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ABSTRACT
Speculative execution is a crucial cornerstone to the performance
of modern processors. During speculative execution, the processor
may perform operations the program usually would not perform.
While the architectural effects and results of such operations are
discarded if the speculative execution is aborted, microarchitectural
side effects may remain. The recently published Spectre attacks
exploit these side effects to readmemory contents of other programs.
However, Spectre attacks require some form of local code execution
on the target system. Hence, systems where an attacker cannot run
any code at all were, until now, thought to be safe.

In this paper, we present NetSpectre, a generic remote Spectre
variant 1 attack. For this purpose, we demonstrate the first access-
driven remote Evict+Reload cache attack over network, leaking
15 bits per hour. Beyond retrofitting existing attacks to a network
scenario, we also demonstrate the first Spectre attack which does
not use a cache covert channel. Instead, we present a novel high-
performance AVX-based covert channel that we use in our cache-
free Spectre attack. We show that in particular remote Spectre
attacks perform significantly better with the AVX-based covert
channel, leaking 60 bits per hour from the target system.We verified
that our NetSpectre attacks work in local-area networks as well as
between virtual machines in the Google cloud.

NetSpectre marks a paradigm shift from local attacks, to remote
attacks, exposing a much wider range and larger number of devices
to Spectre attacks. Spectre attacks now must also be considered
on devices which do not run any potentially attacker-controlled
code at all. We show that especially in this remote scenario, attacks
based on weaker gadgets which do not leak actual data, are still very
powerful to break address-space layout randomization remotely.
Several of the Spectre gadgets we discuss are more versatile than
anticipated. In particular, value-thresholding is a technique we
devise, which leaks a secret value without the typical bit selection
mechanisms. We outline challenges for future research on Spectre
attacks and Spectre mitigations.
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1 INTRODUCTION
Modern computers are highly optimized for performance. However,
these optimizations typically have side effects. Side-channel attacks
observe these side effects and consequently deduce information
which would usually not be accessible to the attacker. Software-
based side-channel attacks are particularly unsettling since they
do not require physical access to the device. Many of these attacks
fall into the category of microarchitectural attacks, which exploit
differences in the timing or the behavior, which are caused by
microarchitectural elements.

Over the past 20 years, software-based microarchitectural at-
tacks have evolved from theoretical attacks [48] on implementa-
tions of cryptographic algorithms [63], to more generic practical
attacks [29, 78], and most recently to high potential threats [47, 54]
breaking the fundamental memory and process isolation. Spec-
tre [47] is a microarchitectural attack, tricking another program
into speculatively executing an instruction sequence which leaves
microarchitectural side effects. These side effects, in the case of
all Spectre attacks demonstrated so far [15, 47, 57, 74], are timing
differences caused by the pollution of data caches, i.e., a traditional
cache covert channel [55, 59].

Speculative execution, which is used in Spectre attacks, is a cru-
cial cornerstone to the performance of modern processors. The
branch prediction unit in modern processors makes an educated
guess about which branch is taken and the processor then specu-
latively executes the expected instruction sequence following the
predicted direction of the branch. By manipulating the branch pre-
diction, Spectre tricks a target process into performing a sequence
of memory accesses which leak secrets from chosen virtual memory
locations to the attacker. This completely breaks confidentiality and
renders virtually all security mechanisms on an affected system
ineffective. Spectre variant 1 is the Spectre variant which affects
the largest number of devices, mostly associated with misspecula-
tion following bound checks. A code fragment performing first an
operation such as a bound check and subsequently an operation
with a microarchitectural side effect is called a “Spectre gadget”.

Spectre attacks have so far been demonstrated in JavaScript [47]
and in native code [15, 47, 57, 74], but it is likely that any envi-
ronment allowing sufficiently accurate timing measurements and
some form of code execution enables these attacks. Attacks on Intel
SGX enclaves showed that enclaves are also vulnerable to Spectre
attacks [15]. However, there are billions of devices which never
run any attacker-controlled code, i.e., no JavaScript, no native code,
and no other form of code execution on the target system. Until
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now, these systems were believed to be safe against such attacks.
In fact, vendors are convinced that these systems are still safe and
recommended to not take any action on these devices [41].

In this paper, we present NetSpectre, a new attack based on
Spectre variant 1, requiring no attacker-controlled code on the
target device, thus affecting billions of devices. Similar to a local
Spectre attack, our remote attack requires the presence of a Spectre
gadget in the code of the target. We show that systems containing
the required Spectre gadgets in an exposed network interface or API
can be attacked with our generic remote Spectre attack, allowing to
read arbitrary memory over the network. The attacker only sends
a series of crafted requests to the victim and measures the response
time to leak a secret value from the victim’s memory.

We show that memory access latency, in general, can be reflected
in the latency of network requests. Hence, we demonstrate that it
is possible for an attacker to distinguish cache hits and misses on
specific cache lines remotely, by measuring and averaging over a
larger number of measurements. Based on this, we implemented the
first access-driven remote cache attack, a remote variant of Evict+
Reload called Thrash+Reload. Our remote Thrash+Reload attack is a
significant leap forward from previous remote cache timing attacks
on cryptographic algorithms [1, 5, 11, 45, 81]. We facilitate this
technique to retrofit existing Spectre attacks to our network-based
scenario. This NetSpectre variant is able to leak 15 bits per hour
from a vulnerable target system.

By utilizing a previously unknown side channel based on the
execution time of AVX2 instructions, we also demonstrate the first
Spectre attack which does not rely on a cache covert channel at all.
Our AVX-based covert channel achieves a native code performance
of 125 bytes per second at an error rate of 0.58 %. By using this
covert channel in our NetSpectre attack instead of the cache covert
channel, we achieve higher performance. Since cache eviction is
not necessary anymore, we increase the speed of leaking to 60 bits
per hour from the target system in a local-area network. In the
Google cloud, we can leak around 3 bits per hour from another
independent virtual machine.

We demonstrate that using previously ignored gadgets allows
breaking address-space layout randomization in a remote attack.
Address-space layout randomization (ASLR) is a defense mecha-
nism deployed on most systems today, randomizing virtually all
addresses. An attacker with local code execution can easily bypass
ASLR since ASLR mostly aims at defending against remote attacks
but not local attacks. Hence, many weaker gadgets for Spectre at-
tacks were ignored so far, since they do not allow leaking actual
data, but only address information. However, moving to a remote
attack scenario, these weaker gadgets become very powerful.

Spectre gadgets can be more versatile than anticipated in previ-
ous work. This not only becomes apparent with the weaker gad-
gets we use in our remote ASLR break but even more so with the
value-thresholding technique we propose. Value-thresholding does
not use the typical bit selection and memory reference mechanics
as seen in previous Spectre attacks. Instead, value-thresholding
exploits information leakage in comparisons directly, by using a
divide-and-conquer approach similar to a binary search.

NetSpectre marks a paradigm shift from local attacks to remote
attacks. This significantly broadens the range and increases the

number of affected devices. In particular, Spectre attacks must also
be considered a threat to the security of devices which do not
run any untrusted attacker-controlled code. This shows that coun-
termeasures must also be applied to these devices, which were
previously thought to be safe. We propose a new alternative to
Retpolines [76] which has a clearer structure. Future research on
Spectre attacks and Spectre mitigations faces a series of challenges
that we outline. These challenges indicate that the current defenses
can only be temporary solutions since they only fix symptoms
without addressing the root cause of the problem.

Contributions. The contributions of this work are:
(1) We present NetSpectre, a generic remote Spectre variant 1

attack. For this purpose, we demonstrate the first access-
driven remote cache attack (Evict+Reload) over network,
as a building block of NetSpectre.

(2) We demonstrate the first Spectre attack which does not uti-
lize the cache. Instead, we present a new high-performance
AVX-based covert channel which significantly improves
the performance of remote Spectre attacks.

(3) We show that even weaker forms of local Spectre attacks,
which are incapable of leaking actual data, are still very
powerful in remote Spectre attacks enabling remote ASLR
breaks without any code execution on the device.

(4) We show that Spectre gadgets can be more versatile than
anticipated. Our technique value-thresholding allows ob-
taining a secret value without the typical bit selection and
memory reference mechanics.

Outline. The remainder of the paper is organized as follows. In
Section 2, we provide background on speculative execution and
microarchitectural attacks. In Section 3, we provide an overview
of the full NetSpectre attack. In Section 4, we show how to build
remote microarchitectural covert channels for use in NetSpectre
attacks. In Section 5, we show how the building blocks are combined
to extract memory contents over the network. In Section 6, we
evaluate the performance of our attack. In Section 7, we discuss
countermeasures against local and network-based Spectre attacks
and outline challenges for future research. We conclude in Section 8.

2 BACKGROUND
In this section, we discuss out-of-order execution and a subset
of out-of-order execution called speculative execution. We detail
branch prediction, a building block of most speculative execution
implementations. Finally, we will discuss known microarchitec-
tural side-channel attacks as well as SIMD instructions as a better
alternative for our use case.

2.1 Out-of-order and Speculative Execution
Modern processors do not strictly execute one instruction after
another. Instead, modern processors have multiple execution units
operating in parallel. The serial instruction stream is distributed
over these execution units, leaving fewer processor resources un-
used. To retain the architecturally defined execution order, the
processor has a so-called reorder buffer, which buffers operations
until they are ready to be retired (made visible on the architectural
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level) in the order defined by the instruction stream. Hence, out-
of-order execution lets the processor precompute the results and
effects of instructions. Like simple pipeline processors, out-of-order
processors suffer from interrupts, since any precomputed results
and effects have to be discarded. However, this is restricted to the
architecturally visible state, and differences in the microarchitec-
tural state may occur. Instructions which get precomputed but not
retired are called transient instructions [47, 54].

Out-of-order execution on modern processors can typically run
several hundred simple instructions ahead of the architecturally
visible state. The actual number depends on the specific instructions
and the size of the reorder buffer on the specific processor.

The instruction stream of almost every complex software is not
purely linear but contains (conditional) branches. Consequently,
the processor often does not know which direction of the branch to
follow ahead of time, i.e., which subsequent instructions to run out
of order. In such cases, the processor uses prediction mechanisms
to speculatively execute instructions along one of the paths. Hence,
speculative execution is a strict subset of out-of-order execution.
Correct predictions improve the performance and efficiency of the
processor. Incorrect predictions require discarding any precom-
puted results and effects after the misprediction.

2.2 Branch Prediction
Branch prediction is the most common prediction mechanism caus-
ing speculative execution. Naturally, the performance and efficiency
increase with the quality of the prediction. Therefore, modern pro-
cessors incorporate a number of branch prediction mechanisms.

Intel [38] processors have prediction mechanisms for “Direct
Calls and Jumps”, “Indirect Calls and Jumps”, and “Conditional
Branches”. These prediction mechanisms are implemented in differ-
ent processor components, e.g., the Branch Target Buffer (BTB) [17,
52], the Branch History Buffer (BHB) [12], and the Return Stack
Buffer (RSB) [19]. These buffers may be used in conjunction to
obtain a good prediction [19]. Since branch-prediction logic is typi-
cally not shared across physical cores [21], the processor only learns
from previous branches on the same core.

2.3 Microarchitectural Attacks
Most microarchitectural optimizations depend on the processed
data or its location. As a consequence, observing the effect of an
optimization (e.g., faster execution time) leaks information, e.g.,
about the data or its location.

Traditionally, microarchitectural attacks were split into two cat-
egories: side-channel attacks, which are non-destructive (passive),
and fault attacks, which are destructive (active). Side-channel at-
tacks are often used to build covert channels, i.e., a communication
between two colluding parties through a side channel.

Microarchitectural side-channel attacks were first explored for
attacks on cryptographic algorithms [30, 48, 63, 67, 75]. More re-
cently, generic practical attack techniques were developed and used
against a wide range of attack targets, e.g., Flush+Reload [29, 30, 78].

Microarchitectural attacks are usually considered software-based
attacks, as opposed to traditional side-channel attacks and fault
attacks requiring physical access to the device. The most prominent

example of a microarchitectural fault attack is Rowhammer, a hard-
ware flaw in modern DRAM. Rowhammer enables modification of
privileged DRAM memory locations by an unprivileged attacker.

Meltdown [54] and Spectre [47] are two recent microarchitec-
tural attacks. They both use covert channels to transmit secrets, but
the attacks themselves are no side-channel attacks. Since they are
non-destructive, they appear to fall in neither of the two categories.

Meltdown [54] is a vulnerability present in many modern pro-
cessors. It is the basis of a series of attacks, which all bypass the
isolation provided by the user_accessible page-table bit (set to
zero for kernel pages), e.g., different attacks on KASLR [27, 34, 44]
that were discovered independently before Meltdown [54]. The full
Meltdown attack allows reading arbitrary kernel memory [54].

Spectre attacks [47] exploit speculative execution, which is present
in most modern processors. Hence, they do not rely on any vulner-
ability, but solely on optimizations. Through manipulation of the
branch prediction mechanisms, an attacker lures a victim process
into executing attacker-chosen code gadgets. This enables the at-
tacker to establish a covert channel from the speculative execution
in the victim process to a receiver process under attacker control.

2.4 Cache Attacks
The largest group of microarchitectural attacks are cache attacks.
Cache attacks exploit timing differences introduced by small mem-
ory buffers, called caches. These CPU caches hide memory access
latencies by buffering frequently used data in small but fast in-
processor memories. Modern CPUs have multiple cache levels that
are either private per core or shared across cores.

Cache side-channel attacks were the first microarchitectural at-
tacks. Different cache attack techniques have been proposed in
the past, including Evict+Time [63], Prime+Probe [63, 67], and
Flush+Reload [78]. Variations of these attacks are for instance Evict+
Reload [29, 53], and Flush+Flush [28]. Flush+Reload attacks and its
variants work on a cache-line granularity, as they rely on shared
memory. Any cache line in shared memory will be a shared cache
line in the inclusive last-level cache. In a Flush+Reload attack, the at-
tacker constantly flushes a targeted memory location and measures
the time it takes to reload the data. If the reload time is low, the at-
tacker learns that another process has loaded the cache line into the
cache. Various Flush+Reload attacks have been demonstrated, e.g.,
attacks on cryptographic algorithms [10, 43, 78], web server func-
tion calls [80], specific system activity [79], user input [29, 53, 72],
and kernel addressing information [27]. Prime+Probe follows a
similar principle, but only has a cache-set granularity. It works by
occupying memory addresses and measuring when they are evicted
from the cache. Hence, Prime+Probe attacks do not require any
shared memory. Various Prime+Probe attacks have been demon-
strated, e.g., attacks on cryptographic algorithms [42, 55, 63, 67],
user input [53, 72], and kernel addressing information [34].

Cache timing side channels have also been demonstrated in re-
mote timing attacks. Bernstein [11] proposed a remote timing attack
against a weak implementation of the AES algorithm. The underly-
ing timing difference was introduced from internal collisions in the
algorithm and corresponding to that, a varying number of cache
misses during AES computations. Subsequently, several works were
published improving and reproducing this attack [1, 5, 45, 81].
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A special use case of a side-channel attack is a covert channel.
Here, the attacker controls both, the part that induces the side
effect, and the part that measures the side effect. This can be used
to leak information from one security domain to another while
bypassing any boundaries existing on the architectural level or
above. Both Prime+Probe and Flush+Reload have been used in
high-performance covert channels [28, 55, 60]. Meltdown [54] and
Spectre [47] internally use a covert channel to transmit data from
the transient execution to a persistent state.

2.5 SIMD Instructions
SIMD (single instruction multiple data) instructions allow perform-
ing an operation in parallel on multiple data values. SIMD instruc-
tions are available as instruction set extensions on a wide range
of modern processors, e.g., the Intel MMX extension [35–37, 66],
the AMD 3DNow! extension [3, 62], and the ARM VFP and NEON
extensions [2, 7, 8]. On Intel, some of the SIMD instructions are
processed by a dedicated SIMD unit within the processor core. How-
ever, to avoid wasting energy, the SIMD unit is turned off when
it is not used. Consequently, to execute such SIMD instructions,
the SIMD unit is first powered up, introducing a small latency on
the first few SIMD instructions [19]. Liu [56] mentioned that some
SIMD instructions can be used to improve bus-contention covert
channels since they enable a more direct access the memory bus.
However, so far, SIMD streaming instructions have not yet been
used for pure SIMD covert channels or side-channel attacks.

2.6 Advanced Persistent Threats
The ever-increasing complexity inmodern hardware and software is
also reflected in modern malware. Especially targeted malware like
Stuxnet [50], Duqu [9], or Flame [49], has proven to be extremely
difficult to detect. Consequently, it can persist on a target system
or network over periods of weeks or months. Hence, such malware
is also known as “advanced persistent threats” (APTs) [73]. In this
scenario, also slow covert channels that transmit a few bits to
bytes per day, e.g., air-gap covert channels [31, 32], are highly
practical, since theymay run over a very long time. APTs are usually
a combination of a set of concrete exploits, bypassing different
security mechanisms to achieve an overall goal.

2.7 Address-Space Layout Randomization
One security mechanism present in modern operating systems is
address-space layout randomization (ASLR) [65]. It randomizes the
locations of objects or regions in memory, e.g., heap objects and
stacks, so that an attacker cannot predict correct addresses. Natu-
rally, this is a probabilistic approach, but it provides a significant
gain in security in practice. ASLR especially aims at mitigating
control-flow-hijacking attacks, but it also makes other remote at-
tacks difficult where the attacker has to provide a specific address.

3 ATTACK OVERVIEW
In this section, we overview the NetSpectre attack based on a sim-
ple example. The building blocks of a NetSpectre attack are two
NetSpectre gadgets: a leak gadget, and a transmit gadget. We dis-
cuss the roles of these gadgets, which allow an attacker to perform
a Spectre attack without any local code execution or access. We

discuss NetSpectre gadgets in detail, based on their type (leak or
transmit) and the microarchitectural element they use (e.g., cache).

Spectre attacks induce a victim to speculatively perform op-
erations that would not occur during strictly serialized in-order
processing of the program’s instructions, and which leak a victim’s
confidential information via a covert channel to an attacker. Spectre
variant 1 induces speculative execution in the victim by mistrain-
ing a conditional branch, e.g., a bounds check. Spectre variant 2
induces speculative execution in the victim by maliciously injecting
addresses into the branch-target buffer. Our attack utilizes Spectre
variant 1 as it is the most widespread. Moreover, according to Intel,
in contrast to Meltdown and Spectre variant 2, variant 1 will not
be fixed in hardware for the upcoming CPU generation [40].

Before the actual condition is known, the CPU predicts the most
likely outcome of the condition and then continues with the cor-
responding code path. There are several reasons why the result of
the condition is not known at the time of evaluation, e.g., a cache
miss on parts of the condition, complex dependencies which are
not yet satisfied, or a bottleneck in a required execution unit. By
hiding these latencies, speculative execution leads to faster overall
execution if the condition was predicted correctly. Intermediate
results of a wrongly predicted condition are simply not committed
to the architectural state, and the effective performance is similar
as if the processor would never have performed any speculative
execution. However, any modifications of the microarchitectural
state that occurred during speculative execution, such as the cache
state, are not reverted.

As our NetSpectre attack is mounted over the network, the victim
device requires a network interface an attacker can reach. The
attacker must be able to send a large number of network packets
to the victim. However, these do not necessarily have to be within
a short time frame. Furthermore, the content of the packets in our
attack is not required to be attacker-controlled.

In contrast to local Spectre attacks, our NetSpectre attack is
not split into two phases. Instead, the attacker constantly per-
forms operations to mistrain the processor, which will make it
constantly run into exploitably erroneous speculative execution.
NetSpectre does not mistrain across process boundaries, but instead
trains in-place by passing valid and invalid values alternatingly to
the exposed interface, e.g., valid and invalid network packets. For
our NetSpectre attack, the attacker requires two Spectre gadgets,
which are executed if a network packet is received: a leak gadget,
and a transmit gadget. The leak gadget accesses a bit stream at an
attacker-controlled index, and changes some microarchitectural
state depending on the state of the accessed bit. The transmit gadget
performs an arbitrary operation where the runtime depends on the
microarchitectural state modified by the leak gadget. Hidden in a
significant amount of noise, the attacker can observe this timing
difference in the network packet response time. Spectre gadgets
are commonly found in modern network drivers, network stacks,
and network service implementation.

To illustrate the working principle of our NetSpectre attack, we
consider a basic example similar to the original Spectre variant 1
example [47] in an adapted scenario: the code in Listing 1 is part of
a function that is executed when a network packet is received. We
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assume that x is attacker-controlled, e.g., a field in a packet header
or an index for some API. This code forms our leak gadget.

if (x < bitstream_length)
if(bitstream[x])

flag = true

Listing 1: The conditional branch is part of a function
executed when a network packet is processed.

The code fragment begins with a bound check on x, a best prac-
tice when developing secure software. In particular, this check
prevents the processor from reading sensitive memory outside of
bitstream. Otherwise, an out-of-bounds input x could trigger an
exception or could cause the processor to access sensitive memory
by supplying x = (address of a secret bit to read) − (base address of
bitstream).

To exploit the microarchitectural state change during speculative
execution in a remote attack, the attacker has to adapt the origi-
nal Spectre attack. The attacker can remotely induce speculative
execution as follows:

(1) The attacker sends multiple network packets such that the
attacker-chosen value of x is always in bounds. This trains
the branch predictor, increasing the chance that the branch
predictor predicts the outcome of the comparison as true.

(2) The attacker sends a packet where x is out of bounds, such
that bitstream[x] is a secret bit in the target’s memory.

(3) Based on recent branch results of the condition, the branch
predictor assumes the bounds check to be true, and the mem-
ory access is speculatively executed.

While changes in the architectural state are not committed after
the correct result of the condition is resolved, changes in the mi-
croarchitectural state are not reverted. In the code in Listing 1 this
means, that although the value of flag does not change, the cache
state of flag does change. Only if the secret bit at bitstream[x]
is set, flag is cached.

The transmit gadget is much simpler, as it only has to use flag
in an arbitrary operation. Consequently, the execution time of the
gadget will depend on the cache state of flag. In the most simple
case, the transmit gadget simply returns the value of flag, which
is set by the leak gadget. As the architectural state of flag (i.e., its
value) does not change for out-of-bounds x, it does not leak secret
information. However, the response time of the transmit gadget
depends on the microarchitectural state of flag (i.e., whether it is
cached), which does leak a secret bit.

To complete the attack, the attacker measures the response time
for every secret bit to leak. As the difference in the response time
is in the range of nanoseconds, the attacker needs to average over
a large number of measurements to obtain the secret value with
acceptable confidence. Indeed, our experiments show that the dif-
ference in the microarchitectural state becomes visible when per-
forming a large number of measurements. Hence, an attacker can
first measure the two corner cases (i.e., cached and uncached) and
afterward, to extract a real secret bit, perform as many measure-
ments as necessary to distinguish which case it is with sufficient
confidence, e.g., using a threshold or a Bayes classifier.

We refer to the two gadgets, the leak gadget and the transmit
gadget, as NetSpectre gadgets. Running a NetSpectre gadget may
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Figure 1: The interaction of the NetSpectre gadget types.
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Figure 2: Depending on the gadget location, the attacker has
access to either the memory of the entire corresponding ap-
plication or the entire kernel memory, typically including
the entire system memory.

require sending more than one packet. Furthermore, the leak gadget
and transmit gadget may be reachable via different independent
interfaces, i.e., both interfaces must be accessible for the attacker.
Figure 1 illustrates the two types of gadgets, which will be described
in more detail later in this section.

3.1 Gadget location
The set of attack targets depends on the location of the NetSpectre
gadgets. As illustrated in Figure 2, on a high level, there are two
different gadget locations: gadgets are either located in the user
space or in the kernel space.

3.1.1 Attacks on the Kernel. The network driver is usually im-
plemented in the kernel of the operating system, either as a fixed
component or as a kernel module. In either case, kernel code is
executed when a network packet is received. If any kernel code
processed during the handling of the network packet contains a
NetSpectre gadget, i.e., an attacker-controlled part of the packet is
used as an index to reference a bit, a NetSpectre attack is possible.

An attack on the kernel code is particularly powerful, as the
kernel does not only have the kernel memory mapped but typically
also the entire physical memory. On Linux and macOS, the physical
memory can be accessed via the direct-physical map, i.e., every
physical memory location is accessible via a predefined virtual
address in the kernel address space. Windows does not use a direct-
physical map but maintains memory pools, which typically also
map a large fraction of the physical memory. Thus, a NetSpectre
attack leveraging a NetSpectre gadget in the kernel can in general
leak an arbitrary bit stored in memory.
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3.1.2 Attacks on the User Space. Usually, network packets are
not only handled by the kernel but are also passed on to a user-
space application which processes the content of the packet. Hence,
not only the kernel but also user-space applications can contain
NetSpectre gadgets. In fact, all code paths that are executed when a
network packet arrives are candidates to look forNetSpectre gadgets.

An advantage in attacking user-space applications is the signifi-
cantly larger attack surface, as many applications process network
packets. Especially on servers, there are an abundance of services
processing user-controlled network packets, e.g., web servers, FTP
servers, or SSH daemons. In contrast to attacks on the kernel space,
which in general can leak any data stored in the system memory,
attacks on a user-space application can only leak secrets of the
attacked application.

Such application-specific secrets include secrets of the appli-
cation itself, e.g., credentials and keys. Thus, a NetSpectre attack
leveraging aNetSpectre gadget in an application can access arbitrary
data processed by the application. Furthermore, if the victim is a
multi-user application, e.g., a web server, it also contains secrets
of multiple users. Especially for popular websites, this can easily
affect thousands or millions of users.

3.2 Gadget type
We now discuss the different NetSpectre gadgets, namely the leak
gadget to encode a secret bit into a microarchitectural state, and the
transmit gadget to transfer the microarchitectural state to a remote
attacker.

3.2.1 Leak Gadget. The first type of gadget, the leak gadget,
leaks secret data by changing a microarchitectural state depending
on the value of a memory location that would not be accessible
directly through any interface accessible to the attacker. Note that
this state change happens on the victim device, and is not directly
observable over the network.

A leak gadget gadget can leak a single bit, or even one or multiple
bytes. Single-bit gadgets are the most versatile, as storing a one-bit
(binary) state can be accomplished with many microarchitectural
states, as only two cases have to be distinguished (cf. Section 4).
Kocher et al. [47] leaked the secret data with a byte-wise gadget.
This simplifies the access to the secret data, as only byte indices have
to be used, but complicates the recovery process, as 256 states have
to be distinguished. With local Spectre attacks, the recovery process
is implemented by the attacker, and thus a complex recovery process
does not have any drawbacks but a slightly lower performance. The
reason is that a larger number of side-channel tests (e.g., more
Flush+Reload tests) have to be performed on the receiving side
of the covert channel. Lipp et al. [54] showed that a transmission
from out-of-order execution with single-bit covert channel can be
significantly faster than a byte-wise or multi-byte covert channel
in a similar attack. NetSpectre attacks have to rely on gadgets for
the recovery process, slowing down the transmission significantly.
A single-bit gadget does not only have several microarchitectural
elements to choose from, but the data is also comparably easy to
recover, and the data transmission is faster since fewer remote
side-channel tests have to be performed for the covert channel
transmission. Thus, we focus on single-bit leak gadgets in this paper.
Single-bit leak gadgets can be as simple as shown in Listing 1. In this

example, a value (flag) is cached if the bit at the attacker-chosen
location is set. If the bit is not set, the cache state of the variable
remains unchanged, i.e., if it was previously uncached, it will not
be cached. Hence, the attacker can use this gadget to leak secret
bits into the microarchitectural state.

3.2.2 Transmit Gadget. In contrast to Spectre, NetSpectre re-
quires an additional gadget to transmit the leaked information to
the attacker. As the attacker does not control any code on the victim
device, the recovery process, i.e., converting the microarchitectural
state back into an architectural state, cannot be implemented by
the attacker. Furthermore, the architectural state can usually not
be accessed via the network and thus, it would not even help if the
gadget converts a microarchitectural into an architectural state.

From the attacker’s perspective, the microarchitectural state
must become visible over the network. This may not only happen
directly via the content of a network packet but also via side effects.
And indeed, the microarchitectural state will in some cases become
visible to the attacker, e.g., in the form of the response time.We refer
to a code fragment which exposes the microarchitectural state to a
network-based attacker and which can be triggered by an attacker,
as a transmit gadget. Naturally, the transmit gadget has to be located
on the victim device. With a transmit gadget, the measurement of
the microarchitectural state happens on a remote machine but
exposes the microarchitectural over a network-reachable interface.

In the original Spectre attack, Flush+Reload is used to transfer
the microarchitectural state to an architectural state, which is then
read by the attacker to leak the secret. The ideal case would be
if such a Flush+Reload gadget is available on the victim, and the
architectural state can be observed over the network. However, as
it is unlikely to locate an exploitable Flush+Reload gadget on the
victim and access the architectural state, regular Spectre gadgets
cannot simply be retrofitted to mount a NetSpectre attack.

In the most direct case, the microarchitectural state becomes
visible for a remote attacker, through the latency of a network
packet. A simple transmit gadget for the leak gadget shown in
Listing 1 just accesses the variable flag. The response time of the
network packet depends on the cache state of the variable, i.e., if
the variable was accessed, the response takes less time. Generally,
an attacker can observe changes in the microarchitectural state if
such differences are measurable via the network.

4 REMOTE MICROARCHITECTURAL
COVERT CHANNELS

As described in the last section, a cornerstone of our NetSpectre
attack is building a microarchitectural covert channel that exposes
information to a remote attacker. Since in our scenario, the attacker
cannot run any code on the target system, we assume the transmis-
sion happens through a transmit gadget whose execution can be
triggered by the attacker. In this section, we demonstrate the first re-
mote access-driven cache attack, Thrash+Reload, a variant of Evict+
Reload. We show that with this remote cache attack, an attacker
can build a covert channel from the speculative execution on the
target device to a remote receiving end on the attacker’s machine.
Furthermore, we also present a previously unknown microarchi-
tectural covert channel based on AVX2 instructions. We show that
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Figure 3: Measuring the response time of a simple transmit
gadget, that accesses a certain variable. Only by performing
a large number of measurements, the difference in the re-
sponse timings depending on the cache state of the variable
becomes visible. The average values of the two distributions
are shown as dashed vertical lines.

this covert channel can be used in NetSpectre attacks, yielding even
higher transmission rates than the remote cache covert channel.

4.1 Remote Cache Covert Channel
Kocher et al. [47] leverage the cache as the microarchitectural el-
ement to encode the leaked data. This allows using well-known
cache side-channel attacks, such as Flush+Reload [78] or Prime+
Probe [63, 67] to deduce the microarchitectural state and thus the
encoded data.

However, not only caches keep microarchitectural states which
can be made visible on the architectural level. Methods to extract
the microarchitectural state from elements such as DRAM [68],
BTB [17], or RSB [13] are known. Generally, the receiver of every
microarchitectural covert channel [21] can be used to transfer a
microarchitectural state to an architectural state.

Mounting a Spectre attack by leveraging the cache has threemain
advantages: there are powerful methods to make the cache state
visible, many operations modify the cache state and are thus visible
in the cache, and the timing difference between a cache hit and
cache miss is comparably large. Flush+Reload is usually considered
the most fine-grained and accurate cache attack, with almost zero
noise [21, 28, 78]. If Flush+Reload is not applicable in a certain
scenario, Prime+Probe is considered the next best choice [60, 71].
Consequently, all Spectre attacks published so far use either Flush+
Reload [15, 47] or Prime+Probe [74].

To build our first NetSpectre attack, we need to adapt local cache
covert channel techniques. Instead of measuring the memory access
time directly, we measure the response time of a network request
which uses the corresponding memory location. Consequently, the
response time will be influenced by the cache state of the variable
used for the attack. The difference in the response time due to
the cache state will be in the range of nanoseconds since memory
accesses are comparably fast.

The network latency is subject to many factors, leading to noisy
results. However, the influence of noise can be decreased by averag-
ing over a large amount of network packets [1, 5, 11, 45, 81]. Hence,
an attacker needs to average over a large number of measurements
to obtain the secret value with acceptable confidence.

Figure 3 shows that the difference in the microarchitectural state
is indeed visible when performing a large number of measurements.
The average values of the two distributions are illustrated as dashed
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Figure 4: The probability that a specific variable is evicted
from the victim’s last-level cache by downloading a file from
the victim (Intel i5-6200U). The larger the downloaded file,
the higher the probability that the variable is evicted.

vertical lines. An attacker can either use a classifier on the measured
values, or first measure the two corner cases (cached and uncached)
to get a threshold for the real measurements.

Still, as the measurement destroy the cache state, i.e., the variable
is always cached after the first measurement, the attacker requires
a method to evict (or flush) the variable from the cache. As it is
unlikely that the victim provides an interface to flush or evict a
variable directly, the attacker cannot use well-known cache attacks
but has to resort to more crude methods. Instead of the targeted
eviction in Evict+Reload, we simply evict the entire last-level cache
by thrashing the cache, similar as Maurice et al. [59]. Hence, we call
this technique Thrash+Reload. To thrash the entire cache without
code execution, we again have to use an interface accessible via
the network. In the simplest form, any packet sent from the victim
to the attacker, e.g., a file download, has the chance to evict the
variable from the cache.

Figure 4 shows the probability of evicting a specific variable (i.e.,
the flag variable) from the last-level cache by requesting a file from
the victim. The victim is running on an Intel i5-6200U with 3MB
last-level cache. Downloading a file with 590 kilobytes is already
sufficient to evict the variable with a probability of ≥ 99 %.

With a mechanism to distinguish cache hits and misses, as well
as a mechanism to throw things out of the cache, we have all
building blocks required for a cache side-channel attack or a cache
covert channel. Thrash+Reload combines both mechanisms over a
network interface, forming the first remote cache covert channel. In
our experiments on a local-area network, we achieve a transmission
rate of up to 4 bit per minute, with an error rate of < 0.1%. This
is significantly slower than cache covert channels in a local native
environment, e.g., the most similar attack (Evict+Reload) achieves
a performance of 13.6 kb/s with an error rate of 3.79 %.

In this paper, we use our remote cache covert channel for remote
Spectre attacks. However, remote cache covert channels and espe-
cially remote cache side-channel attacks are an interesting object
of study. Many attacks that were presented previously would be
devastating if mounted over a network interface [24, 29, 78].

4.2 Remote AVX-based Covert Channel
To demonstrate the first Spectre variant which does not rely on
the cache as the microarchitectural element, we require a covert
channel which allows transmitting information from speculative
execution to an architectural state. Thus, we build a novel covert
channel based on timing differences in AVX2 instructions. This
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Figure 5: Differences in the execution time for AVX2 instruc-
tions (Intel i5-6200U). If the AVX2 unit is inactive (powered
down), executing a 256-bit instruction takes on average 366
cycles longer than on an active AVX2 unit. The average val-
ues are shown as dashed vertical lines.

0 1 2 3 4 5 6

·104

200

300

Wait time [cycles]

La
te
nc
y

Figure 6: The number of cycles it takes to execute the VPAND
instruction (including measurement overhead) after not us-
ing the AVX2 unit. After approximately 0.5ms, the upper
half of the AVX2 unit starts to power down, which increases
the latency for subsequent AVX2 instructions. After approx-
imately 1ms, it is fully powered down, and we see the max-
imum latency for subsequent AVX2 instructions.

covert channel has a low error rate and high performance, and it
allows for a significant performance improvement in our NetSpectre
attack as compared to the remote cache covert channel.

To save power, the CPU can power down the upper half of the
AVX2 unit which is used to perform operations on 256-bit registers.
The upper half of the unit is powered up as soon as an instruction
is executed which uses 256-bit values [61]. If the unit is not used
for more than 1ms, it is powered down again [18].

Performing a 256-bit operation when the upper half is powered
down incurs a significant performance penalty. For example, we
measured the execution (including measurement overhead) of a
simple bit-wise AND of two 256-bit registers (VPAND) on an Intel
i5-6200U (cf. Figure 5). If the upper half is active, the operation
takes on average 210 cycles, whereas if the upper half is powered
down (i.e., it is inactive), the operation takes on average 576 cycles,
resulting in a difference of 366 cycles. The difference is even larger
than the difference between cache hits and misses, which is only
160 cycles on the same system. Hence, the timing difference in
AVX2 instructions is better for remote microarchitectural attacks
than the timing difference between cache hits and misses.

Similarly to the cache, reading the latency of an AVX2 instruc-
tion also destroys the encoded information. An attacker therefore
requires a method to reset the AVX2 unit, i.e., power down the
upper half. In contrast to the cache, this is significantly easier, as
the upper half of the AVX2 unit is automatically powered down
after 1ms of inactivity. Thus, an attacker only has to wait at least
1ms before the next measurement.

if (x < bitstream_length)
if(bitstream[x])

_mm256_instruction();

Listing 2: An AVX2 NetSpectre gadget which encodes a bit
using a 256-bit instruction.

Figure 6 shows the execution time of a 256-bit AVX2 instruc-
tion (specifically VPAND) after inactivity of the AVX2 unit. If the
inactivity is shorter than 0.5ms, i.e., the last AVX2 instruction was
executed not more than 0.5ms ago, there is no performance penalty
when executing an AVX2 instruction which uses the upper half of
the AVX2 unit. After that, the AVX2 unit begins powering down,
increasing the execution time for any subsequent AVX2 instruction,
since the unit has to be powered up again and only emulates AVX2
in the meantime [18]. The AVX2 unit is fully powered down after
approximately 1ms, leading to the highest performance penalty if
any AVX2 instruction is executed in this state.

A leak gadget leveraging AVX2 is similar to a leak gadget leverag-
ing the cache. Listing 2 shows an example (pseudo-)code of an AVX2
leak gadget. The _mm256_instruction represents an arbitrary 256-
bit AVX2 instruction, e.g., _mm256_and_si256. If the referenced bit
x in the bit stream bitstream is set, the instruction is executed, and
as a consequence, the upper half of the AVX2 unit is powered on.
This is also true if the branch-prediction outcome was not correct
and the AVX2 instruction is accessed during speculative execution.
Note that there is no data dependency between the AVX2 instruc-
tion and either the bit stream or the index. Only the information
whether an AVX2 instruction was executed is used to transmit the
secret bit through the covert channel.

The transmit gadget is again similar to the transmit gadget for
the cache. Any function that uses an AVX2 instruction, and has
thus a measurable runtime difference observable over the network,
can be used as a transmit gadget. Even the leak gadget shown in
Listing 2 can act as a transmit gadget. By providing an in-bounds
value for x, the runtime of the function depends on the state of the
upper half of the AVX2 unit. If the upper half of the unit was used
before, i.e., a ‘1’-bit was leaked, the function executes faster than if
the upper half was not used before, i.e., a ‘0’-bit was leaked.

With these building blocks, we can build an AVX-based covert
channel. Our covert channel is the first pure-AVX covert channel
and the first AVX-based remote covert channel. In our experiments
in a native local environment, we achieve a transmission rate of
125 B/s with an error rate of 0.58 %. In a local-area network, we
achieve a transmission rate of 8 B/min, with an error rate of <0.1 %.
Since the true capacity of this remote covert channel is higher
than the true capacity of our remote cache covert channel, we can
already see that it yields higher performance in our NetSpectre
attack.

5 ATTACK VARIANTS
In this section, we describe two NetSpectre attack variants. The first
attack allows extracting secret data bit-by-bit from the memory of
the target system. The second attacks allows defeating ASLR on the
remote machine, paving the way for remote exploitation of bugs
that ASLR would usually mitigate.
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5.1 Extracting Data from the Target System
With typicalNetSpectre gadgets (cf. Section 3), the extraction process
consists of 4 steps. Note that depending on the gadgets, the leak
gadget and transmit gadget might be the same.

(1) Mistrain the branch predictor.
(2) Reset the state of the microarchitectural element.
(3) Leak a bit to the microarchitectural element.
(4) Expose state of the microarchitectural element to the net-

work.
In step 1, the attacker mistrains the branch predictor of the

victim to run a Spectre attack. To mistrain the branch predictor,
the attacker leverages the leak gadget with valid indices. The valid
indices ensure that the branch predictor learns to always take the
branch, i.e., the branch predictor speculates that the condition is
true. Note that this step only relies on the leak gadget. There is no
feedback to the attacker, and thus the microarchitectural state does
not have to be reset or transmitted.

In step 2, the attacker has to reset the microarchitectural state
to enable the encoding of leaked bits using a microarchitectural
element. This step highly depends on the used microarchitectural
element, e.g., when leveraging the cache, the attacker downloads a
large file from the victim (cf. Figure 4), if AVX2 is used, the attacker
simply waits for more than 1ms. After this step, all requirements
are satisfied to leak a bit from the victim.

In step 3, the attacker exploits the Spectre vulnerability to leak
a single bit from the victim. As the branch predictor is mistrained
in step 1, providing an out-of-bounds index to the leak gadget will
run the in-bounds path and modify the microarchitectural element,
i.e., the bit is encoded in the microarchitectural element.

In step 4, the attacker has to transmit the encoded information
via the network. This step corresponds to the second phase of the
original Spectre attack. In contrast to the original Spectre attack,
which leverages a cache attack, the attacker uses the transmit gad-
get for this step as described in Section 4. The attacker sends a
network packet which is handled by the transmit gadget and mea-
sures the time from sending the packet until the response arrives.
As described in Section 4, this round-trip time depends on the state
of the microarchitectural element, and thus on the leaked bit.

As the network latency varies, the four steps have to be repeated
multiple times to eliminate the noise caused by these fluctuations.
Typically, the variance in latency follows a certain distribution
depending on multiple factors, such as distance, number of hops,
network congestion [14, 23, 33]. The number of repetitions depends
mainly on the variance in latency of the network connection. Thus,
depending on the latency distribution, the number of repetitions
can be deduced using statistical methods. In Section 6.1, we evaluate
this attack variant and provide empirically determined numbers
for our attack setup.

5.2 Remotely Breaking ASLR on the Target
System

If the attacker has no access to a bit-leaking NetSpectre gadgets,
it is possible to use a weaker NetSpectre gadget which does not
leak the actual data but only information about the corresponding
address. Such gadgets were not considered harmful for Spectre
attacks, which already have local code execution, as ASLR does not

if (x < array_length)
access(array[x])

Listing 3: A NetSpectre gadget which can be leveraged to
break ASLR.

protect against local attacks. However, in a remote scenario, it is
very valuable to break ASLR. If such a NetSpectre gadget is found
in a user-space program, it breaks ASLR for this process.

Listing 3 shows a simple leak gadget which is already sufficient
to break ASLR.With the help of this gadget, breaking ASLR consists
of 3 steps.

(1) Mistrain the branch predictor.
(2) Access an out-of-bounds index to cache a (known) memory

location.
(3) Measure the execution time of a function via the network to

deduce whether the out-of-bounds access cached a part of
it.

The mistraining step is the same as for any Spectre attack, lead-
ing to speculative out-of-bounds accesses relative to the array. If the
attacker provides an out-of-bounds value for x after mistraining,
the array element at this index is speculatively accessed. Assum-
ing a byte array and an (unsigned) 64-bit index, an attacker can
(speculatively) access any memory location, as the index wraps
around if the base address plus the index is larger than the virtual
memory. If the byte at this memory location is valid and cacheable,
it is cached after executing this gadget, as the speculative execution
will fetch the corresponding memory location into the cache. Thus,
this gadget allows caching arbitrary memory locations which are
valid in the current virtual memory, i.e., every mapped memory
location of the current application.

The attacker uses this gadget to cache a memory location at
a known location, e.g., the vsyscall page which is mapped into
every application at the same virtual address [16]. The attacker then
measures the execution time of a function accessing the now cached
memory location, e.g., older versions of time or gettimeofday. If
the function executes faster, the out-of-bounds array index actually
cached a memory location used by this function. Thus, from the
known address and the value of the array index, i.e., the relative
offset to the known address, the attacker can calculate the actual
address of the leak gadget.

With an ASLR entropy of 30 b on Linux [58], there are 230 pos-
sible offsets the attacker has to check. Due to the KPTI (formerly
KAISER [26]) patches, no other page close to the vsyscall page is
mapped in the user space. Consequently, in the 230 possible offsets,
there is only a single valid, and thus cacheable, offset. Hence, we can
perform a binary search to find the correct offset, i.e., speculatively
try to load half of the possible offsets into the cache and check
a single time. If the single valid, and thus cacheable, offset was
cached, the attacker chose the correct half, otherwise, the attacker
continues with the other half. This reduces the number of checks
to defeat ASLR to only 30.

Although vsyscall is a legacy feature, we found it to be still
enabled on Ubuntu 17.10 and Debian 9.4, the default operating
system for instances on the Google Cloud. Moreover, any other
function or data can be used instead of vsyscall if the address is
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known. If the address of the leak gadget is known, it can also be
repeated to de-randomize any other function if the execution time
of this function can be measured via the network. If the attacker
knows a memory page at a fixed offset in the kernel, the same
attack can also be run on a NetSpectre gadget in the kernel to break
KASLR.

6 EVALUATION
In this section, we evaluate NetSpectre and the performance of
our proof-of-concept implementation. Section 6.1 provides a quali-
tative evaluation and Section 6.2 a quantitative evaluation of our
NetSpectre attacks. For the evaluation we used laptops (Intel Core
i5-4200M, i5-6200U, i7-8550U), as well as desktop PCs (Intel Core
i7-6700K, i7-8700K), an unspecified Skylake-based Intel Xeon CPU
in the Google Cloud Platform, and an ARM Cortex A75.

6.1 Leakage
To evaluate NetSpectre on the different devices, we constructed a
victim program which contains the same leak gadget and transmit
gadget on all test platforms (cf. Section 3). We leaked known values
from the victim to verify that our attack was successful and to
determine how many measurements are necessary. Except for the
cloud setup, all evaluations were done in a local lab environment.

6.1.1 Desktop and Laptop Computers. In contrast to local Spec-
tre attacks, where a single measurement can already be sufficient,
NetSpectre attacks require a large number of measurements to dis-
tinguish bits with a certain confidence. Even on a local network,
around 100 000 measurements are required to reduce the noise to a
level where a difference between bits can be clearly seen. By repeat-
ing the attack, the noise is reduced, making it easier to distinguish
the bits.

For our local attack we had a gigabit connection between the
victim and the attacker, a typical scenario in local networks but also
for network connections of dedicated servers and virtual servers.
We measured a standard deviation of the network latency of 15.6 µs.
Applying the three-sigma rule [69], in at least 88.8 % cases, the
latency deviates ±46.8 µs from the average. This is nearly 3 orders
of magnitude larger than the actual timing difference the attacker
wants to measure, explaining the large number of measurements
required.

Our proof-of-concept NetSpectre implementation leaks arbitrary
bits from the victim by specifying an out-of-bounds index of a
memory bitstream. Figure 7 shows the leakage of one byte using
our proof-of-concept implementation. For every bit, we repeated
the measurements 1 000 000 times. Although we only use a naïve
threshold on the maximum of the histograms, we can clearly dis-
tinguish ‘0’-bits from ‘1’-bits. More sophisticated methods, e.g.,
machine learning approaches, might be able to further reduce the
number of measurements.

6.1.2 ARM Devices. Also in our evaluation on ARM devices we
used a wired network, as the network-latency varies too much in
today’s wireless connections. The ARM core we tested turned out
to have a significantly higher variance in the network latency. We
measured a standard deviation of the network latency of 128.5 µs.

‘0’

‘1’

‘1’

‘0’

‘0’

‘1’

‘0’

‘0’

Figure 7: Leaking the byte ‘d’ (01100100 in binary) bit by bit
using a NetSpectre attack. The maximum of the histograms
(green circle) can be separated using a simple threshold (red
line). If the maximum is left of the threshold, the bit is in-
terpreted as ‘1’, otherwise it is interpreted as ‘0’.
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Figure 8: Histogram of the measurements for a ‘0’-bit and a
‘1’-bit on an ARM Cortex A75. Although the times for both
cases overlap, they are clearly distinguishable.

Again, with the three-sigma rule, we estimate that at least 88.8 %
of the measurements are within ±385.5 µs.

Figure 8 shows two leaked bits—a ‘0’-bit and a ‘1’-bit—of an ARM
Cortex A75 victim. Even with the higher variance in latency, sim-
ple thresholding allows separating the maxima of the histograms.
Hence, the attack also works on ARM devices.

6.1.3 Cloud Instances. For the cloud instance, we tested our
proof-of-concept implementation on the Google Cloud Platform.
We created two virtual machine instances in the same region, one
as the attacker, one as the victim. For both instances, we used a
default Ubuntu 16.04.4 LTS as the operating system.

The measured standard deviation of the network latency was
52.3 µs. Thus, we estimate that at least 88.8 % of the measurements
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Figure 9: Histogram of the measurements for a ‘0’-bit and a
‘1’-bit on two Google Cloud virtual machines with 20 000 000
measurements.

are in a range of±156.9 µs. We verified that we can successfully leak
data by running a NetSpectre attack between the two instances.

To adapt for the higher variance in network latency, we increased
the number of measurements by a factor of 20, i.e., every bit was
measured 20 000 000 times. Figure 9 shows a (smoothed) histogram
for both a ‘0’-bit and a ‘1’-bit on the Google Cloud instances. Al-
though there is still noise visible, it is possible to distinguish the
bits and thus leak arbitrary bits from the victim cloud instance.

6.2 NetSpectre Performance
To evaluate the performance of NetSpectre, we leaked known values
from a target device. This allows us to not only determine how fast
an attacker can leak memory, but also to determine the bit-error
rate, i.e., how many bit errors to expect.

6.2.1 Local Network. Attacks on the local network achieve the
best performance, as the variance in network latency is significantly
smaller than the variance over the internet (cf. Section 6.1.3). In
our lab setup, we repeat the measurement 1 000 000 times per bit to
be able to reliably leak bytes from the victim. On average, leaking
one byte takes 30min, which amounts to approximately 4min per
bit. Using the AVX covert channel instead of the cache reduces the
required time to leak an entire byte to only 8min.

To break ASLR, we require the cache covert channel. On average,
this allows breaking the randomization remotely within 2 h.

We used stress -i 1 -d 1 for the experiments, to simulate a
realistic environment. Although we would have expected our attack
to work best on a completely idle server, we did not see any negative
effects from the moderate server loads. In fact, they even slightly
improved the attack performance. One reason for this is that a
higher server load incurs a higher number of memory and cache
accesses [1] and thus facilitates the cache thrashing (cf. Section 4),
which is the performance bottle neck of our attack. Another reason
is that a higher server load might exhaust execution ports required
to calculate the bounds check in the leak gadget, thus increasing
the chance that the CPU has to execute the condition speculatively.

Our NetSpectre attack in local networks is comparably slow.
However, in particular specialized malware attacks, e.g., APTs, are
often active over several months in local networks. Over such a
time frame, the attacker can indeed leak all data of interest from a
target system on the same network.

6.2.2 Cloud Network. We evaluated the performance in the
cloud using two virtual machines instances on the Google Cloud.

These virtual machines have a fast network connection. We config-
ured the two instances to each use 2 virtual CPUs, which enabled a
4Gbit/s connection [22]. In this setup, we repeat the measurement
20 000 000 times per bit to get an error-free leakage of bytes. On
average, leaking one byte takes 8 h for the cache covert channel,
and 3 h for the AVX covert channel.

While this is comparably slow, it shows that remote Spectre
attacks are feasible between independent instances in the public
cloud. In particular, APTs typically run for several weeks or months.
Such an extended time frame is clearly sufficient to leak sensitive
data, such as encryption keys or passwords, using the NetSpectre
attack in a cloud environment.

7 CHALLENGES OF MITIGATING SPECTRE
In this section, we discuss limitations of state-of-the-art countermea-
sures against Spectre, and how they do not fully prevent NetSpectre
attacks. Furthermore, we discuss how NetSpectre attacks can be
prevented on the network layer. Finally, we outline challenges for
future research on Spectre attacks as well as Spectre mitigations.

7.1 State-of-the-art Spectre Countermeasures
Due to the different origins, Spectre variant 1 and variant 2 are
mitigated using separate countermeasures. Intel released microcode
updates to prevent the cross-process and cross-privilegemistraining
of indirect branches typical for Spectre variant 2 attacks. There are
no microcode updates to prevent mistraining of direct branches,
since this is easy to do in-place, i.e., in the same privilege level and
the same process context. For Spectre variant 1 attacks, a series of
pure software countermeasures have been proposed.

Intel and AMD recommend using the lfence instruction as a
speculation barrier [4, 39]. This instruction has to be inserted after
security-critical bounds check to stop the speculative execution.
However, adding this to every bounds check has a significant per-
formance overhead [39].

Microsoft implements an automatic detection of vulnerable code
paths, i.e., Spectre gadgets, in its compiler to limit the speculation
barrier to these gadgets [64]. However, Kocher [46] showed that
the automated analysis misses many gadgets. As Microsoft only
uses a blacklist for known gadgets [46], many gadgets, in particular
gadgets which are not typical (e.g., gadgets to break ASLR), are not
automatically safeguarded by the compiler.

In the Linux kernel, exploitable gadgets are identified manually
and with the help of static code analyzers [51]. Similarly to the
compiler-based approach, this requires a complete understanding
of which code snippets are exploitable.

Finally, until now it was widely overlooked that indirect branch
mistraining (Spectre variant 2) is also possible in-place. However,
the attack possibilities are much more constrained with in-place
mistraining.

7.2 Network-layer Countermeasures
As NetSpectre is a network-based attack, it cannot only be pre-
vented by mitigating Spectre but also through countermeasures on
the network layer. A trivial NetSpectre attack can easily be detected
by a DDoS protection, as multiple thousand identical packets are
sent from the same source. However, an attacker can choose any
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trade-off between packets per second and leaked bits per second.
Thus, the speed at which bits are leaked can simply be reduced
below the threshold that the DDoS monitoring can detect. This is
true for any monitoring which tries to detect ongoing attacks, e.g.,
intrusion detection systems. Although the attack is theoretically
not prevented, at some point the attack becomes infeasible, as the
time required to leak a bit increases drastically.

Another method to mitigate NetSpectre is to add artificial noise
to the network latency. As the number of measurements depends
on the variance in network latency, additional noise requires an
attacker to perform more measurements. Thus, if the variance in
network latency is high enough, NetSpectre attacks become infea-
sible due to the large number of measurements required.

Both approaches may mitigate NetSpectre attacks in practice.
However, as attackers can adapt and improve attacks, it is not safe
to assume that noise levels and monitoring thresholds chosen now
will still be valid in the near future.

7.3 Future Research Challenges
As discussed in the previous sections, Spectre is far from being a
solved case. The currently proposed mitigations merely fix symp-
toms without directly addressing the root cause, the imbalanced
trade-off between performance and security that led to the specula-
tive execution we currently have. We identified 5 challenges (C1 to
C5) for future work on Spectre attacks and mitigations.

C1: Gadgets are more versatile than anticipated. In particular the
gadgets we use to break ASLR have not been considered dangerous
so far. Also the AVX-based gadgets we use were not considered
so far. Gadgets may also consist of many small code pieces that
pass on secret values until at a later point the secret value is leaked
to the attacker. Since the building block of Spectre that exfiltrates
the information to the attacker is a covert channel, it appears the
underlying problem of identifying all gadgets may be reduced to
the problem of identifying all covert channels. Currently, we have
no technique to identify all covert channels in a system.

C2: Automatically safeguarding all gadgets is not trivial. For
Spectre variant 1 the proposed solution is to use speculation barri-
ers [4, 39]. As we cannot expect every developer to identify vulner-
able gadgets and correctly fix them, state-of-the-art solutions try
to automatically detect vulnerable gadgets and fix them at compile
time [64]. At the moment it is not clear whether static code analysis
is sufficient to detect all vulnerable gadgets, especially if they are
scattered across functions. In such complex scenarios, dynamic
analysis might lead to better results. However, dynamic analysis
naturally suffers from incompleteness, as certain parts of the pro-
gram may not be reached in the dynamic analysis. Furthermore,
it might be possible that the compiler produces Spectre gadgets
which are not visible in the source code, as it can happen with e.g.,
double-fetch bugs [70]. This would hardly be detected upfront and
completely undermine the security measures taken.

C3: Blacklisting is inherently incomplete. Current approaches rely
on blacklists to automatically patch exploitable gadgets [64]. How-
ever, this implies that we understand exactly which code fragments
are exploitable and which are not. As this paper shows, gadgets can
look different than anticipated, showing the incompleteness of the

blacklist approach. Inverting the logic might be a better direction,
i.e., using whitelists of (provably) unexploitable gadgets instead
of blacklists. However, this would require a substantial amount of
research on proving non-exploitability of code fragments.

C4: Cross-process and cross-privilege-level mistraining is easier to
solve than in-place mistraining. Current countermeasures mainly
aim at preventing Spectre attacks across process boundaries and
there especially across privilege levels [6, 39, 40]. However, as
shown in this paper, such countermeasures are ineffective if the
mistraining happens in-place inside the same process. This method
is not only applicable to Spectre variant 1, but also to Spectre variant
2 [25]. Retpoline [76] is currently the only mitigation that protects
against these Spectre variant 2 attacks by effectively stopping any
further speculation by the processor. However, Retpoline is not a
perfect solution, as it incurs significant performance overheads and
adds another side channel [20].

If an attacker can only poison branches with valid branch targets
inside the same process, i.e., all microcode updates applied, Retpo-
line can be replaced by a more simple construct we propose. We
propose to insert speculation barriers at every possible call target.
This is a much clearer structure than with Retpolines. Thus, every
misspeculated indirect call immediately aborts before actually exe-
cuting code. For direct calls, the compiler can jump just beyond the
speculation barrier to have less performance impact. Still, the over-
all performance impact of this solution, just like Retpoline, would
be significant. It remains unclear whether Spectre attacks within
the same process can be fully prevented without high performance
overheads and without introducing new problems.

C5: Security mechanisms may have unwanted side effects. The
Retpoline patch basically hides the target of indirect calls from the
CPU by fiddling with the return values on the stack. However, this
leads to side effects with other security mechanisms, as a Retpoline
behaves similarly to an exploit changing the control flow. Espe-
cially security mechanisms such as control-flow integrity have to
be adapted [77] to not falsely detect Retpolines as attacks. Still, the
question arises how Spectre mitigations interact with other CFI
implementations, especially in hardware, as well as other security
mechanisms and whether we have to accept trade-offs when com-
bining security mechanisms. In general, we need to investigate
which security mechanisms could have detrimental side effects that
outweigh the gains in security.

8 CONCLUSION
In this paper, we presented NetSpectre, the first remote Spectre
variant 1 attack. We demonstrated the first access-driven remote
Evict+Reload cache attack over network, with a performance of 15
bits per hour. We also demonstrated the first Spectre attack which
does not use a cache covert channel. In particular, in a remote Spec-
tre attack, our novel high-performance AVX-based covert channel
performs significantly better than the remote cache covert channel.
Our NetSpectre attack in combination with the AVX-based covert
channel leaks 60 bits per hour from the target system. We verified
NetSpectre in local networks as well as in the Google cloud.

NetSpectre marks a paradigm shift for Spectre attacks, from local
attacks to remote attacks. With our NetSpectre attacks, a much
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wider range and larger number of devices are exposed to Spectre
attacks. Spectre attacks now must also be considered on devices
which do not run any potentially attacker-controlled code at all.
We demonstrate that in a remote attack, NetSpectre can be used to
defeat address-space layout randomization on the remote system.
As we discussed in this paper, there are a series of open challenges
for future research on Spectre attacks and Spectre mitigations.
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