{w_{r}}$, the impact of the Ordinance in quarter q is estimated as follows:

$$
\begin{equation*}
\beta_{q}^{\text {Synth }}=\Delta Y_{r=1, q}-\sum_{r=2}^{R} \widehat{w}_{r} \Delta Y_{r q} . \tag{5}
\end{equation*}
$$

The interactive fixed effects approach estimates the factors and factor loadings in Equation 3 explicitly, by imposing normalization on the sum of the factors. Since the number of unobserved factors is not known, we estimate the model allowing for up to 30 unobserved factors, and pick the model with the optimal number of factors using the criterion developed in Bai and Ng (2002). ${ }^{25} \mathrm{We}$ implement the interactive fixed effects estimator following Gobillon and Magnac (2016) who have developed a publicly-available program to estimate the treatment effects in the regional policy evaluation context.

We implement the synthetic control and interactive fixed effects estimators by approximating Seattle's economy using data on employment trends across Public Use Microdata Areas (PUMAs) in Washington State. A PUMA is a geographic unit defined by the U.S. Census Bureau with a population of approximately 100,000 people, designed to stay within county boundaries when possible. ${ }^{26}$ We exclude King County PUMAs from analysis because of potential spillover effects. The remainder of Washington includes 40 PUMAs (see Figure 3).

Appendix Table 2 shows the estimated weights chosen by the synthetic control estimator by outcome and lists PUMAs with positive weights. Appendix Figures 1-4 show the sensitivity of the interactive fixed effects estimates as a function of the number of factors used, as well as

[^12]showing the choice of the optimal number of factors using the criterion developed in Bai and Ng (2002). ${ }^{27}$

Though the synthetic control and interactive fixed effects estimators generally perform similarly in Monte Carlo simulations (Gobillon and Magnac, 2016), analytic standard errors for interactive fixed effects estimator have been established, while standard errors for the synthetic control estimator are usually obtained using placebo estimates. We provide the baseline standard errors for the synthetic control estimates using an approach of "placebo in space," suggested by Abadie, Diamond, and Hainmueller (2014). We implement it by randomly selecting 5 PUMAs in Washington State as "treated" and estimate the placebo impact for these PUMAs. ${ }^{28}$ As in Gobillon and Magnac (2016), we implement 10,000 draws to obtain the standard errors. We then take the standard deviation of these estimated placebo impacts to be our estimate of the standard error. ${ }^{29}$

6. Results

6.1 Simple first-difference analysis

Table 3 presents summary statistics on the number of jobs, total hours worked, average wages, and total payroll in Seattle's single-location establishments for all industries and for food and drinking places by wage level for the quarter the Ordinance was passed $(t=0$, including June 2014), the first three quarters after the law was passed ($\mathrm{t}=1$, 2, or 3, July 2014-March 2015) , and

[^13]the first six quarters after the law was in force $(\mathrm{t}=4,5,6,7,8$, or 9 , April 2015-September 2016). These statistics portray a general image of the Seattle labor force over this time period and should not be interpreted as estimates of the causal impact of the Ordinance.

As shown in Panel A of Table 3, comparing the baseline second quarter of 2014 to the second quarter of 2016, the number of jobs paying less than $\$ 13$ per hour in all industries declined from 39,807 to 24,420 (a decline of 15,387 or 39%). ${ }^{30}$ The decline is consistent with legislative intent, and the persistence of employment at wages below $\$ 13$ can be explained by the fact that lower minima applied to small businesses and those offering health benefits. ${ }^{31}$

The reduction in employment at wages under $\$ 13$ could reflect either movement of wage rates above this threshold or the elimination of jobs. Table 3 panel A shows that over the same two-year time period, the number of jobs paying less than $\$ 19$ per hour fell from 92,959 to 88,431 (a decline of 4,528). Measuring hours worked at low wages rather than employee headcount, the table shows a 5.8 million hour reduction at wage rates under $\$ 13$, and a 1.7 million hour reduction at wages under $\$ 19$. Though it would be premature to make causal inferences on the basis of this single-differenced data, both headcount and hours data suggest that reduced low-wage employment can be apportioned primarily, but less than entirely, to wage increases.

Over this same period, overall employment in Seattle expanded dramatically, by over 13% in headcount and 15% in hours. Table 3 makes clear that the entirety of this employment growth occurred in jobs paying over $\$ 19$ per hour. The impression of skewed growth - driven in

[^14]part by rapid growth in the technology sector - extends to wage data. ${ }^{32}$ Average hourly wages at jobs paying less than $\$ 19$ rose from $\$ 14.14$ to $\$ 15.01$ (a 6.1% increase), while average hourly wages at all jobs surged from $\$ 36.93$ to $\$ 44.04$ (a 19.2% increase). ${ }^{33}$

Table 3 documents that payroll reductions attributable to declines in hours worked very nearly offset the observed wage increases for jobs paying under \$19. Comparing "peak" third quarter statistics in 2014 and 2016, the sum total of wages paid at rates under $\$ 19$ actually declines by over $\$ 6$ million. Similar comparisons of second quarter statistics reveal a comparably sized increase.

Panel B of Table 3 restricts attention to Food and Drinking Places (NAICS industry 722), which, respectively, comprised $30 \%, 23 \%$, and 11% of jobs in Seattle's single-location establishments paying less than $\$ 13$, less than $\$ 19$, and overall during the quarter the Ordinance was passed. Although this industry accounts for a minority of all low-wage employment, we highlight it for purposes of comparison with existing literature.

In contrast to overall low-wage labor market, low-wage employment in the restaurant industry increased slightly (by 0.1% in terms of hours) between second quarter of 2014 and the second quarter of 2016. At all wages, industry employment expanded by 12.0%, only slightly more slowly than the labor market as a whole. As in the full economy, growth in hours at jobs paying above $\$ 19$ per hour exceeded growth in lower-paying jobs. Relative to the full labor market, wage increases in the restaurant sector are distributed more evenly across the initial wage distribution.

[^15]
6.2 Falsification tests

Previous analyses have raised concerns regarding the applicability of the parallel trends assumption in minimum wage evaluation. As noted above, the short duration of our posttreatment panel makes it infeasible to employ the traditional linear time-trend correction. For this reason, and to more generally assess the performance of our proposed estimators, we conduct a simple falsification test by estimating the effects of a "placebo" law as if it were passed two years earlier (June, 2012). We restrict this analysis to data spanning from the first quarter of 2005 to the third quarter of 2014. Table 4 presents the results.

We find strong evidence that total hours worked in jobs paying less than $\$ 19$ per hour in Seattle diverged from both surrounding King County and SKP after June 2012, as shown in columns 2 and 4. In both columns, all of the estimated pseudo-effects are negative and significant, and would falsely suggest the placebo law caused a reduction in hours of 4.1% or 5.0%, respectively, in the average quarter following the second quarter of 2012. Given this divergent trend, we consider the two difference-in-differences estimators to have failed the falsification test and dispense with them henceforth.

In contrast, the synthetic control results shown in columns 5 and 6 behave well. In the average quarter following the placebo law, we find a 0.4% increase in wages and 0.1% increase in total hours. The pseudo-effects on wages, which are all positive, but mostly insignificant, are somewhat concerning - if these same positive pseudo-effects persist into the period that we study, we would be modestly overstating the effect of Seattle's minimum wage on wages, and thus understating elasticities of hours with respect to changes in wages. The pseudo-effects on hours flip back-and-forth between positive and negative.

Finally, columns 7 and 8 show the estimates of the pseudo-effects using the interactive fixed effects specification. This specification finds no pseudo-effect on wages, while the pseudo-effects on hours are all negative, yet insignificant (with larger standard errors), and average -1.9%. If these same negative pseudo-effects on hours persist into the period that we study, we would be moderately overstating the negative effect of Seattle's minimum wage on hours. Consequently, we conclude that the synthetic control method is the most trustworthy, but include interactive fixed effect models below with the caveat that they may be prone to overstating negative employment impacts.

6.3 Causal effect estimates

Table 5 presents our first estimates of the causal impact of the Ordinance for workers earning less than $\$ 19$ per hour. Looking at results using both the synthetic control and interactive fixed effects methods, we associate the first minimum wage increase, to $\$ 11$, with wage effects of 1.4% to 1.9% (averaging 1.7%). The second increase, to $\$ 13$, associates with a larger 2.8% to 3.6% wage effect (averaging 3.1%). A 3.1% increase in the wage of these workers corresponds to a $\$ 0.44$ per hour relative to the base average wage of $\$ 14.14 .{ }^{34}$ We do not find strong evidence that wages rose in anticipation of enforcement during the three quarters following passage of the law. The small coefficients range from 0.3% to 0.7% and most are statistically insignificant.

These wage effect estimates appear modest in comparison to much of the existing literature. We note that the first-difference results presented in Table 3 themselves indicate modest increases in wages at the low end of the scale (under \$19), about 4.5% during the first

[^16]phase-in and 6.0% during the second. These estimates suggest that wages increased in the control region as well. ${ }^{35}$ We further note that Table 3 indicates that the majority of low-wage jobs observed at baseline -62% when defined as jobs paying under $\$ 19$ per hour and weighted by hours - were not directly impacted by the minimum wage increase to $\$ 13$. Any impacts on wages paid for jobs between $\$ 13$ and $\$ 19$ per hour at baseline would be "cascading" effects expected to be much smaller than the impact on lowest earners. If we were to presume that our estimate reflects some sizable impact on jobs directly impacted by the increase and no effect on other jobs under $\$ 19$, the sizable impact works out to 7.9%, a level in line with existing literature. ${ }^{36}$ Finally, we note that the measure of wages used here - average hourly wages would by construction capture employer responses such as a reduction in the use of overtime. These would not be captured in, for example, self-reported CPS wage data.

Table 6 shows employment impacts for jobs paying less than $\$ 19$ per hour. As shown in columns 1 and 2, relative to the baseline quarter (2014.2), we estimate statistically insignificant hours reductions between 0.9% and 3.4% (averaging 1.9%) during the three quarters when the minimum wage was $\$ 11$ per hour. By contrast, the subsequent minimum wage increase to $\$ 13$ associates with larger, significant hours reductions between 7.9% and 10.6% (averaging 9.4\%). Columns 3 and 4 present a parallel analysis for jobs, with qualitatively similar results: statistically weak evidence of reductions in the first phase-in period followed by larger significant impacts in the second. The adverse effects on hours in the final three quarters are proportionately greater than the effects on jobs, suggesting that employers are not only reducing the number of low-wage jobs, but also reducing the hours of retained employees. Multiplying

[^17]the -6.8% average job estimate by the 92,959 jobs paying less than $\$ 19$ per hour at baseline suggests that the Ordinance caused the elimination of 6,317 low-wage jobs at single-location firms. ${ }^{37}$ Scaled up linearly to account for multi-location firms, job losses would amount to roughly $10,000 .{ }^{38}$

Figure 4 illustrates the sensitivity of the estimated effect on hours using different thresholds ranging from jobs paying less than $\$ 11$ to jobs paying less than $\$ 25$. For the effect of raising the minimum wage to $\$ 11$ per hour, shown in the top panel, the estimated impacts become insignificant once the threshold rises to around $\$ 17$. It appears that any "loss" in hours at lower thresholds is likely to reflect a cascade of workers to higher wage levels. In contrast, as shown in the bottom panel, the negative estimated effects of the second phase-in to $\$ 13$ are significant as we raise the threshold all of the way to $\$ 25$ per hour. Thus, there is no evidence to suggest that the estimated employment losses associated with the second phase-in reflect a similar cascading phenomenon.

Figure 5 illustrates these same results, but multiplies the estimated coefficients by the baseline number of hours worked in jobs paying below the threshold. These results show the estimated absolute change in total hours. We find that during the second phase-in period lowwage hours fell by 3.5 million hours per quarter when the threshold is set at $\$ 19$ per hour, and this result is maintained as we increase the threshold to $\$ 25$ per hour.

Because the estimated magnitude of employment losses exceeds the magnitude of wage gains in the second phase-in period, we would expect a decline in total payroll for jobs paying under $\$ 13$ per hour relative to baseline. Indeed, we observe this decline in first-differences when

[^18]comparing "peak" calendar quarters, as shown in Table 3 above. Table 7 confirms this inference in regression specifications examining the impact on payroll for jobs paying less than $\$ 19$ per hour. Although results are not consistently significant, point estimates suggest payroll declines of 4.0% to 7.6% (averaging 5.8%) during the second phase-in period. This implies that the minimum wage increase to $\$ 13$ from the baseline level of $\$ 9.47$ reduced income paid to lowwage employees of single-location Seattle businesses by roughly $\$ 120$ million on an annual basis. ${ }^{39}$

Note that the largest and only statistically significant payroll estimate corresponds to the first quarter of 2016. This result is notable as the first quarter tends to be a time of slack demand for low-wage labor (after Christmas and before the summer tourist season) - in effect, Seattle suffers a mini recession every winter. This result could be a harbinger of the effects of the minimum wage in a full recession, or in a less robust local economy, as wages will have less ability to decrease to equilibrate the low-wage labor market. ${ }^{40}$

6.4 Elasticity estimates

Column 1 of Table 8 shows our estimate of the elasticity of labor demand with respect to changes in wages computed as the ratio of our estimate of the effect on hours to our estimate of the effect on wages, using the synthetic control method, for the six quarters after the Ordinance was enforced. ${ }^{41}$ We also compute measures of statistical uncertainty for these elasticities since

[^19]they reflect the ratio of two estimates. ${ }^{42}$ During the first phase-in, when the minimum wage was $\$ 11$ per hour, estimated elasticities range from -0.97 to -1.80 (averaging -1.31). Notably, we cannot reject elasticity $=-1$ with 95% confidence, which is consistent with our finding in Table 7 that we could not reject zero effect on payroll, and we cannot reject elasticity $=0$, which is consistent with our finding in Table 6 that we could not reject zero effect on hours. These findings are not artifacts of setting the threshold at $\$ 19$ per hour. As shown in the upper part of Figure 6, the estimated elasticities range between -1 and 0 when the threshold is set anywhere between $\$ 17$ and $\$ 25$ per hour. In summary, the relatively modest estimated wage and hours impacts of the first phase-in create considerable statistical uncertainty regarding the associated elasticity estimate.

After the minimum wage increased to $\$ 13$ per hour, we find much larger estimated elasticities ranging from -2.66 to -3.46 (averaging -2.98). During these three quarters, we can reject the hypothesis that the elasticity equals zero (consistent with Table 5), and we can reject the hypothesis that the elasticity equals -1 in 2016.1, consistent with the significant decline in payroll during this quarter shown in Table 6. Point estimates of elasticities imply that, within Seattle, low-wage workers lost $\$ 3$ from lost employment opportunities for every $\$ 1$ they gain due to higher hourly wages. These very large elasticities are not artifacts of setting the threshold at $\$ 19$ per hour. As shown in the lower part of Figure 6, the estimated elasticities are very close to -3 when the threshold is set anywhere between $\$ 17$ and $\$ 25$ per hour. ${ }^{43}$

[^20]The larger elasticities in the second phase-in period relative to the first suggest that the sum total of earnings paid to low-wage workers in Seattle might be maximized with a statutory minimum wage somewhere in the range of $\$ 9.47$ to $\$ 11$. By contrast, increases beyond $\$ 11$ appear to have resulted in net earnings losses in Seattle for these workers.

6.5 Reconciling these estimates with prior work

Most prior studies compute employment elasticities by dividing regression-estimated percentage changes in employment by the percentage change in the statutory minimum wage. Applied in this case, this method would use a denominator of 16.2% (i.e., (\$11-\$9.47)/\$9.47) for the first phase-in period, and $37.3 \%(\$ 13-\$ 9.47) / \$ 9.47)$ for the second. The conventional method clearly overstates the actual impact on wages given that many affected workers' wages are above the old minimum but below the new. This method is also unsuitable for evaluating the impacts on workers who began over the new minimum wage but are nonetheless affected by cascading wage increases (defined as the range of either $\$ 11$ or $\$ 13$ to $\$ 19$ per hour). In column 2 of Table 8, we use the conventional approach for computing employment elasticities and find estimates in the range of -0.08 to -0.28 (averaging -0.20). This range is high but not outside of the envelope of estimates found in prior literature (see Appendix Table 1). ${ }^{44}$ Thus, computing the elasticity based on the Ordinance's impact on actual average wages suggests that the conventional method yields substantial underestimates.

We conclude our analysis by attempting to reconcile our results with prior studies focused on restaurant industry employment. In Table 9, we walk our results back to a sample and outcome that is similar to Card and Krueger's (1994) examination of fast food employment

[^21]in New Jersey and Pennsylvania in response to New Jersey's increase in its minimum wage. The traditional focus on restaurant employment reflects its common perception as a canonical lowwage industry, and the general absence of data resources allowing a more precise analysis of jobs paying low wages. In 46 of 50 states, there is no data resource allowing the systematic computation of average hourly wage rates for the entire UI-covered workforce.

Column 1 of Table 9 repeats the main results findings from Column 1 of Table 6, and is included as a point of reference. Moving from Column 1 to Column 5 of Table 9, we make one change at a time to evaluate the sensitivity of our results to various modeling choices. In Column 2, we use the same specification as in Column 1, but restrict the analysis to hours in low-wage jobs in Food Services and Drinking Places (NAICS industry 722). The results are comparable to those shown in Column 1 for all industries - if anything, the results show larger decreases in hours, particularly when the minimum wage was raised to $\$ 11$, suggesting roughly a 7% decline, although two of these three estimates are insignificant. Moving from Column 2 to 3, we switch the focus to headcount employment, the outcome used in most prior literature. Again, these results are quite comparable, suggesting that nearly all of the reduction in hours worked by low-wage workers in Food and Drinking Places is coming from a reduction in jobs rather than a reduction in hours worked by those who have such jobs.

In Column 4, we shift from examining low-wage jobs to all jobs in the restaurant industry. Here we see a dramatic change: the effect on all jobs is insignificant in all quarters and averages precisely 0.0% in the last three quarters when the wage increased to $\$ 13$ per hour. Thus, by using the imprecise proxy of all jobs in a stereotypically low-wage industry, prior literature may have substantially underestimated the impact of minimum wage increases on the target population. Finally, column 5 returns to evaluating effects on total hours, but now for all
jobs in NAICS 722. While the estimates continue to be insignificant, they are now more negative, averaging -3.3% in the last three quarters. This result is consistent with Neumark and Wascher's (2000) critique of Card and Krueger (1994).

In summary, utilizing methods more consistent with prior literature allows us to almost perfectly replicate the conventional findings of no, or minor, employment effects. These methods reflect data limitations, however, that our analysis can circumvent. We conclude that the stark differences between our findings and most prior literature reflect in no small part the impact of data limitations on prior work.

7. Conclusion

There is widespread interest in understanding the effects of large minimum wage increases, particularly given efforts in the US to raise the federal minimum wage to $\$ 15$ per hour and the adoption of high minimum wages in several states, cities and foreign countries in the past few years. There is good reason to believe that increasing the minimum wage above some level is likely to cause greater employment losses than increases at lower levels. Wolfers (2016) argues that labor economists need to "get closer to understanding the optimal level of the minimum wage" (p. 108) and that "(i)t would be best if analysts could estimate the marginal treatment effect at each level of the minimum wage level" (p. 110). This paper extends the literature in a number of ways, one of which is by evaluating effects of two consecutive large local minimum wage increases.

Beyond basic causal inference challenges, prior studies have attempted to analyze minimum wage effects using data resources that do not permit the direct observation of hourly wages. In those situations, researchers resort to using proxies for low-wage workers by
examining particular industries that employ higher concentrations of low-wage labor or by restricting the analysis to teenagers. This paper demonstrates that such strategies likely misstate the true impact of minimum wage policies on opportunities for low-skilled workers. Our finding of zero impact on headcount employment in the restaurant industry echoes many prior studies. Our findings also demonstrate, however, that this estimation strategy yields results starkly different from methods based on direct analysis of low-wage employment.

Our preferred estimates suggest that the Seattle Minimum Wage Ordinance caused hours worked by low-skilled workers (i.e., those earning under $\$ 19$ per hour) to fall by 9.4% during the three quarters when the minimum wage was $\$ 13$ per hour, resulting in a loss of 3.5 million hours worked per calendar quarter. Alternative estimates show the number of low-wage jobs declined by 6.8%, which represents a loss of more than 5,000 jobs. These estimates are robust to cutoffs other than $\$ 19 .{ }^{45}$ A 3.1\% increase in wages in jobs that paid less than $\$ 19$ coupled with a 9.4% loss in hours yields a labor demand elasticity of roughly -3.0 , and this large elasticity estimate is robust to other cutoffs.

These results suggest a fundamental rethinking of the nature of low-wage work. Prior elasticity estimates in the range from zero to -0.2 suggest there are few suitable substitutes for low-wage employees, that firms faced with labor cost increases have little option but to raise their wage bill. Seattle data show - even in simple first differences - that payroll expenses on

[^22]workers earning under \$19 per hour either rose minimally or fell as the minimum wage increased from $\$ 9.47$ to $\$ 13$ in just over nine months. An elasticity of -3 suggests that low-wage labor is a more substitutable, expendable factor of production. The work of least-paid workers might be performed more efficiently by more skilled and experienced workers commanding a substantially higher wage. This work could, in some circumstances, be automated. In other circumstances, employers may conclude that the work of least-paid workers need not be done at all.

Importantly, the lost income associated with the hours reductions exceeds the gain associated with the net wage increase of 3.1%. Using data in Table 3, we compute that the average low-wage employee was paid $\$ 1,897$ per month. The reduction in hours would cost the average employee $\$ 179$ per month, while the wage increase would recoup only $\$ 54$ of this loss, leaving a net loss of $\$ 125$ per month (6.6%), which is sizable for a low-wage worker.

The estimates may be much larger than those reported in prior minimum wages studies for three reasons. First, theory suggests that labor demand elasticity would generally be larger for a small, open economy such as Seattle than for a state or the nation. Yet, there is evidence to suggest that our results are not simply divergent from the literature due to this issue. Note that Seattle data produce an effect estimate of zero when we adopt the traditional approach of studying restaurant employment at all wage levels.

Second, rather than using the statutory change in the minimum wage as the denominator in an elasticity computation, we use the change in actual wage rates for low-skill workers, which we can estimate from the Washington data. Because the actual change is necessarily smaller than the statutory change, the arithmetic of elasticity computation leads to larger estimated
elasticities than those derived using conventional methods of computing the elasticity of demand for low-skill workers with respect to the statutory change in minimum wage.

Third, we analyze the impact of raising the minimum wage to a significantly higher level than what has been analyzed in most prior work. Deflating by the Personal Consumption Expenditures price index, the real value of the Federal minimum wage has never reached the $\$ 13$ level studied in our analysis. Theory suggests that the impact of raising the minimum wage depends critically on the starting point; Seattle started from the nation's highest state minimum wage, and our own evidence indicates that the effects differed dramatically from the first phasein period to the second.

A few cautions should be noted. Our analysis is restricted to firms reporting employment at specific locations, as we cannot properly locate employment for multi-location firms that do not report employment separately by location. It may be the case that the labor demand elasticity of single-site firms is larger than that of multi-site firms who do not report employment at specific locations. Yet, as discussed above, multi-site firms who we surveyed were more likely to self-report cuts in employment than smaller firms. ${ }^{46}$

Further, we lack data on contractor jobs which get 1099 forms instead of W-2s and on jobs in the informal economy paid with cash. If the Ordinance prompted an increase in lowwage workers being paid as contractors or under the table, our results would overstate the effect on jobs and hours worked. However, such a move would not be without consequence for the workers, who would lose protections from the Unemployment Insurance and Worker's Compensation systems and not receive credit toward future Social Security benefits for such

[^23]earnings (though they would not have to pay the full amount of taxes for Social Security and Medicare).

In addition, some employers may have shifted jobs out of Seattle but kept them within the metropolitan area, in which case the job losses in Seattle overstate losses in the local labor market. Reductions in payroll attributable to the minimum wage may exceed reductions in income for the affected workers, to the extent they were able to take advantage of relocated opportunities in the metropolitan area. Finally, the long-run effects of Seattle's minimum wage increases may be substantially greater, particularly since subsequent changes beyond a final increase to $\$ 15$ per hour will be indexed to inflation, unlike most of the minimum wage increases that have been studied in the literature, which have quickly eroded in real terms (Wolfers, 2016).

One cannot assume our specific findings generalize to minimum wage policies set by other localities or at the federal or state level. The impacts of minimum wage policies established by other local governments likely depend on the industrial structure, characteristics of the local labor force, and other features of the local and regional economy.

Last, there may be important forms of effect heterogeneity across workers. Some workers may well have experienced significant wage increases with no reduction in hours; others may have encountered significantly greater difficulty in securing any work at all. From a welfare perspective, it is critical to understand how this heterogeneity plays out across low-skilled workers in varying life circumstances. Such an exploration is beyond the scope of this paper, which uses a data resource that identifies no pertinent information about individual workers. Future work will take advantage of linkages across administrative data resources within Washington State to understand how the minimum wage affects workers in varying demographic categories, or with a history of reliance on means-tested transfer programs.

References

Abadie, A. and J. Gardeazabal. 2003. The Economic Costs of Conflict: A Case Study of the Basque Country. American Economic Review 93: 113-132.

Abadie, A., Diamond. A., and J. Hainmueller. 2014. Comparative Politics and the Synthetic Control Method. American Journal of Political Science 59(2): 495-510.

Addison, J., Blackburn, M., and C. Cotti. 2008. New Estimates of the Effects of Minimum Wages in the U.S. Retail Trade Sector. IZA Discussion Paper No. 3597.

Addison, J., Blackburn, M., and C. Cotti. 2012. The Effect of Minimum Wages on Labour Market Outcomes: County-Level Estimates from the Restaurant-and-Bar Sector. British Journal of Industrial Relations. 50(3): 412-435.

Addison, J., Blackburn, M., and C. Cotti. 2014. On the Robustness of Minimum Wage Effects: Geographicially-Disparate Trends and Job Growth Equations. IZA Discussion Paper No. 8420.

Allegretto, S., Dube, A., Reich, M., and B. Zipperer. 2015. Credible Research Designs for Minimum Wage Studies: A Response to Neumark, Salas and Wascher. Working Paper. Washington Center for Equitable Growth.

Allegretto, S., Dube, A., Reich, M., and B. Zipperer. 2013. Credible Research Designs for Minimum Wage Studies. IRLE Working Paper No. 148-13

Allegretto, S., Dube, A., and M. Reich. 2011. Do Minimum Wages Really Reduce Teen Employment? Accounting for Heterogeneity and Selectivity in State Panel Data. Industrial Relations 50(2): 205-240.

Bai, J. 2009. Panel Data Models With Interactive Fixed Effects. Econometrica 77(4): 1229-1279.
Bai, J. and S. Ng. 2002. Determining the number of factors in approximate factor models. Econometrica 70(1): 191-221.

Belman, D. and P.J. Wolfson. 2014. What Does the Minimum Wage Do? Kalamazoo: W.E. Upjohn Institute for Employment Research.

Belman, D. and P.J. Wolfson. 2010. The Effect of Legislated Minimum Wage Increases on Employment and Hours: A Dynamic Analysis. Labour 24(1): 1-25.

Bertrand, M., Duflo, E. and Mullainathan, S., 2004. How Much Should We Trust Differences-inDifferences Estimates? Quarterly Journal of Economics 119(1): 249-275.

Card, D. 1992. Using Regional Variation in Wages to Measure the Effects of the Federal Minimum Wage. Industrial and Labor Relations Review 46(1): 22-37.

Card, D. and A. B. Krueger 1994. Minimum Wages and Employment: A Case Study of the FastFood Industry in New Jersey and Pennsylvania. The American Economic Review 84(4): 772793.

Cengiz, D., Dube, A., Lindner, A., and B. Zipperer. 2017. The Effect of Minimum Wages on the Total Number of Jobs: Evidence from the United States Using a Bunching Estimator. Unpublished manuscript.

Clemens, J. 2015. The Minimum Wage and the Great Recession: Evidence from the Current Population Survey. National Bureau of Economic Research, Working Paper 21830.

Clemens, J. and M. Strain. 2017. Estimating the Employment Effects of Recent Minimum Wage Changes: Early Evidence, an Interpretive Framework, and a Pre-Commitment to Future Analysis. National Bureau of Economic Research, Working Paper 23084.

Clemens, J. and M. Wither. 2016. The Minimum Wage and the Great Recession: Evidence of Effects on the Employment and Income Trajectories of Low-Skilled Workers. National Bureau of Economic Research, Working Paper 20724.

Dube, A., S. Naidu, and M. Reich. 2007. The Economic Effects of a Citywide Minimum Wage Industrial \& Labor Relations Review 60: 522-543.

Dube, A., T. W. Lester and M. Reich 2010. Minimum Wage Effects Across State Borders: Estimates using Contiguous Counties. The Review of Economics and Statistics 92(4): 945964.

Dube, A., T. W. Lester and M. Reich 2016. Minimum Wage Shocks, Employment Flows, and Labor Market Frictions. Journal of Labor Economics 34(3): 663-704.

Jardim, E., Long, M., Plotnick, R., van Inwegen, E., Vigdor, J., and H. Wething. 2017. The Extent of Local Minimum Wage Spillovers. Working Paper. University of Washington.

Gobillon, L. and T. Magnac. 2016. Regional Policy Evaluation: Interactive Fixed Effects and Synthetic Controls. Review of Economics and Statistics 98(3): 535-551.

Katz, L., and A. Krueger. 1992. The Effect of the Minimum Wage on the Fast-Food Industry. Industrial and Labor Relations Review 46(1): 6-21.

Kim, T. and L. Taylor. 1995. The Employment Effect in Retail Trade of California's 1988 Minimum Wage Increase. Journal of Business \& Economic Statistics 13(2): 175-182.

Klawitter, M., Long, M., and R. Plotnick. 2014. Who Would be Affected by an Increase in Seattle's Minimum Wage? Report for the City of Seattle, Income Inequality Advisory Committee. http://evans.uw.edu/sites/default/files/public/Evans_School_Min_Wage_report.pdf

Meer, J. and J. West. 2016. Effects of the Minimum Wage on Employment Dynamics. Journal of Human Resources 51(2): 500-522.

Neumark, D. and W. Wascher. 2011. Does a Higher Minimum Wage Enhance the Effectiveness of the Earned Income Tax Credit? Industrial and Labor Relations Review 64(5): 712-746.

Neumark, D. and W. Wascher. 1994. Employment Effects of Minimum and Subminimum Wages: Reply to Card, Katz, and Krueger. Industrial and Labor Relations Review 47(3): 497-512.

Neumark, D. and W. Wascher, 1995. The Effect of New Jersey's Minimum Wage Increase on Fast-Food Employment: A Re-Evaluation Using Payroll Records. National Bureau of Economic Research, Working Papers 5224.

Neumark, D. and W. Wascher. 2000. Minimum Wages and Employment: A Case Study of the Fast-Food Industry in New Jersey and Pennsylvania: Comment. American Economic Review 90(5): 1362-1396

Neumark, D. and W. Wascher. 2004. The Influence of Labour Market Institutions on the Disemployment Effects of the Minimum Wage. CESifo Database for Institutional Comparisons in Europe 40-47.

Neumark, D. and W. Wascher. 2008. Minimum Wages. MIT Press.
Neumark, D., Salas, I and W. Wascher. 2014. Revisiting the Minimum Wage-Employment Debate: Throwing Out the Baby with the Bathwater? ILRReview 67(3): 608-648.

Neumark, D., Schwitzer, M. and W. Wascher. 2004. Minimum Wage Effects Throughout the Wage Distribution. Journal of Human Resources (39)2: 425-450.

Pesaran, M. H. 2006. Estimation and Inference in Large Heterogenous Panels with Multifactor Error Structure. Econometrica 74(4): 967-1012.

Potter, N. 2006. Measuring the Employment Impacts of the Living Wage Ordinance Santa Fe, New Mexico. University of New Mexico, Bureau of Business and Economic Research. https://bber.unm.edu/pubs/EmploymentLivingWageAnalysis.pdf

Schmitt, J. and D. Rosnick. 2011. The Wage and Employment Impact of Minimum-Wage Laws in Three Cities. Center for Economic and Policy Research. http://www.cepr.net/documents/publications/min-wage-2011-03.pdf

The Seattle Minimum Wage Study Team. 2016. Report on the Impact of Seattle's Minimum Wage Ordinance on Wages, Workers, Jobs, and Establishments Through 2015. Seattle. University of Washington. https://evans.uw.edu/sites/default/files/MinWageReport-July2016_Final.pdf

Totty, E.. 2015. The Effect of Minimum Wages on Employment: A Factor Model Approach. IRLE Working Paper 110-15. http://www.irle-demo.berkeley.edu/workingpapers/110-15.pdf

Wolfers, J. 2016. What Do We Really Know About the Employment Effects of the Minimum Wage? In Strain, M.(Ed.) The US Labor Market: Questions and Challenges for Public Policy. 106-119.American Enterprise Institute.

Tables and Figures

Table 1: Minimum Wage Schedule in Seattle under the Seattle Minimum Wage Ordinance

Table 2: Characteristics of Included and Excluded Firms, Washington State

	Included in Analysis	Excluded from Analysis	Share Included
Number of Firms	123,180	14,917	89.2%
Number of Establishments (i.e., Sites)	140,451	Unknown	
Total Number of Employees	$1,672,448$	$1,019,875$	62.1%
Employees / Firm	14	68	
Employees / Establishment	12	Unknown	

Notes: Firms are defined as entities with unique federal tax Employer Identification Numbers.
Statistics are computed for the average quarter between 2005.1 to 2016.3. "Excluded from
Analysis" includes two categories of firms: (1) Multi-location firms (flagged as such in UI data), and (2) Single-location firms which operate statewide or whose location could not be determined.

Table 3: Employment Statistics for Seattle Single-Site Establishments

Quarters AfterPassage/Enforcement		Number of Jobs Hourly wage rates:			Total Hours (thousands) Hourly wage rates:			Average Wage Hourly wage rates:			$\frac{\text { Total Payroll (\$mlns.) }}{\text { Hourly wage rates: }}$		
		$\begin{gathered} \text { Under } \\ \$ 13 \\ \hline \end{gathered}$	Under		Under $\$ 13$	Under		Under \$13	Under		Under \$13	Under	
Panel A: All Industries													
2014.2	0	39,807	92,959	292,640	14,117	37,408	130,007	11.14	14.14	36.93	157	529	4,802
2014.3	1	40,706	94,913	300,892	14,527	38,565	132,604	11.15	14.15	37.76	162	546	5,007
2014.4	2	35,421	89,598	303,089	11,999	35,589	136,012	11.27	14.37	39.78	135	511	5,410
2015.1	3	35,085	90,813	305,229	11,335	34,269	132,275	11.28	14.41	40.61	128	494	5,371
2015.2	4/1	35,075	92,668	311,886	12,174	37,270	139,197	11.47	14.48	38.52	140	540	5,362
2015.3	5/2	33,959	93,382	320,807	11,589	37,472	142,638	11.54	14.58	39.83	134	546	5,681
2015.4	6/3	30,002	87,067	320,195	9,924	34,943	146,960	11.64	14.74	41.73	116	515	6,133
2016.1	7/4	24,662	87,122	321,360	7,645	33,031	140,429	11.82	14.97	43.90	90	494	6,164
2016.2	8/5	24,420	88,431	331,927	8,315	35,681	149,514	11.87	15.01	44.04	99	535	6,584
2016.3	9/6	23,232	86,842	336,517	8,046	35,867	153,603	11.87	15.03	43.60	96	539	6,697
Panel B: Food and Drinking Places (NAICS 722)													
2014.2	0	11,980	21,800	32,648	4,310	8,198	11,938	10.99	13.10	17.77	47	107	212
2014.3	1	12,114	22,614	34,356	4,382	8,685	12,787	10.98	13.21	18.00	48	115	230
2014.4	2	10,997	22,392	34,811	3,749	8,276	12,514	11.10	13.48	18.76	41	112	235
2015.1	3	10,896	22,530	34,893	3,523	7,912	12,006	11.13	13.55	18.91	39	107	227
2015.2	4/1	10,123	22,228	35,072	3,534	8,380	12,758	11.42	13.77	18.74	40	115	239
2015.3	5/2	9,451	22,749	36,577	3,339	8,806	13,668	11.54	14.01	19.13	39	123	261
2015.4	6/3	8,464	22,672	37,177	2,830	8,561	13,577	11.60	14.26	19.83	33	122	269
2016.1	7/4	6,422	21,679	36,120	1,935	7,635	12,373	11.86	14.61	20.33	23	112	252
2016.2	8/5	6,728	21,556	36,618	2,213	8,209	13,368	11.96	14.63	19.99	26	120	267
2016.3	9/6	6,480	21,647	37,283	2,212	8,780	14,440	11.89	14.70	20.21	26	129	292

[^24]Table 4: Falsification Test: Pseudo-Effect of Placebo Law Passed 2012

Quarter	Quarters after (pseudo) Passage/ Enforcement	Difference-in-Differences between Seattle and:				Synthetic Control Washington excluding King County		Interactive Fixed Effects	
		Outlying King County		Snohomish, Kitsap, and Pierce Counties				Washingto King	xcluding nty
		Wage	Hours	Wage	Hours	Wage	Hours	Wage	Hours
2012.3	1	$\begin{aligned} & \hline 0.001^{*} \\ & (0.001) \end{aligned}$	$\begin{gathered} \hline-0.044 * * * \\ (0.004) \end{gathered}$	$\begin{gathered} -0.003 * * \\ (0.002) \end{gathered}$	$\begin{gathered} \hline-0.014^{* * *} \\ (0.006) \end{gathered}$	$\begin{gathered} \hline 0.001 \\ (0.003) \end{gathered}$	$\begin{aligned} & \hline-0.014 \\ & (0.015) \end{aligned}$	$\begin{gathered} \hline-0.002 \\ (0.003) \end{gathered}$	$\begin{aligned} & \hline-0.012 \\ & (0.013) \end{aligned}$
2012.4	2	$\begin{gathered} -0.002^{* * *} \\ (0.001) \end{gathered}$	$\begin{gathered} -0.033 * * * \\ (0.004) \end{gathered}$	$\begin{gathered} -0.003^{*} \\ (0.002) \end{gathered}$	$\begin{gathered} -0.038^{* * *} \\ (0.006) \end{gathered}$	$\begin{gathered} 0.001 \\ (0.003) \end{gathered}$	$\begin{gathered} -0.018 \\ (0.021) \end{gathered}$	$\begin{aligned} & -0.001 \\ & (0.003) \end{aligned}$	$\begin{aligned} & -0.022 \\ & (0.014) \end{aligned}$
2013.1	3	$\begin{gathered} 0.002 * * * \\ (0.001) \end{gathered}$	$\begin{gathered} -0.034^{* * *} \\ (0.004) \end{gathered}$	$\begin{gathered} 0.001 \\ (0.002) \end{gathered}$	$\begin{gathered} -0.028^{* * *} \\ (0.006) \end{gathered}$	$\begin{gathered} 0.001 \\ (0.003) \end{gathered}$	$\begin{aligned} & -0.002 \\ & (0.020) \end{aligned}$	$\begin{gathered} 0.000 \\ (0.003) \end{gathered}$	$\begin{aligned} & -0.017 \\ & (0.038) \end{aligned}$
2013.2	4/1	$\begin{gathered} 0.003 * * * \\ (0.001) \end{gathered}$	$\begin{gathered} -0.022 * * * \\ (0.004) \end{gathered}$	$\begin{gathered} 0.005^{* * *} \\ (0.002) \end{gathered}$	$\begin{gathered} -0.036^{* * *} \\ (0.006) \end{gathered}$	$\begin{gathered} 0.001 \\ (0.003) \end{gathered}$	$\begin{gathered} 0.004 \\ (0.026) \end{gathered}$	$\begin{gathered} 0.001 \\ (0.003) \end{gathered}$	$\begin{aligned} & -0.016 \\ & (0.038) \end{aligned}$
2013.3	5/2	$\begin{gathered} 0.003 * * * \\ (0.001) \end{gathered}$	$\begin{gathered} -0.063^{* * *} \\ (0.007) \end{gathered}$	$\begin{aligned} & -0.002 \\ & (0.003) \end{aligned}$	$\begin{gathered} -0.063^{* * *} \\ (0.012) \end{gathered}$	$\begin{gathered} 0.004 \\ (0.005) \end{gathered}$	$\begin{aligned} & -0.006 \\ & (0.022) \end{aligned}$	$\begin{gathered} -0.002 \\ (0.004) \end{gathered}$	$\begin{gathered} -0.024 \\ (0.041) \end{gathered}$
2013.4	6/3	$\begin{gathered} 0.003 * * \\ (0.001) \end{gathered}$	$\begin{gathered} -0.069 * * * \\ (0.007) \end{gathered}$	$\begin{gathered} -0.006^{*} \\ (0.003) \end{gathered}$	$\begin{gathered} -0.095^{* * *} \\ (0.012) \end{gathered}$	$\begin{gathered} 0.006 \\ (0.004) \end{gathered}$	$\begin{aligned} & -0.009 \\ & (0.033) \end{aligned}$	$\begin{gathered} 0.000 \\ (0.004) \end{gathered}$	$\begin{aligned} & -0.034 \\ & (0.049) \end{aligned}$
2014.1	7/4	$\begin{gathered} 0.003 * * \\ (0.001) \end{gathered}$	$\begin{gathered} -0.031 * * * \\ (0.007) \end{gathered}$	$\begin{gathered} 0.001 \\ (0.003) \end{gathered}$	$\begin{gathered} -0.047 * * * \\ (0.012) \end{gathered}$	$\begin{gathered} 0.005 \\ (0.004) \end{gathered}$	$\begin{gathered} 0.028 \\ (0.029) \end{gathered}$	$\begin{aligned} & -0.001 \\ & (0.004) \end{aligned}$	$\begin{aligned} & -0.008 \\ & (0.053) \end{aligned}$
2014.2	8/5	$\begin{gathered} 0.006^{* * *} \\ (0.001) \end{gathered}$	$\begin{gathered} -0.031^{* * *} \\ (0.007) \end{gathered}$	$\begin{gathered} 0.004 \\ (0.003) \end{gathered}$	$\begin{gathered} -0.059 * * * \\ (0.012) \end{gathered}$	$\begin{gathered} 0.008^{* * *} \\ (0.004) \end{gathered}$	$\begin{gathered} 0.014 \\ (0.031) \end{gathered}$	$\begin{gathered} 0.003 \\ (0.004) \end{gathered}$	$\begin{aligned} & -0.024 \\ & (0.055) \end{aligned}$
2014.3	9/6	$\begin{gathered} 0.004^{* *} \\ (0.002) \end{gathered}$	$\begin{gathered} -0.046 * * * \\ (0.011) \end{gathered}$	$\begin{gathered} -0.001 \\ (0.005) \end{gathered}$	$\begin{gathered} -0.073^{* * *} \\ (0.017) \end{gathered}$	$\begin{aligned} & 0.010^{*} \\ & (0.005) \end{aligned}$	$\begin{gathered} 0.013 \\ (0.031) \end{gathered}$	$\begin{gathered} 0.000 \\ (0.005) \end{gathered}$	$\begin{gathered} -0.019 \\ (0.081) \end{gathered}$
Average		0.003	-0.041	0.000	-0.050	0.004	0.001	0.000	-0.019
Obs.		68	68	68	68	1,530	1,530	1,530	1,530

Notes: Clustered standard errors in parentheses. Estimates for all jobs paying $<\$ 19$ in all industries. The number of observations used in the synthetic control and interactive fixed effects specifications equals the number of PUMAs (45) times the number of quarters included in this analysis (34). However, note that some of these PUMAs are assigned zero weight in the synthetic control results.
${ }^{* * *},{ }^{* *}$, and $*$ denote statistically significance using a two-tailed test with $\mathrm{p} \leq 0.01,0.05$, and 0.10 , respectively.

Table 5: Main Results: Effect on Wages

	Quarters after Passage/ Enforcement	Synthetic Control	Interactive FE
Quarter	S	0.003	0.003
2014.3	1	(0.003)	(0.003)
		0.003	$0.006^{* *}$
2014.4	2	(0.003)	(0.003)
		0.005	$0.007^{* * *}$
2015.1	3	(0.004)	(0.003)
		$0.014^{* * *}$	$0.014^{* * *}$
2015.2	$4 / 1$	(0.004)	(0.003)
		$0.019^{* * *}$	$0.019^{* * *}$
2015.3	$5 / 2$	(0.005)	(0.004)
		$0.018^{* * *}$	$0.018^{* * *}$
2015.4	$6 / 3$	(0.004)	(0.004)
		$0.031^{* * *}$	$0.028^{* * *}$
2016.1	$7 / 4$	(0.005)	(0.005)
		$0.033^{* * *}$	$0.029^{* * *}$
2016.2	$8 / 5$	(0.006)	(0.005)
		$0.036^{* * *}$	(0.007)
2016.3			$0.031^{* * *}$
			(0.006)

Notes: $\mathrm{n}=1,890$. Clustered standard errors in parentheses. Estimates for all jobs paying $<$ $\$ 19$ in all industries, where the control region is defined as the state of Washington excluding King County. The number of observations equals the number of PUMAs (45) times the number of quarters included in this analysis (42). However, note that some of these PUMAs are assigned zero weight in the synthetic control results.
${ }^{* * *},{ }^{* *}$, and $*$ denote statistically significance using a two-tailed test with $\mathrm{p} \leq 0.01,0.05$, and 0.10 , respectively.

Table 6: Main Results: Effect on Employment

Quarter	Quarters since Passage/ Enforcement	Hours		Jobs	
		SC	IFE	SC	IFE
2014.3	1	$\begin{gathered} 0.008 \\ (0.018) \end{gathered}$	$\begin{gathered} 0.004 \\ (0.013) \end{gathered}$	$\begin{gathered} 0.004 \\ (0.017) \end{gathered}$	$\begin{aligned} & -0.006 \\ & (0.015) \end{aligned}$
2014.4	2	$\begin{gathered} 0.003 \\ (0.018) \end{gathered}$	$\begin{aligned} & -0.001 \\ & (0.013) \end{aligned}$	$\begin{gathered} -0.010 \\ (0.021) \end{gathered}$	$\begin{gathered} -0.023 \\ (0.015) \end{gathered}$
2015.1	3	$\begin{aligned} & -0.023 \\ & (0.018) \end{aligned}$	$\begin{aligned} & -0.018 \\ & (0.013) \end{aligned}$	$\begin{gathered} 0.000 \\ (0.023) \end{gathered}$	$\begin{aligned} & -0.013 \\ & (0.015) \end{aligned}$
2015.2	4/1	$\begin{aligned} & -0.013 \\ & (0.019) \end{aligned}$	$\begin{gathered} -0.014 \\ (0.014) \end{gathered}$	$\begin{aligned} & -0.014 \\ & (0.019) \end{aligned}$	$\begin{gathered} -0.032 * * \\ (0.015) \end{gathered}$
2015.3	5/2	$\begin{gathered} -0.034 \\ (0.025) \end{gathered}$	$\begin{aligned} & -0.022 \\ & (0.020) \end{aligned}$	$\begin{aligned} & -0.019 \\ & (0.021) \end{aligned}$	$\begin{aligned} & -0.035^{*} \\ & (0.021) \end{aligned}$
2015.4	6/3	$\begin{gathered} -0.021 \\ (0.033) \end{gathered}$	$\begin{aligned} & -0.009 \\ & (0.019) \end{aligned}$	$\begin{aligned} & -0.045 \\ & (0.029) \end{aligned}$	$\begin{gathered} -0.048^{* * *} \\ (0.020) \end{gathered}$
2016.1	7/4	$\begin{gathered} -0.106 * * * \\ (0.031) \end{gathered}$	$\begin{gathered} -0.090 * * * \\ (0.024) \end{gathered}$	$\begin{aligned} & -0.051 * \\ & (0.028) \end{aligned}$	$\begin{gathered} -0.053 * * * \\ (0.021) \end{gathered}$
2016.2	8/5	$\begin{gathered} -0.087 * * * \\ (0.031) \end{gathered}$	$\begin{gathered} -0.079 * * * \\ (0.027) \end{gathered}$	$\begin{gathered} -0.052 * \\ (0.028) \end{gathered}$	$\begin{gathered} -0.083 * * * \\ (0.020) \end{gathered}$
2016.3	9/6	$\begin{gathered} -0.102 * * * \\ (0.042) \\ \hline \end{gathered}$	$\begin{gathered} -0.100^{* * *} \\ (0.034) \\ \hline \end{gathered}$	$\begin{gathered} -0.063^{*} \\ (0.036) \\ \hline \end{gathered}$	$\begin{gathered} -0.106 * * * \\ (0.024) \\ \hline \end{gathered}$

Notes: $\mathrm{n}=1,890$. Estimates for all jobs paying $<\$ 19$ in all industries, where the control region is defined as the state of Washington excluding King County. The number of observations equals the number of PUMAs (45) times the number of quarters included in this analysis (42). However, note that some of these PUMAs are assigned zero weight in the synthetic control results.
$* * *, * *$, and $*$ denote statistically significance using a two-tailed test with $\mathrm{p} \leq 0.01,0.05$, and 0.10 , respectively.

Table 7: Main Results: Effect on Payroll

Quarter	Quarters since passage/ enforcement	Synthetic Control	Interactive Fixed Effects
2014.3	1	0.011	0.010
		(0.018)	(0.013)
2014.4	2	0.008	0.003
		(0.018)	(0.013)
2015.1	3	-0.016	-0.014
		(0.019)	(0.014)
2015.2	$4 / 1$	0.002	0.002
		(0.019)	(0.014)
2015.3	$5 / 2$	-0.013	0.004
		(0.025)	(0.020)
2015.4	$7 / 4$	-0.002	0.011
		(0.034)	(0.019)
2016.1	$8 / 5$	$-0.076^{* * *}$	$-0.054 *$
		(0.034)	(0.029)
2016.2	$9 / 6$	-0.053	-0.040
		(0.032)	(0.031)
2016.3	-0.065	-0.060	
		(0.044)	(0.038)

Notes: $\mathrm{n}=1,890$. Clustered standard errors in parentheses. Estimates for all jobs paying $<\$ 19$ in all industries, where the control region is defined as the state of Washington excluding King County. The number of observations equals the number of PUMAs (45) times the number of quarters included in this analysis (42). However, note that some of these PUMAs are assigned zero weight in the synthetic control results.
$* * *, * *$, and $*$ denote statistically significance using a two-tailed test with $\mathrm{p} \leq 0.01,0.05$, and 0.10 , respectively.

Table 8: Estimates of the Elasticity of Labor Demand with respect to Minimum Wages

Quarter	Quarters after Passage/ Enforcement	Denominator is synthetic control estimated wage effect		Denominator is statutory increase in minimum wage	
		Point Estimate	95\% Conf. Int.	Point Estimate	95\% Conf. Int.
2015.2	4/1	-0.97	$(-3.75,1.81)$	-0.08	(-0.32, 0.15)
2015.3	5/2	-1.80	(-4.49, 0.90)	-0.21	(-0.51, 0.09)
2015.4	6/3	-1.16	(-4.81, 2.50)	-0.13	(-0.53, 0.27)
2016.1	7/4	-3.46	(-5.87, -1.04)	-0.28	$(-0.45,-0.12)$
2016.2	8/5	-2.66	(-4.79, -0.54)	-0.23	$(-0.40,-0.07)$
2016.3	9/6	-2.82	(-5.38, -0.27)	-0.27	$(-0.50,-0.05)$

Notes: Estimates for all jobs paying $<\$ 19$ in all industries, where the control region is defined as the state of Washington excluding King County. $\% \Delta$ Min. Wage is defined as (\$11-\$9.47)/\$9.47 for quarters 1-3 after enforcement, and as (\$13-\$9.47)/\$9.47 for quarters 4-6 after enforcement.

Table 9: Effect of Restricting Analysis to Food Service and Drinking Places

Quarter	Quarters since Passage/ Enforcement	All industries	Restaurant Industry (NAICS 722)			
		Wages under \$19	Wages under \$19		All wage levels	
		Hours	Hours	Jobs	Jobs	Hours
2014.3	1	$\begin{gathered} 0.008 \\ (0.018) \end{gathered}$	$\begin{gathered} -0.014 \\ (0.031) \end{gathered}$	$\begin{gathered} 0.023 \\ (0.031) \end{gathered}$	$\begin{gathered} 0.036 \\ (0.027) \end{gathered}$	$\begin{aligned} & -0.004 \\ & (0.028) \end{aligned}$
2014.4	2	$\begin{gathered} 0.003 \\ (0.018) \end{gathered}$	$\begin{gathered} 0.023 \\ (0.033) \end{gathered}$	$\begin{aligned} & -0.005 \\ & (0.036) \end{aligned}$	$\begin{gathered} 0.032 \\ (0.033) \end{gathered}$	$\begin{gathered} 0.037 \\ (0.031) \end{gathered}$
2015.1	3	$\begin{aligned} & -0.023 \\ & (0.018) \end{aligned}$	$\begin{aligned} & -0.035 \\ & (0.038) \end{aligned}$	$\begin{gathered} 0.008 \\ (0.039) \end{gathered}$	$\begin{gathered} 0.019 \\ (0.037) \end{gathered}$	$\begin{gathered} -0.014 \\ (0.036) \end{gathered}$
2015.2	4/1	$\begin{gathered} -0.013 \\ (0.019) \end{gathered}$	$\begin{aligned} & -0.065^{*} \\ & (0.038) \end{aligned}$	$\begin{aligned} & -0.055 \\ & (0.035) \end{aligned}$	$\begin{aligned} & -0.010 \\ & (0.033) \end{aligned}$	$\begin{gathered} -0.041 \\ (0.036) \end{gathered}$
2015.3	5/2	$\begin{gathered} -0.034 \\ (0.025) \end{gathered}$	$\begin{gathered} -0.071 \\ (0.049) \end{gathered}$	$\begin{gathered} -0.025 \\ (0.046) \end{gathered}$	$\begin{gathered} 0.013 \\ (0.043) \end{gathered}$	$\begin{aligned} & -0.042 \\ & (0.046) \end{aligned}$
2015.4	6/3	$\begin{gathered} -0.021 \\ (0.033) \end{gathered}$	$\begin{gathered} -0.074 \\ (0.050) \end{gathered}$	$\begin{gathered} -0.087 * * \\ (0.043) \end{gathered}$	$\begin{gathered} -0.013 \\ (0.046) \end{gathered}$	$\begin{gathered} -0.018 \\ (0.052) \end{gathered}$
2016.1	7/4	$\begin{gathered} -0.106 * * * \\ (0.031) \end{gathered}$	$\begin{gathered} -0.120^{* * *} \\ (0.047) \end{gathered}$	$\begin{gathered} -0.117 * * * \\ (0.05) \end{gathered}$	$\begin{aligned} & -0.010 \\ & (0.056) \end{aligned}$	$\begin{gathered} -0.046 \\ (0.053) \end{gathered}$
2016.2	8/5	$\begin{gathered} -0.087 * * * \\ (0.031) \end{gathered}$	$\begin{gathered} -0.110^{*} * \\ (0.055) \end{gathered}$	$\begin{gathered} -0.133 * * * \\ (0.053) \end{gathered}$	$\begin{gathered} 0.000 \\ (0.063) \end{gathered}$	$\begin{gathered} -0.031 \\ (0.064) \end{gathered}$
2016.3	9/6	$\begin{gathered} -0.102 * * * \\ (0.042) \\ \hline \end{gathered}$	$\begin{gathered} -0.099 \\ (0.062) \end{gathered}$	$\begin{gathered} -0.090 \\ (0.056) \\ \hline \end{gathered}$	$\begin{gathered} 0.010 \\ (0.069) \end{gathered}$	$\begin{gathered} -0.022 \\ (0.069) \\ \hline \end{gathered}$

Notes: $\mathrm{n}=1,890$. Clustered standard errors in parentheses. The control region is defined as the state of Washington excluding King County. Estimates using Synthetic Control reported. NAICS $722=$ Food services and drinking places. The number of observations equals the number of PUMAs (45) times the number of quarters included in this analysis (42). However, note that some of these PUMAs are assigned zero weight in the synthetic control results.
${ }^{* * *}, * *$, and $*$ denote statistically significance using a two-tailed test with $\mathrm{p} \leq 0.01,0.05$, and 0.10 , respectively.

Figure 1: Finding a Reasonable Threshold - Effect on Quarterly Hours Worked (000s) Relative to Baseline Quarter (2014.2) for Those Paid Within Each Wage Bin

Notes: Point estimates (i.e., bars) and 50% confidence intervals centered around zero are shown.

Figure 2: Geography of Seattle and King, Snohomish, Kitsap, and Pierce Counties

Panel A: Seattle's Water Boundaries

Source: https://www.google.com/maps/

Panel B: Difference-in-Differences Regions

Panel C: Population Density by Census Block, 2010

Source: http://www.ofm.wa.gov/pop/census2010/pl/maps/map05.asp

Figure 3: Geography of Washington's PUMAs

Figure 4: Sensitivity of the Estimated Effects on Percentage Change in Hours Worked Using Different Thresholds

Notes: Point estimates using the synthetic control method are shown by the lines, while 95% confidence intervals centered around these estimates are shown by the shaded regions.

Figure 5: Sensitivity of the Estimated Effects on Total Hours Worked Using Different Thresholds

Notes: Point estimates using the synthetic control method are shown by the lines, while 95% confidence intervals centered around these estimates are shown by the shaded regions.

Figure 6: Sensitivity of the Estimated Elasticity of Labor Demand With Respect to Wages Using Different Thresholds

Notes: Point estimates using the synthetic control method are shown by the lines, while 95% confidence intervals centered around these estimates are shown by the shaded regions.

Appendix Table 1: Elasticity Estimates from Selected Literature

Paper	Level of Government	Industry and Outcome	Years	Method	Elasticity
Totty, 2015	State	Restaurant Employment All Jobs	$\begin{aligned} & 1990- \\ & 2010 \end{aligned}$	Interactive FE Common Correlated Effects-Pooled Estimator Common Correlated Effects-Mean Group Estimator	$\begin{aligned} & -0.04 \\ & -0.01 \\ & -0.01 \end{aligned}$
NSW, 2014	State	Restaurant Employment All Jobs	$\begin{aligned} & 2000- \\ & 2011 \end{aligned}$	DnD (State and Time FE) Synthetic Matching Estimator	$\begin{aligned} & -0.12 \\ & -0.06 \end{aligned}$
DLR, 2010	State	Restaurant Employment All Jobs	$\begin{aligned} & 1990- \\ & 2006 \end{aligned}$	DnD (Census division-by-period fixed effects and County FE) + State linear trend Contiguous Border County Pair Sample (County and Quarter FE) Contiguous Border County Pair Sample (County-pair \times period FE)	$\begin{gathered} -0.02 \\ -0.04 \\ -0.11 \\ 0.02 \end{gathered}$
DLR, 2016	State	Restaurant Employment All Jobs	$\begin{aligned} & 2000- \\ & 2011 \end{aligned}$	DnD (County and Quarter FE) DnD (Contiguous County-Pair Quarter FE + County FE)	$\begin{aligned} & -0.07 \\ & -0.02 \end{aligned}$
			$\begin{aligned} & 1990- \\ & 2005 \end{aligned}$	DnD (County and Quarter Fixed Effects) + Linear County Trends + Quadratic County Trends + Cubic County Trends + Quartic County Trends + Fifth-order County Trends	$\begin{aligned} & -0.10 \\ & -0.01 \\ & -0.05 \\ & -0.04 \\ & -0.06 \\ & -0.05 \end{aligned}$
ABC, 2014	State	Restaurant Employment All Jobs	$\begin{aligned} & 1990- \\ & 2012 \end{aligned}$	DnD (County and Quarter FE) + Linear County Trends + Quadratic County Trends + Cubic County Trends + Quartic County Trends + Fifth-order County Trends	$\begin{gathered} 0.00 \\ -0.04 \\ -0.02 \\ -0.04 \\ -0.02 \\ -0.01 \end{gathered}$
ALDRZ, 2016	State	Restaurant Employment All Jobs	$\begin{aligned} & 1990- \\ & 2014 \end{aligned}$	DnD relative to All Counties (County and Quarter FE) DnD Contiguous Border County Pair with (County and Quarter FE) DnD Contiguous Border County Pair with (County-pair \times Quarter FE)	$\begin{aligned} & -0.24 \\ & -0.18 \\ & 0.02 \end{aligned}$
				Unweighted Average Unweighted Standard Deviation	$\begin{array}{r} -0.05 \\ 0.06 \\ \hline \end{array}$

Appendix Table 2: PUMAs with positive weights chosen by Synthetic Control Estimator.

	$\begin{aligned} & \text { PUMA } \\ & \text { ID } \end{aligned}$	PUMA Name	Weight in Synthetic Control, \%
A. Average Wages			
1	10503	Spokane County (East Central)--Greater Spokane Valley City PUMA	25.39
2	11702	Snohomish County (West Central)--Mukilteo \& Everett (Southwest) Cities PUMA	19.29
3	11701	Snohomish County (Southwest)--Edmonds, Lynnwood \& Mountlake Terrace Cities PUMA	15.22
4	11402	Thurston County (Outer) PUMA	10.08
5	10300	Chelan \& Douglas Counties PUMA	9.86
6	10702	Benton County (East Central)--Kennewick \& Richland (South) Cities PUMA	9.34
7	11502	Pierce County (Northwest)--Peninsula Region \& Tacoma City (West) PUMA	5.30
8	11801	Kitsap County (North)--Bainbridge Island City \& Silverdale PUMA	4.82
9	11505	Pierce County (North Central)--Tacoma (Port) \& Bonney Lake (Northwest) Cities PUMA	0.69
B. Number of Jobs			
1	11401	Thurston County (Central)--Olympia, Lacey \& Tumwater Cities PUMA	21.95
2	11706	Snohomish County (North)--Marysville \& Arlington Cities PUMA	21.92
3	11101	Clark County (Southwest)--Vancouver City (West \& Central) PUMA	13.35
4	11701	Snohomish County (Southwest)--Edmonds, Lynnwood \& Mountlake Terrace Cities PUMA	11.81
5	11702	Snohomish County (West Central)--Mukilteo \& Everett (Southwest) Cities PUMA	9.78
6	10100	Whatcom County--Bellingham City PUMA	6.45
7	10503	Spokane County (East Central)--Greater Spokane Valley City PUMA	6.26
8	11102	Clark County (West Central)--Salmon Creek \& Hazel Dell PUMA	4.65
9	11704	Snohomish County (South Central)--Bothell (North), Mill Creek Cities \& Silver Firs PUMA	2.31
10	11402	Thurston County (Outer) PUMA	0.91
11	10701	Benton \& Franklin Counties--Pasco, Richland (North) \& West Richland Cities PUMA	0.61
C. Quarterly Hours Worked			
1	11706	Snohomish County (North)--Marysville \& Arlington Cities PUMA	23.55
2	11401	Thurston County (Central)--Olympia, Lacey \& Tumwater Cities PUMA	23.10
3	11402	Thurston County (Outer) PUMA	14.86
4	11701	Snohomish County (Southwest)--Edmonds, Lynnwood \& Mountlake Terrace Cities PUMA	10.75
5	11101	Clark County (Southwest)--Vancouver City (West \& Central) PUMA	9.66
6	11702	Snohomish County (West Central)--Mukilteo \& Everett (Southwest) Cities PUMA	7.00
7	11102	Clark County (West Central)--Salmon Creek \& Hazel Dell PUMA	6.08
8	10503	Spokane County (East Central)--Greater Spokane Valley City PUMA	3.23
9	10800	Grant \& Kittitas Counties PUMA	1.78
D. Quarterly Payroll			
1	11401	Thurston County (Central)--Olympia, Lacey \& Tumwater Cities PUMA	20.46
2	11706	Snohomish County (North)--Marysville \& Arlington Cities PUMA	16.05
3	11101	Clark County (Southwest)--Vancouver City (West \& Central) PUMA	12.95
4	11402	Thurston County (Outer) PUMA	12.94
5	11102	Clark County (West Central)--Salmon Creek \& Hazel Dell PUMA	12.39
6	11702	Snohomish County (West Central)--Mukilteo \& Everett (Southwest) Cities PUMA	8.22
7	11701	Snohomish County (Southwest)--Edmonds, Lynnwood \& Mountlake Terrace Cities PUMA	7.32
8	10702	Benton County (East Central)--Kennewick \& Richland (South) Cities PUMA	3.66
9	10503	Spokane County (East Central)--Greater Spokane Valley City PUMA	3.21
10	10800	Grant \& Kittitas Counties PUMA	2.81

Appendx Figure 1: Estimated impact of the minimum wage on the average wages in jobs paying $<\$ 19$ per hour, all industries.

Appendix Figure 2: Estimated impact of the minimum wage on the number of jobs paying <\$19 per hour, all industries.

Appendix Figure 3: Estimated impact of the minimum wage on the quarterly hours worked in jobs paying $<\$ 19$ per hour, all industries.

Appendix Figure 4: Estimated impact of the minimum wage on the quarterly payroll to jobs paying $<\$ 19$ per hour, all industries.

[^0]: ${ }^{1}$ Because we calculate elasticity by taking the ratio of the estimated effect on employment to estimated effect on hourly wages, these estimates are imprecise. For instance, the 95% confidence intervals for the elasticities associated with a $\$ 13$ minimum wage range from -2.8 to 0.3 .

[^1]: ${ }^{2}$ One notable exception is the work of Belman and Wolfson (2015). They note: "Focusing on low-wage/low-income groups offers the advantage of providing more focused estimates of the effect of changes in minimum wage policies; employment and wage effects are less likely to be difficult to detect due to the inclusion of individuals unlikely to be affected by the minimum wage. Use of proxies for low wage/low income such as age, gender, and education are a step in this direction, but still potentially dilute the impact by the inclusion of unaffected individuals (p. 608)."

[^2]: ${ }^{3}$ This approach bears a strong resemblance to Cengiz et al., (2017) who use pooled Current Population Survey data to study the impact of state-level minimum wage increases on employment at wages just above and below the newly imposed minimum between 1979 and 2016.

[^3]: ${ }^{4}$ In this study we do not replicate region-specific time trends due to the limited time-frame of our treatment group. However, this specification has become popular; see Dube, Lester and Reich $(2010,2016)$ and Addison, Blackburn and Cotti (2014) for use of linear and polynomial time trends in minimum wage estimation strategies.
 ${ }^{5}$ Covariates included log of overall private sector employment, log population, private-sector employment-topopulation ratio, log of average private sector earnings, overall turnover rate and teen share of population.

[^4]: ${ }^{6}$ As of 2016, employers with fewer than 501 employees worldwide who provide health benefits or pay tips could pay a minimum wage of $\$ 10.50$ if they contribute at least $\$ 1.50$ towards tips and health benefits. Our data do not allow us to observe if a worker gets health benefits, but we do observe total compensation, which includes tips. We come back to this issue in greater detail when we discuss the data.
 ${ }^{7}$ Most prior research has, by necessity, focused on increases at the federal (Card 1992, Katz and Krueger 1992, Belman and Wolfson 2010) or state (Dube, Lester, Reich 2010; 2016, Card and Krueger 1994, Neumark and Wascher 1995, Meer and West 2016) level. This ordinance provides an opportunity to study the minimum wage on a smaller geographic area with an integrated labor market that could allow businesses and workers flexibility to relocate. Prior research on local minimum wage changes (Dube, Naidu, Reich 2007, Potter 2006, Schmitt and Rosnick 2011) have found small or no employment effects of the local wage policies, results consistent with the bulk of the minimum wage literature.

[^5]: ${ }^{8}$ During the years we study (2005 to 2016), the State of Washington had a state-specific minimum wage that was indexed to CPI-W (growing at an average annual rate of 2%) and was, on average, 30% higher than the federal Minimum Wage. As a result, none of the increases in federal minimum wage over this time period have been binding in Washington.
 ${ }^{9}$ Most papers that analyze employment responses to minimum wage hikes in the US rely on data from the Quarterly Census of Employment and Wages, which in turn relies on information from the same data source as we do payroll data on jobs covered by the UI program. As a result, our estimates will be comparable to many results in the literature.
 ${ }^{10}$ The Employment Security Department collects this information because eligibility for unemployment benefits in Washington is determined in part by an hours worked test. Comparison of the distribution of hours worked in the ESD data with the distribution of self-reported hours worked in the past week among Washington respondents to the CPS reveals some points of departure. In particular, self-reported data show more pronounced "spikes" at even numbers such as 40 hours per week. In general, given the statutory reporting requirement driven by benefits determination provisions, ESD considers the hours data reliable.
 ${ }^{11}$ The average wage may differ from the actual wage rate for workers who earn overtime pay, or have other forms of nonlinear compensation including commissions or tips. Workers may occasionally be paid in one quarter for work performed in another. In analysis below, we exclude observations with calculated wages below $\$ 9$ or above $\$ 500$ in 2015 dollars. We also exclude observations reporting under 10 or over 1,000 hours worked in a calendar quarter. These restrictions exclude 6.7% of all job/quarter observations.

[^6]: ${ }^{12}$ The average hourly wage construct used here is not directly comparable to, say, the self-reported hourly wage in the CPS - in which respondents are instructed to exclude overtime, commissions, or tips. Results obtained through analysis of this average hourly wage measure may differ from those gleaned from self-reported wage studies to the extent that employers alter the use of overtime, tips, or commissions in response to the wage increase.
 ${ }^{13}$ To determine the exact location of each business, we geocode mailing addresses to exact latitude and longitude coordinates. We then use these data to determine if a business is located within Seattle, and to place businesses into PUMAs within Washington State.

[^7]: ${ }^{14}$ The Seattle Minimum Wage Study surveyed over 500 Seattle business owners immediately before and a year after the Ordinance went into effect. In April 2015, multi-site employers were more likely to report intentions to reduce hours of their minimum wage employees (34% versus 24%) and more likely to report intentions to reduce employment (33% versus 26%). A one-year follow-up survey revealed that multi-location employers were more likely to report an actual reduction in full-time and part-time employees, with over half of multi-site respondents reporting a reduction in full-time employment (52%, against 45% for single-site firms).
 ${ }^{15}$ Specifically, we examine employment and wages in the 3-digit NAICS code 722 "Food and Drinking Places".
 ${ }^{16}$ This definition is used by the Quarterly Workforce Indicators, based on the Longitudinal Employer Household Data (LEHD), and produces the total number of jobs comparable to the employment counts in the Quarterly Census of Employment and Wages.

[^8]: ${ }^{17}$ Longitudinal analysis of ESD data reveals that more than one-third of low-wage employees observed in one calendar quarter are no longer employed anywhere in Washington state six quarters later.
 ${ }^{18}$ This exercise strongly resembles the "bunching" analysis presented in Cengiz et al. (2017).

[^9]: ${ }^{19}$ This pattern exemplifies the "bunching" referenced in Cengiz et al. (2017), and can be interpreted as evidence that significant numbers of lower-paid workers had their wages increased to comply with the law.
 ${ }^{20}$ The 50% confidence level is employed here as the goal is to assess the hypothesis that the true effect is zero, rather than the traditional alternate hypothesis that the true effect is not zero.
 ${ }^{21}$ Again referencing Cengiz et al. (2017), and foreshadowing results to be presented, this pattern suggests that the second minimum wage increase led to a proportionately stronger reduction in employment opportunities.

[^10]: ${ }^{22}$ In the years before the minimum wage increase, a median Seattle worker earning the minimum wage worked about 1,040 hours per year (Klawitter, Long, and Plotnick, 2014). Using this figure, a family of two adults and one child with one adult working 1,040 hours at a wage of $\$ 19$ per hour, would have a family income of $\$ 19,760$, which is right above the official poverty threshold for such a family.

[^11]: ${ }^{23}$ Our companion paper (Jardim et al., 2017) examines this possibility of spillover and mechanisms for estimating spillovers in greater detail.

[^12]: ${ }^{24}$ We implement synthetic control estimator using the R programs provided by Gobillon and Magnac (2016).
 ${ }^{25}$ The coefficients, β_{q}, can be identified as the number of factors is smaller than the number of periods in the data minus the number of coefficients to be estimated minus one. In our case, we cannot have more than 32 factors in the model (43 periods -9 coefficients -1). We use a global criterion developed by Bai and $\mathrm{Ng}(2002)$ to pick the optimal number of factors, and the optimal number of factors is always smaller than the maximum number of factors allowed by the model.
 ${ }^{26}$ Twenty-seven of Washington's thirty-nine counties have fewer than 100,000 inhabitants, implying that they must share a PUMA with territory in at least one other county.

[^13]: ${ }^{27}$ We choose the optimal number of factors using criterion IC2 suggested in Bai and Ng (2002), as it was shown to have good performance in small samples.
 ${ }^{28}$ Note that Seattle spans 5 PUMAs, thus our placebo treatment region replicates Seattle's size.
 ${ }^{29}$ We have also estimated the standard errors based on "placebo in time" approach. It is implemented by randomly picking a period when the Ordinance is implemented using the data before the actual Ordinance went in effect, and estimating a placebo effect for this period. We then take the standard deviation of these estimated placebo effects as an estimate of the standard error. Standard errors using "placebo in space" approach prove to be more conservative (i.e., larger) than the standard errors using "placebo in time" approach, so we report "placebo in space" standard errors in our baseline estimates.

[^14]: ${ }^{30}$ Note that we are using the second quarter of 2016 to avoid issues with seasonality. Seattle's low-wage labor force tends to peak in the third quarter of each year during the summertime tourist season, and exhibits a trough in the winter months.
 ${ }^{31}$ Low-wage employment could also reflect overestimation of hours by the employer, underreporting of tips, hours worked for wages paid in a different calendar quarter, or a subminimum wage set equal to 85% of the minimum for workers under 16 years old.

[^15]: ${ }^{32}$ Quarterly Census of Employment and Wage (QCEW) data for King County indicate that between 2014 and the third quarter of 2016 , the county added 94,000 jobs. The majority of these job gains can be attributed to four industries: non-store retail, information, professional/technical services, and construction. The food service industry added more than 10,000 jobs countywide over this same time period.
 ${ }^{33}$ The average hourly wage statistic at all wage levels includes a large number of salaried jobs in which hours may be imputed at 40 per week rather than tracked.

[^16]: ${ }^{34}$ Estimated wage impacts are larger when the low-wage threshold is lowered from $\$ 19$. This is consistent with the minimum wage ordinance having sizable effects on the lowest-paid workers and smaller cascading impacts on workers with initial wages closer to $\$ 19$.

[^17]: ${ }^{35}$ Data from the Bureau of Labor Statistics' Current Employment Statistics indicate that seasonally adjusted average hourly earnings for all employees increased about 5.5\% nationwide from June 2014 to September 2016.
 ${ }^{36}$ Belman and Wolfson (2014) point to elasticities of wages paid to statutory minimum wage increases in the range of 0.2 to 0.5 . An effect of 7.9% on a minimum wage increase of 37% would imply an elasticity just over 0.2 . We note, moreover, that the full $\$ 13$ minimum did not apply to small business or businesses providing health benefits.

[^18]: ${ }^{37}$ If we base this calculation on just the synthetic control estimates, we would conclude that the Ordinance led to 5,133 fewer jobs paying less than $\$ 19$ per hour.
 ${ }^{38}$ We cannot ascertain whether the effect on single-location firms should extrapolate to multi-location firms. As noted above, survey evidence suggests that multi-location firms were more likely to have reported reducing staffing in the wake of minimum wage increases.

[^19]: ${ }^{39}$ Simple calculations based on preceding results suggest an effect of comparable magnitude. Wage results suggest a 3% boost to earnings, which on a base of about $\$ 530$ million paid in the baseline quarter amounts to a $\$ 16$ million increase in payroll. Employment declines of 3.5 million hours per quarter, valued at $\$ 9.47 /$ hour, equate to a loss of $\$ 132$ million - and a net loss of $\$ 116$ million - on an annual basis.
 ${ }^{40}$ See Clemens (2015), Clemens and Wither (2016), and Clemens and Strain (2017) for evidence of the effects of the Great Recession on impacts of minimum wage increases.
 ${ }^{41}$ One might think that the decline in hours worked was due to a voluntary cut in hours, and thus interpret our findings as showing a labor supply elasticity in the region where the labor supply curve is "backwards bending." While there may be some voluntary reductions in hours by some workers, it would be unreasonable to expect such

[^20]: workers to reduce their hours so far that their total earnings declined. Given that we find that hours fall more than wages rise, the results are more likely to reflect a decline in labor demand.
 ${ }^{42}$ Standard errors for the estimates elasticities have been computed using the delta method and take into account the correlation between estimated effect of the minimum wage on employment and wages.
 ${ }^{43}$ While it may be argued that our wage effects combine a large effect on the lowest-paid workers with near-zero impacts on those paid above $\$ 13$ at baseline, this only implies an overestimated elasticity for the least-paid workers if the employment effects are somehow concentrated among higher-paid workers. Our evidence does not support this conjecture.

[^21]: ${ }^{44}$ Estimates on the high end are plausible because theory suggests that labor demand elasticity would generally be larger for a small, open economy such as Seattle than for a state or the nation.

[^22]: ${ }^{45}$ The finding of significant employment losses, particularly after the second minimum wage increase in 2016, may seem incongruent with unemployment statistics for the City of Seattle, which suggest very low numbers of unemployed individuals seeking work. The Bureau of Labor Statistics' Local Area Unemployment Statistics program estimates city-level unemployment statistics on the basis of unemployment insurance claims, data from other government surveys such as the Current Population Survey, and statistical modeling. The unemployment statistics pertain to the residents of a city, not individuals employed in a city (indeed, unemployed workers are employed in no city). Our analysis pertains instead to individuals employed in Seattle.

 In Washington State, workers are eligible for UI benefits only after they have accumulated 680 hours of work. In low-wage, high-turnover businesses, the proportion of separated workers who reach this threshold may be low. Further, longitudinal analysis of ESD data suggest that reduced employment largely impacts new entrants to the labor force, rather than experienced workers. New entrants are not eligible for UI benefits and thus cannot generate claims. These unemployed new entrants might be captured in the CPS, but with a relatively small sample size these estimates are subject to significant noise and are smoothed considerably.

[^23]: ${ }^{46}$ If we ignore our survey evidence and suppose that multi-site firms' wage impact was the same as reported here but their hours impact was zero, the elasticity would still be high compared to earlier work - around -1.9 (as single-site businesses employ 62% of the workforce).

[^24]: Note: Data derived from administrative employment records obtained from the Washington Employment Security Department. Multi-site employers excluded.

