February 20, 2019 Ms. Cindi Punihaole Kennedy, Director The Koiiala Center Kahalu’u Bay Education Center P. O. Box 437462 Kamuela, Hawai’i Island, Hawai’i 96743 Dear Ms. Punihaole Kennedy: This letter is in response to your request of January 31, 2019, asking me to provide a hazard assessment for Kahalu’u Bay corals and other marine organisms. At the time of the request, you also provided environmental concentration data for oxybenzone from five sites that had been collected for Kahalu’u Bay on April 14, 2018. The effect concentrations used for the analysis were obtained from the published scientific literature based on a literature review that I performed. In undertaking this assessment, there were a number of approaches found in the scientific literature and government guidance documents [e.g., references 1-8] to calculate a hazard (or risk) quotient. I used two different approaches to determine the hazard quotient for Kahalu’u Bay, Hawaii Island. The first approach I used was based on the U.S. Environmental Protection Agency (U.S. EPA) guidance for pesticides and other chemicals [1] which included an effects determination for Endangered and Threatened species [2]. With this method, the measured environmental concentration (MEC) is compared to a toxicity endpoint (e.g., LC50 that is the concentration of a chemical where 50% of the organisms die or EC50 concentration of the chemical, which results in a 50% adverse effect for a relevant sub-lethal endpoint). For aquatic animals, the lowest EC50 or LC50 measurements are used as the toxicity endpoint. Thus, the acute risk or hazard quotient, RQ (or HQ) = MEC/most sensitive organism’s EC50 or LC50. This quotient then is compared to U.S. EPA’s Level of Concern (LOC) for aquatic animals [1, 2]. The LOC is a policy tool used to interpret the RQ (HQ) and determine potential risk and regulatory action. For aquatic animals the presumption for acute high risk is a RQ of 0.5 (LOC), acute restricted use is a RQ of 0.1 (LOC) and for acute endangered species the RQ is 0.05 (LOC) [1, 2]. These calculations are presented in Table 1. I have used an arbitrary color scheme for easier visualization: red ≥0.5 is high ecological risk; yellow ≥ 0.1<0.5 is moderate risk and potential for restricted use; green ≥0.05< 0.1 is low risk. The second approach I used for determining the hazard (or risk) quotient was based on European Union guidance that is internationally accepted, and has been adopted in the development of several ecological risk assessment guidelines [3-7]. With this method, the actual or predicted environmental concentration is compared to an extrapolated or derived Predicted No-Effect Concentration (PNEC) that is divided by an uncertainty (or assessment) factor (UF). Thus, the HQ = (MEC/PNEC)*UF. For this HQ determination, -2an UF of 1000 was selected for the extrapolation of the EC50 or LC50 values to estimate noeffect values (PNEC) [3, 5, 8]. These calculations are presented in Table 2. I have used an arbitrary color scheme for ease of visualization: red ≥ 1 is high, unacceptable risk; yellow ≥ 0.5<1 is possibility of increased risk; and green <0.5 is low risk. Hazard Quotients are an initial tier of an ecological risk assessment and meant as a screening tool. The HQ method is not intended to be predictive for the level or magnitude of risk. Based on the guidance by U.S. EPA [1, 2], the most sensitive organism represented in this dataset is Stylophora pistillata and specifically the planula exposed to oxybenzone during a 24h exposure involving light (LC50 = 1.39 µg/L). Based on these data, Sites HEL1, HEL2, HEL3, and HEL4 exhibited high acute risk; using the EU method of calculating a HQ, all sites indicated high acute risk potential for all organisms examined. Please let me know if you have any questions or need clarification. Best Regards, Cheryl M. Woodley, Ph.D. Program Manager Coral Health & Disease Program. Attachments: 1. Table 1 Hazard quotient for Kahalu’u Bay, Hawai’i Island, Hawaii using U.S. EPA Approach 2. Table 2 Hazard quotient for Kahalu’u Bay, Hawai’i Island, Hawaii using European Union Approach 3. References Table 1 Hazard quotient for Kahalu'u Bay, Big Island, Hawaii using US EPA Approach HEL 1 Oxybenzone MEC µg/L HQ=MEC/EC50 (or LC50) SPECIES HEL 3 HEL 4 HEL 6 Ref. 440.0 134.0 1721.0 2947.0 5.0 0.65 0.20 2.53 4.34 0.01 9 10.48 3.19 40.98 70.17 0.12 9 55.00 16.75 215.13 368.38 0.63 9 48.89 14.89 191.22 327.44 0.56 9 5.95 1.81 23.26 39.82 0.07 9 8.46 2.58 33.10 56.67 0.10 9 1.29 0.39 5.06 8.67 0.01 9 12.22 3.72 47.81 81.86 0.14 9 0.03 0.01 0.13 0.23 0.00 9 0.15 0.05 0.59 1.02 0.00 9 0.55 0.17 2.15 3.69 0.01 9 Toxicity Reference Value µg/L Stylophora pistillata coral cells 4h dark LC50 679.00 Stylophora pistillata coral cells 4h light LC50 42.00 Pocillopora damicornis coral cells 4h light LC50 8.00 Acropora cervicornis coral cells 4h light LC50 9.00 Orbicella annularis coral cells 4h light LC50 74.00 Montastraea cavernosa coral cells 4h light LC50 52.00 Porites astreoides coral cells 4h light LC50 340.00 Porites divaricata HEL 2 coral cells 4h light LC50 36.00 Coral Planula (early life stage) Planula 8h dark LC50 12800.00 Stylophora pistillata Planula 8h light LC50 2900.00 Stylophora pistillata Planula 24h dark LC50 Stylophora pistillata 799.00 Stylophora pistillata Stylophora pistillata Stylophora pistillata Stylophora pistillata Stylophora pistillata Planula 24h light Planula deformity 8h dark Planula deformity 8h light Planula deformity 24h dark Planula deformity 24h light LC50 1.39 EC50 737000.00 EC50 133000.00 EC50 137.00 EC50 49.00 316.55 96.40 1238.13 2120.14 3.60 9 0.00 0.00 0.00 0.00 0.00 9 0.00 0.00 0.01 0.02 0.00 9 3.21 0.98 12.56 21.51 0.04 9 8.98 2.73 35.12 60.14 0.10 9 3280.00 0.13 0.04 0.52 0.90 0.00 10 3472.59 0.13 0.04 0.50 0.85 0.00 10 710.76 0.62 0.19 2.42 4.15 0.01 10 2700.00 0.16 0.05 0.64 1.09 0.00 11 1670.00 0.26 0.08 1.03 1.76 0.00 12 1600.00 0.28 0.08 1.08 1.84 0.00 11 Invertebrates Paracentrotus lividus sea urchin EC50 Mytilus galloprovincialis mussels EC50 Siriella armata mysid, crustacean EC50 Daphnia magna Daphnia magna Daphnia magna crustacean 24h immobility crustacean 48h immobility crustacean 72h immobility EC50 EC50 EC50 Daphnia magna crustacean 24h LC50 7630.00 0.06 0.02 0.23 0.39 0.00 17 Daphnia magna crustacean 48h LC50 1090.00 0.40 0.12 1.58 2.70 0.00 18 31.72 9.66 124.08 212.47 0.36 10 0.46 0.14 1.79 3.07 0.01 12 0.24 0.07 0.93 1.59 0.00 13 0.18 0.05 0.70 1.20 0.00 13 1.75 0.53 6.86 11.74 0.02 14 0.02 0.01 0.08 0.13 0.00 15 Algae Isochrysis galbana Desmodesmus subspicatus Chlamydomonas reinhardtii Microcystis aeruginosa Skeletonema pseudocostatum Chlorella vulgaris microalgae Green algae growth EC50 13.87 EC50 960.00 EC50 1850.00 EC50 2460.00 EC50 251.00 EC50 22400.00 green microalgae cyanobacterium algal diatom growth inhibition green microalgae growth inhibition Chlorella vulgaris Chlorella vulgaris green microalgae growth inhibition 96h EC50 green microalgae growth inhibition 96h EC50 6860.00 0.06 0.02 0.25 0.43 0.00 17 0.15 0.04 0.58 0.99 0.00 18 2980.00 Fish Brachydanio rerio 96h LC50 14730.00 0.03 0.01 0.12 0.20 0.00 17 Brachydanio rerio 96h LC50 3890.00 0.11 0.03 0.44 0.76 0.00 18 Red - High Risk LOC aquatic animals ≥0.5 Yellow – Moderate Risk, LOC aquatic animals ≥0.1<0.5 Green – Low Risk, LOC ≥0.05<0.1 White – not significant, below threshold for hazard quotient Table 2 Hazard Quotient for Kahalu'u Bay, Big Island Hawaii using European Union Approach Oxybenzone MEC µg/L HQ=MEC/PNEC*1000 HEL 1 HEL 2 HEL 3 HEL 4 HEL 6 440.0 134.0 1721.0 2947.0 5.0 Ref. Toxicity Reference Value µg/L SPECIES Stylophora pistillata Stylophora pistillata Pocillopora damicornis Acropora cervicornis Orbicella annularis Montastraea cavernosa Porites astreoides Porites divaricata coral cells 4h dark coral cells 4h light coral cells 4h light coral cells 4h light coral cells 4h light coral cells 4h light coral cells 4h light coral cells 4h light LC50 679.00 648.0 197.3 2534.6 4340.2 7.4 LC50 42.00 10476.2 3190.5 40976.2 70166.7 119.0 LC50 8.00 55000.0 16750.0 215125.0 368375.0 625.0 LC50 9.00 48888.9 14888.9 191222.2 327444.4 555.6 LC50 74.00 5945.9 1810.8 23256.8 39824.3 67.6 LC50 52.00 8461.5 2576.9 33096.2 56673.1 96.2 LC50 340.00 1294.1 394.1 5061.8 8667.6 14.7 LC50 36.00 12222.2 3722.2 47805.6 81861.1 138.9 LC50 12800.00 34.4 10.5 134.5 230.2 0.4 LC50 2900.00 151.7 46.2 593.4 1016.2 1.7 LC50 799.00 550.7 167.7 2153.9 3688.4 6.3 LC50 1.39 316546.8 96402.9 9 9 9 9 9 9 9 9 Coral Planula (early life stage) Stylophora pistillata Stylophora pistillata Stylophora pistillata Stylophora pistillata Planula 8h dark Planula 8h light Planula 24h dark Planula 24h light 1238129.5 2120143.9 3597.1 9 9 9 9 Stylophora pistillata Planula deformity 8h dark EC50 Stylophora pistillata Planula deformity 8h light EC50 Stylophora pistillata Planula deformity 24h dark EC50 Stylophora pistillata Planula deformity 24h light EC50 737000.00 0.6 0.2 2.3 4.0 0.0 9 133000.00 3.3 1.0 12.9 22.2 0.0 9 137.00 3211.7 978.1 12562.0 21510.9 36.5 9 49.00 8979.6 2734.7 35122.4 60142.9 102.0 9 Invertebrates Paracentrotus lividus Mytilus galloprovincialis Siriella armata Daphnia magna Daphnia magna Daphnia magna sea urchin EC50 mussels EC50 mysid, crustacean crustacean 24h immobility crustacean 48h immobility crustacean 72h immobility EC50 EC50 EC50 EC50 3280.00 3472.59 710.76 2700.00 1670.00 1600.00 134.1 40.9 524.7 898.5 1.5 126.7 38.6 495.6 848.6 1.4 619.1 188.5 2421.4 4146.3 7.0 163.0 49.6 637.4 1091.5 1.9 263.5 80.2 1030.5 1764.7 3.0 275.0 83.8 1075.6 1841.9 3.1 10 10 10 11 12 11 Daphnia magna crustacean 24h LC50 7630.00 57.7 17.6 225.6 386.2 0.7 17 Daphnia magna crustacean 48h LC50 1090.00 403.7 122.9 1578.9 2703.7 4.6 18 EC50 13.87 31723.1 9661.1 124080.7 212473.0 360.5 EC50 960.00 458.3 139.6 1792.7 3069.8 5.2 EC50 1850.00 237.8 72.4 930.3 1593.0 2.7 EC50 2460.00 178.9 54.5 699.6 1198.0 2.0 EC50 251.00 1753.0 533.9 6856.6 11741.0 19.9 Algae Isochrysis galbana Desmodesmus subspicatus Chlamydomonas reinhardtii Microcystis aeruginosa Skeletonema pseudocostatum microalgae Green algae growth green microalgae cyanobacterium algal diatom growth inhibition 10 12 13 13 14 Chlorella vulgaris Chlorella vulgaris Chlorella vulgaris green microalgae growth inhibition EC50 green microalgae growth inhibition 96h EC50 green microalgae growth inhibition 96h EC50 22400.00 19.6 6.0 76.8 131.6 0.2 15 6860.00 64.1 19.5 250.9 429.6 0.7 17 2980.00 147.7 45.0 577.5 988.9 1.7 18 Fish Brachydanio rerio Brachydanio rerio 96h 96h LC50 14730.00 29.9 9.1 116.8 200.1 0.3 LC50 3890.00 113.1 34.4 442.4 757.6 1.3 RED= Unacceptable Risk ≥1 Yellow= Potential of increased Risk ≥0.5<1.0 Green= Low Risk <0.5 White= not significant, below threshold for hazard quotient 17 18 References [1] U.S. Environmental Protection Agency. Technical Overview of Ecological Risk Assessment: Risk Characterization. https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/technicaloverview-ecological-risk-assessment-risk (Accessed 4-6-18) [2] U.S. Environmental Protection Agency. (2004) Overview of the Ecological Risk Assessment Process in the Office of Pesticide Programs, U.S. Environmental Protection Agency. Endangered and Threatened Species Effects Determination. https://19january2017snapshot.epa.gov/sites/production/files/201411/documents/ecorisk-overview.pdf (Accessed 4-6-18) [3] Environment Canada. Guidance Manual: The Science Behind Environmental Assessments of Priority Substances under the Canadian Environmental Protection Act. https://www.ec.gc.ca/eseees/default.asp?lang=En&n=415E464B-1 (Accessed 4-6-18) [4] European Commission. (2003) Technical guidance document on risk assessment in support of Commission Directive 93/67/EEC on risk assessment for new notified substances, Commission Regulation (EC) No. 1488/94 on risk assessment for existing substances, and Directive 98/8/EC of the European Parliament and of the council concerning the placing of biocidal products on the market. Part II. EUR 20418 E/2. Joint Research Centre, Ispra, Italy. https://echa.europa.eu/documents/10162/16960216/tgdpart2_2ed_en.pdf (Accessed 4-6-18) [5] ChemSafetyPro.com. Chemical Risk Assessment: How to Calculate Predicted No-Effect Concentration (PNEC). http://www.chemsafetypro.com/Topics/CRA/How_to_Calculate_Predicted_NoEffect_Concentration_(PNEC).html (Accessed 4-6-18) [6] European Medicines Agency (EMEA). (2006) Guideline on the Environmental Risk Assessment of Medicinal Products for Human Use. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/10/WC500003978.p df (Accessed 4-6-18) [7] Hernando MD, Mezcua M. Fernandex-Alba AR, Barcelo D. (2006) Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta. 69: 334-342. [8] Dussault EB, Balakrishnan VK, Sverko E, Solomon KR, Sibley PK. (2008) Toxicity of human pharmaceuticals and personal care products to benthic invertebrates. Environmental Toxicology and Chemistry. 27: 425-432. [9] Downs CA, Kramarsky-Winter E, Segal R, Fauth J, Knutson S, Bronstein O, Ciner FR, Jeger R, Lichtenfeld Y, Woodley CM, Pennington P, Cadenas K, Kushmaro A, Loya Y. (2016) Toxicopathological effects of the sunscreen UV filter, oxybenzone (benzophone-3), on coral planulae and cultured primary cells and its environmental contamination in Hawaii and in the U.S. Virgin Islands. Archives of Environmental Contaminant Toxicology. 70: 265-288. [10] Paredes E, Perez S, Rodil R, Quintana JB, Beiras R. (2014) Ecotoxicological evaluation of four UV filters using marine organisms from different trophic levels Isochrysis galbana, Mytilus galloprovincialis, Paracentrotus lividus, and Siriella armata. Chemosphere. 104: 44-50. [11] Molins-Delgado D, Gago-Ferrero P, Diaz-Cruz MS, Barcelo D. (2016) Single and joint ecotoxicity data estimation of organic UV filters and nanomaterials toward selected aquatic organisms. Urban groundwater risk assessment. Environmental Research. 145: 126-134. [12] Sieratowicz A, Kaiser D, Behr M, Oetken M, Oehlmann J. (2011) Acute and chronic toxicity of four frequently used UV filter substances for Desmodesmus subspicatus and Daphnia magna. Journal of Environmental Science and Health Part A. 46: 1311-1319. [13] Mao F, He Y, Kushmaro A, Gin KY-H. (2017) Effects of benzophenone-3 on the green alga Chlamydomonas reinhardtii and cyanobacterium Microcystis aeruginosa. Aquatic Toxicology. 193: 1-8. [14] Petersen K, Heiaas HH, Tollefsen KE. (2014) Combined effects of pharmaceuticals, personal care products, biocides and organic contaminants on the growth of Skeletonema pseudocostatum. Aquatic Toxicology. 150:45-54. [15] Pablos MV, Garcia-Hortiguela P, Fernandez C. (2015) Acute and chronic toxicity of emerging contaminants, alone or in combination, in Chlorella vulgaris and Daphnia magna. Environmental Science and Pollution Research. 22: 5417-5424. [16] Kim S, Choi K. (2014) Occurrences, toxicities and ecological risks of benzophone-3, a common component of organic sunscreen products: A mini-review. Environment International. 70: 143-157. [17] Sun H-Q, Du Y, Zhang Z-Y, Jiang W-J, Guo Y-M, Lu X-W, Zhang Y-M, Sun L-W. (2016) Acute toxicity and ecological risk assessment of benzophenone and N, N-diethyl-3 methylbenzamide in personal care products. International Journal of Environmental Research and Public Health. 13: 925. Doi: 10.3390/ijerph13090925. [18] Du Y, Wang W-Q, Pei Z-T, Ahmad F, Xu R-R, Zhang Y-M, Sun L-W. (2017) Acute toxicity and ecological risk assessment of benzophenone-3 (BP-3) and benzophenone-4 (BP-4) in ultraviolet (UV)filters. International Journal of Environmental Research and Public Health. 14: 1414. Doi: 10.3390/ijerph14111414.