The Washington Guard
Condensed CSZ Threat Brief

Brief to
Visiting Dignitaries

Created by:
LTC Clayton Braun, Deputy J3 & J35, WA NG (Domestic Operations)

Brief is current as of: 29APR2016
The Ring of Fire accounts for 90% of all earthquakes, and 81% of the world’s largest earthquakes.

Subduction zones are shown in red.

The CSZ fault line is part of the Ring of Fire.

The CSZ is the only significant fault line on the Ring of Fire without a major quake in the last 50 years (see blue stars).
Cascadia Subduction Zone

The CSZ runs 800 miles from Southern British Columbia to Northern California, and lies 50 to 80 miles off the Pacific Coast.

The heavy Juan de Fuca plate is sliding under the lighter North American plate.

A magnitude 9.0 CSZ earthquake has occurred every 300 to 500 years (USGS – 400-600 years). The last CSZ earthquake occurred in the year 1700 (January 26).
Ground Shaking Effects

Mercalli Index: Ground shaking will depend on the actual fault rupture method and cannot be accurately forecast. It is anticipated that the fault will rupture along its entire 700 mile length resulting in a magnitude 9.0 earthquake that will last 3-5 minutes. The intensity of the shaking will decrease with distance from the fault. Even so, Seattle is expected to experience a 7.0 magnitude or higher earthquake with 5 minutes of shaking.

Liquefaction: The cause of some of the most dramatic damage resulting from an earthquake, liquefaction areas can be accurately forecast based on soil types and water content. Some of the most susceptible areas are areas that have a high commercial potentiality, i.e. ports, bridges, commercial areas.

Landslides: Landslides will occur up to hundreds of miles from the fault due to the intensity of the shaking. Landslide potential significantly increases with water content. If the CSZ rupture occurs during the rainy season, landslides will be most prolific.

Tsunami Inundation: Tsunamis are historically the biggest killer associated with earthquakes. The residents most affected are along Pacific Coastal areas. The numbers in jeopardy will increase sharply in summer months. Current estimates place as many as 50,000 residents in the hazard zone in February.
1st Order Effects - Shaking

- Landslides, bridge damage, buildings unsafe
1st Order Effects - Liquefaction

Structure collapse, damage to utilities, silting
Tsunami Inundation Areas

Table 1. Populations of Cities in Tsunami Areas

<table>
<thead>
<tr>
<th>NAME</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aberdeen</td>
<td>15,461</td>
</tr>
<tr>
<td>Anacortes</td>
<td>14,557</td>
</tr>
<tr>
<td>Bellingham</td>
<td>67,171</td>
</tr>
<tr>
<td>Cosmopolis</td>
<td>1,595</td>
</tr>
<tr>
<td>Ferndale</td>
<td>6,758</td>
</tr>
<tr>
<td>Hoquiam</td>
<td>9,067</td>
</tr>
<tr>
<td>Ilwaco</td>
<td>950</td>
</tr>
<tr>
<td>La Conner</td>
<td>761</td>
</tr>
<tr>
<td>Long Beach</td>
<td>1,283</td>
</tr>
<tr>
<td>Oak Harbor</td>
<td>19,795</td>
</tr>
<tr>
<td>Ocean Shores</td>
<td>3,636</td>
</tr>
<tr>
<td>Port Angeles</td>
<td>18,397</td>
</tr>
<tr>
<td>Port Townsend</td>
<td>8,334</td>
</tr>
<tr>
<td>Raymond</td>
<td>2,975</td>
</tr>
<tr>
<td>South Bend</td>
<td>1,607</td>
</tr>
<tr>
<td>Westport</td>
<td>2,127</td>
</tr>
</tbody>
</table>

Note: Inundation does not occur in entire city in most cases.

Legend
- Tsunami Inundation Zone
- County Boundary
- City

Created by FEMA RX July 2012
1st Order Effects - Tsunami

- High mortality rates, communities devastated
Legend

• Complete = Totally Destroyed.
• Severe = Severely Damaged – Not Useable
• Moderate = Moderately Damaged – 50% Capacity
• Slight = Slightly Damaged – Useable
• None = Not Damaged

Interpretation of HITRAC symbols associated with CSZ effects to Critical Infrastructure and Key Resources (CIKR), as interpreted by WA NG Joint Planning Team.

The HITRAC study is designed and intended to be REPRESENTATIVE not PREDICTIVE.
Emergency Ops Centers

These are general locations and forecast status of the known City, County and State EOCs.

There are 48 EOCs.

30% are completely destroyed, and 7% suffer severe damage and are unusable.

Result is 37% must devolve.

7% suffer moderate damage and may be partially usable, may devolve.

50% suffer slight damage, 6% suffer no damage.

56% are able to continue operations with minimal interruption.

State EOC sustains slight damage.
Hospitals

These are general locations and forecast status of the known Hospitals.

There are 112 Hospitals in the affected area.

36% suffer severe damage, are unusable, and will likely be completely offline.

17% suffer moderate damage and are only assumed capable of 50% normal capacity.

Total reduction is assumed to be 45% of total hospital capacity.

47% suffer slight damage and are able to continue to operate at capacity.

The facilities nearer to the epicenter suffer most significant damage resulting in **virtually no Hospital capacity west of the I5 corridor.**

These numbers discuss **STRUCTURAL** capacity, not patient capacity, which is further reduced due to lack of electricity, potable water, sanitation, etc.
There are approximately 2,156 senior living facilities in the affected area.

Significant numbers (approaching 100%) of facilities West of the I-5 corridor suffer extensive damage, and are likely unusable.

The vast majority of facilities along the I-5 corridor suffer complete to severe damage and are likely unusable, or are significantly degraded.

The facilities nearest the epicenter suffer most significant damage resulting in virtually no senior living facility capacity West of the I-5 corridor.
Fire Stations

These are general locations and forecast status of the known Fire Stations.

There are 971 Fire Stations in the affected area.

30% suffer severe damage, are unusable, and are planned to be completely offline.

6% suffer moderate damage and are only assumed capable of 50% normal capacity.

Total reduction is assumed to be 33% of Fire Response capability.

64% suffer slight or no damage and are able to continue to operate at capacity.

The facilities nearer to the epicenter suffer most significant damage resulting in **significantly reduced capability west of Shelton.**
These are general locations and forecast status of the known Police Stations.

There are 178 Police Stations in the affected area.

41% are completely destroyed, 7% suffer severe damage, are unusable, and are planned to be completely offline.

5% suffer moderate damage and are only assumed capable of 50% normal capacity.

Total reduction is assumed to be 51% of Police Response capability.

48% suffer slight or no damage and are able to continue to operate at capacity.

The facilities nearer to the epicenter suffer most significant damage resulting in **significant degradation of Law Enforcement capability west of Shelton.**
Transportation - Sea, Air, Rail

Most facilities west of the I-5 corridor suffer complete to severe damage.

Most facilities along the I-5 corridor suffer severe to moderate damage.

Most facilities east of the I-5 corridor suffer slight to no damage.

Many of these facilities are located in liquefaction zones.
There is a vast network of County, State, and Federally maintained highways in the affected area. Ground transportation is the primary method of movement for most commodities.

The highway system will suffer the most damage in the vicinity of the coast with both earthquake and tsunami damage. This will significantly impact any lifesaving or recovery operations, and will drive route clearance and roadway repair to a very high priority across the region.

In the I-5 corridor roads in areas of high liquefaction susceptibility are likely to prove impassable.

In the initial stages of the CSZ response the only method of reaching coastal communities will be by air. There are no surviving ground routes to the coastal region.
Virtually every highway crosses numerous bridges. Route identification that does not cross a bridge will not be possible when attempting to reach any isolated community. Bridges in the affected area are predominantly old and were built prior to the establishment of significant seismic building requirements.

The assessment of bridges as early in the IAA process as possible will be key to the development of routes into isolated communities. Identifying bridges that need the least repairs will speed up recovery operations.

The lack of suitable bridges will be a factor in the determination of the recovery efforts and timelines.
This slide provides an overview of the utilities networks across the affected area. In general the amount of damage decreases from West to East. Major networks will be out-of-service until significant repairs can be made.

There are approximately 440 major electrical facilities and a vast network of electrical power lines, both above and underground throughout the region.

There are 68 major Natural Gas facilities and 12 counties contain 22 major sections of NG pipe network.

There are 54 petroleum processing facilities, and 9 counties contain 16 major sections of petroleum pipeline.

There are 35 known Potable Water Facilities.
Planning Factors (FEMA)

<table>
<thead>
<tr>
<th></th>
<th>Washington Total</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land Area (Sq. Miles)</td>
<td>71,303</td>
<td></td>
</tr>
<tr>
<td>Miles of Pacific Coastline</td>
<td>157</td>
<td>Does not include Strait of Juan de Fuca or shores of Puget Sound.</td>
</tr>
<tr>
<td>Population</td>
<td>6,894,121</td>
<td></td>
</tr>
<tr>
<td>Population exposed to tsunami</td>
<td>50,190</td>
<td></td>
</tr>
<tr>
<td>Residential buildings damaged (Slight to complete damage)</td>
<td>507,701</td>
<td></td>
</tr>
<tr>
<td>Short term human sheltering requirements</td>
<td>410,127</td>
<td></td>
</tr>
<tr>
<td>Short term pet sheltering requirements</td>
<td>254,357</td>
<td></td>
</tr>
<tr>
<td>Mass feeding and hydration requirements (People)</td>
<td>1,274,327</td>
<td></td>
</tr>
<tr>
<td>Mass feeding and hydration requirements (Pets)</td>
<td>777,340</td>
<td></td>
</tr>
<tr>
<td>Deaths</td>
<td>8,440</td>
<td>Projection accounts for initial earthquake and tsunami, does not account for exposure, disease, dehydration, starvation, or follow on tsunami’s and aftershocks.</td>
</tr>
<tr>
<td>Injuries</td>
<td>12,114</td>
<td></td>
</tr>
<tr>
<td>Hospital patient evacuation requirements</td>
<td>15,501</td>
<td>Evacuation requirements based on projected numbers of facilities determined to be unusable. Does not account for evacuation to create room for newly injured.</td>
</tr>
<tr>
<td>Nursing home patient evacuation requirements</td>
<td>65,249</td>
<td></td>
</tr>
<tr>
<td>Building debris (Cubic Yards)</td>
<td>13,174,243</td>
<td></td>
</tr>
</tbody>
</table>
Historical Comparisons

<table>
<thead>
<tr>
<th>Date</th>
<th>Location</th>
<th>Significant Statistics</th>
<th>Aftershocks</th>
<th>Tsunami</th>
</tr>
</thead>
<tbody>
<tr>
<td>1700</td>
<td>Cascadia</td>
<td>M8.7–9.2</td>
<td>Unknown</td>
<td>Height unknown Reached Japan</td>
</tr>
</tbody>
</table>
| 1960 | Chile | M9.5
2,000 deaths
3,000 injured | 5 of M7.0+ | 80 feet |
| | | | | Affected Hawaii, Japan, Philippines, Australia, New Zealand and the United States |
| 1964 | Alaska | M9.2
12 deaths from quake
Shaking for 4–6 minutes
119 deaths from tsunami | 11 of M6.0+ in first day
9 of M6.0+ in 3 weeks
10,000+ in a year | 30–50 feet |
| | | | | Affected the U.S. West Coast |
| 2004 | Sumatra | M9.0
230,000 deaths in 14 countries
Shaking for 4–10 minutes | 1 of M7.1 within 3 hours
13 of M6.0+ | 98 feet |
| 2010 | Chile | M8.8
525 deaths
Shaking for 3 minutes | Several M6.0–7.0
Lasted over a year | 8.5 feet |
| 2011 | Japan | M9.0
16,000 deaths
Shaking for 3–5 minutes | M7.9 & 7.7 same day
Many M4.5–6.0+ | 130 feet |
| | | | | Inundation 6 miles inland |

Questions / Discussion

Be prepared for anything.

Thank you for your time!