Dayton Public Schools & Chronic Absenteeism
Health Policy Institute of Ohio

Adrian Zai, MD PhD MPH
CMIO, SRG Technology
Clinical Director of Population Health Informatics, MGH

Tanya Zucconi, MBA
Vice President of Professional Services, SRG Technology

September 15, 2016
What is the Dayton PS / SRG-Tech relationship?

From data...

SRG-Tech

Dayton PS

...to outcomes!

...to insight...
Our objectives are...

For DPS to identify which students will become at-risk for chronic absenteeism

For DPS to intervene and impact outcome BEFORE student becomes chronically absent
But the challenge is...

Can we develop a predictive model to identify which students will become chronically absent?
This is what we do

Our experience:
- SRGT was founded as an education IT firm
- >10 years of change management projects
- Data Science Team with published results

Our software:
- Created from the ground up to drive outcomes
- Developed by the MGH Laboratory of Computer Science
- Based on 10 years of HIT research
Timeline
Analyzing educational & clinical data for ALL students in the DPS student body

Oct 2015
DPS identifies data ocean, academic challenges, and requests SRGT partnership

Nov 2015-Mar 2016
DPS and SRGT teams establish and implement data exchange processes

Early April 2016
Phase 1 Report on African American male students delivered to DPS, who requests that analyses be expanded to ALL DPS students

Late April 2016
DPS Data Team provides additional data, SRGT Team recalibrates chronic absenteeism model

May 2016
Phase 2 Report delivered for all DPS students
Our Analytics

Chronic Absenteeism Prediction Model
- Predicts Lost Instructional Days ≥ 18
- Strong Accuracy (AUC = 0.80)
- Feasible to implement
- Includes entire DPS student body

Additional Analyses
- Clinical Conditions (diabetes, ADHD, asthma)
- 6th Grade grades (reading, math, soc sci, lang)
- Extracurriculars
- 4th - 7th Grade Test Scores
- High School GPA
- 9th Grade 1st Quarter Fs vs. Dropouts
- Teacher Attendance
- Nursing Visits
- Geo Mapping

*See report for details of prediction model
**Analyses are exploratory only and do not imply causality
Selected Findings...

- Chronic absenteeism is:
 - 66% more likely for student with diabetes
 - 39% for ADHD
 - 19% for asthma compared to students without any medical conditions

- Lost instructional days for 6th grade students are associated with a decrease in math, reading, social science and language art grades
 - For example, every 10 lost instructional days are associated with a 4.5% drop in their math grade (i.e., from 93% to 88.5%)

- High school students involved in 1 extra-curricular activity have 36% fewer lost instructional days than students with no activities
More Findings...

Factors **NOT** associated with Chronic Absenteeism:

<table>
<thead>
<tr>
<th>Teacher Attendance vs. Test Scores</th>
<th>(1) Not statistically significant</th>
<th>(2) Needs further analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excused Absences vs. Nursing Visits</td>
<td>(1) No relationship at all</td>
<td></td>
</tr>
<tr>
<td>Mapping</td>
<td>(1) No asthma pattern</td>
<td>(2) No absenteeism pattern</td>
</tr>
</tbody>
</table>

Teacher attendance is an ESSA focus
Conclusion

Chronic absenteeism touches both health and education, with causal factors, and potential solutions, in each. A best case scenario, however, taps both institutions.

A deeper understanding of the causes of chronic absenteeism in specific schools and districts is required to most effectively align interventions to causal factors.

This understanding is most efficiently achieved through the use of data analytics - descriptive, predictive, prescriptive.

ESSA requires academic and non-academic measures of public schools. One non-academic measure is the Indicator of school quality, which must be research-based and linked to achievement. Chronic absenteeism can be an ESSA measure.

Policy efforts that recognize the privacy and security concerns of health and education data, while facilitating integrated approaches to tackle the challenges to each institution, are the next step for students and their academic achievement and health.
A sample of clinical studies supported by TopCare & Data Science

1. Non-visit-based cancer screening using a novel population management system

2. The longitudinal impact of patient navigation on equity in colorectal cancer screening in a large primary care network
 Cancer. 2014 Jul 1;120(13):2025-31

4. Population-based breast cancer screening in a primary care network

5. Applying Operations Research to Optimize a Novel Population Management System for Cancer Screening

6. Assessing Hospital Readmission Risk Factors in Heart Failure Patients Enrolled in a Telemonitoring Program
 International Journal of Telemedicine and Applications 01/2013; 2013:305819

7. Efficacy and cost-effectiveness of an automated screening algorithm in an inpatient clinical trial
 Clinical Trials. 02/2012; 9(2):198-203

8. Linking electronic health record-extracted psychosocial data in real-time to risk of readmission for heart failure
 Psychosomatics. 01/2011; 52(4):319-27

 Journal of the American Medical Informatics Association 01/2008; 15(4):524-33

10. Is this "my" patient? Development and validation of a predictive model to link patients to primary care providers
 Journal of General Internal Medicine. 2006 Sep;21(9):973-8

 Published in the 8/14 AMIA Proceedings
Adrian Zai,
Adrian.Zai@SRGTech.com

Tanya Zucconi,
Tanya.Zucconi@SRGTech.com

Please visit our website at:
www.SRGTech.com