Traffic Impact Study

Snow Hill Subdivision Development

6500 Snow Hill Road

Ooltewah, TN 37363

PREPARED FOR

KSM Developing Co., LLC 112 Jordan Drive Chattanooga, Tennessee 37421

June 10, 2019

PREPARED BY

Meyer Transportation Consultants, Inc.

8802 Oak Valley Lane

Chattanooga, Tennessee 37421

Meyer Transportation Consultants, Inc. www.MeyerTrans.com

TABLE OF CONTENTS

1.0 I	NTRODUCTION	•••••	5
1.1	Project Scope	5	
1.2	Project Description	6	
1.3	Study Area and Description	8	
2.0 E	EXISTING CONDITIONS	•••••	9
2.1	2019 Traffic Volumes and Capacity Analysis	9	
2.2	2025 Traffic Volumes and Capacity Analysis	12	
3.0 NE	EW DEVELOPMENT LOS IMPACT	••••	. 15
3.1	Trip Generation	15	
3.2	Trip Distribution and New Development Trips	17	
3.3	LOS Evaluation	20	
4.0 CF	RASH AND SPEED DATA REVIEW		22
4.1	Traffic Crash Data	22	
3.2	Speed Data	25	
5.0 CC	ONCLUSIONS	2	26

LIST OF FIGURES

Figure 1.	Area Map	5
Figure 2	Location Map	6
Figure 3	Site Map	7
Figure 4A	Location of Entrance 1 and 3	8
Figure 4B	Location of Entrance 2	9
Figure 5	2019 AM and PM Peak Hour Volumes	10
Figure 6	Projected Traffic Volumes on Snow Hill Road	12
Figure 7	Projected Traffic Volumes on Mountain View Road	13
Figure 8	2025 AM and PM Peak Hour Volumes	14
Figure 9	Sections Used for Three Entrances	16
Figure 10	AM and PM Percentage Trip Distribution for Development	17
Figure 11	AM and PM Trip Assignment	18
Figure 12	2025 Total Trips After New Development	19
Figure 13	Crash Data from 2015 to 2019	22

LIST OF TABLES

Table 1.	HCM Level of Service (LOS)	11
Table 2.	EXISTING 2019 LEVEL OF SERVICE	11
Table 3.	ESTIMATED 2025 LEVEL OF SERVICE	15
Table 4.	TRIP GENERATION FOR NEW DEVELOPMENT	16
Table 5.	2025 WITH NEW DEVELOPMENT LEVEL OF SERVICE	20
Table 6.	CRASH RATE BY ROADWAY SEGMENT	23
Table 7.	CRASH LIST FOR 6400 BLOCK OF SNOW HILL ROAD	24

APPENDICES

Appendix 1 through Appendix 10		48
--------------------------------	--	----

1.0 INTRODUCTION

1.1 Project Scope

This report summarizes the results of the traffic analyses for the proposed subdivision bounded by Snow Hill Road on the west and Mountain View Road on the east in Ooltewah, Hamilton County, Tennessee. Figure 1 displays the area map of the location of the proposed development. The subdivision is located approximately at 6500 Snow Hill Road. Figure 2 illustrates the location map of the proposed subdivision. The developer plans to build a subdivision with 453 single family dwellings. The primary goal of the study is to estimate the number of vehicles to be generated from this subdivision in the year 2025 when the development is fully occupied and determine the potential impact to Snow Hill Road and Mountain View Road.

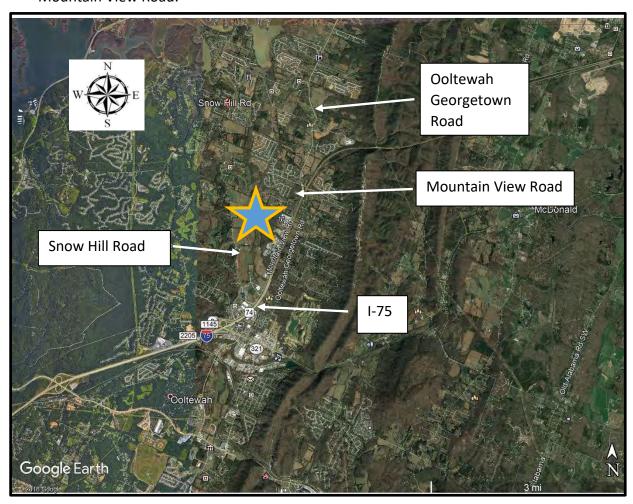


Figure 1 - Area Map

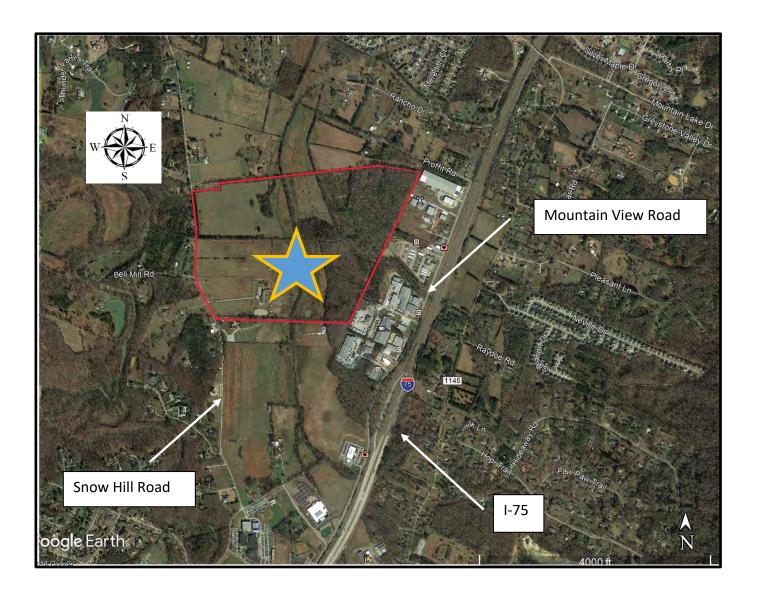


Figure 2 - Location Map

1.2 Project Description

The plan as mentioned above is to construct 453 single family dwellings on the site between Snow Hill Road and Mountain View Road. The proposed site plan is shown in the green color on the Site Map in **Figure 3**



Figure 3 -Site Map

1.3 Study Area Description

The proposed subdivision is situated between Snow Hill Road on the west side and Mountain View Road on the east side. Snow Hill Road is a rolling two-lane connector road with a posted speed of 40 miles per hour. Ooltewah High School is located just south of the proposed subdivision. Mountain View Road is also a two-lane collector road in the study area with a posted speed of 45 miles per hour. Three entrances/exits are proposed for the development. Entrance 1 and Entrance 3 are planned for Snow Hill Road. Entrance 3 will be directly across from Bell Mill Road. Entrance 1 will be located approximately 1100 feet north of Entrance 3. Entrance 2 will be connected to Transport Lane which connects directly onto Mountain View Road. Figures 4 A and B show the entrance locations.

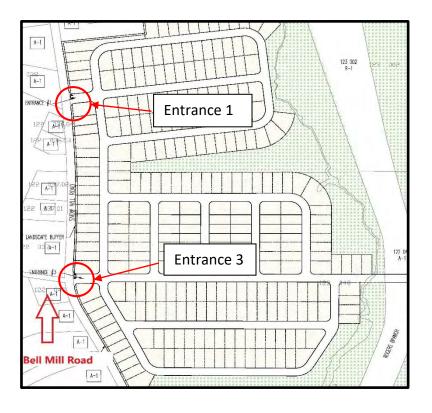


Figure 4A - Location of Entrance 1 and 3

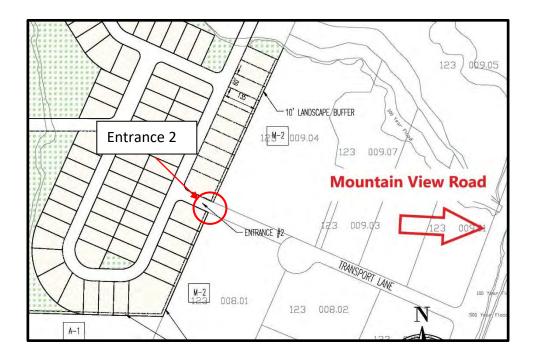


Figure 4B - Entrance 2

2.0 EXISTING CONDITIONS

2.1 2019 Traffic Volumes and Capacity Analysis

Fifteen-minute turning movement counts were made on May 21, 2019 from 7:00-9:00 AM and 2:00-6:00 PM to allow calculations of Level of Service (LOS) for Snowhill Road at Bell Mill Road and for Mountain View Road at Transport Drive. The traffic counts are shown in **Appendix 1.** The AM and PM Peaks were determined for Snow Hill Road to be from 7:15-8:15 AM and 5:00-6:00 PM, respectively. For Mountain View Road the AM and PM Peaks were determined to be 7:15-8:15 AM and 5:00-6:00 PM, respectively. **Figure 5** illustrates the hourly counts for the AM and PM Peaks in the area of study.

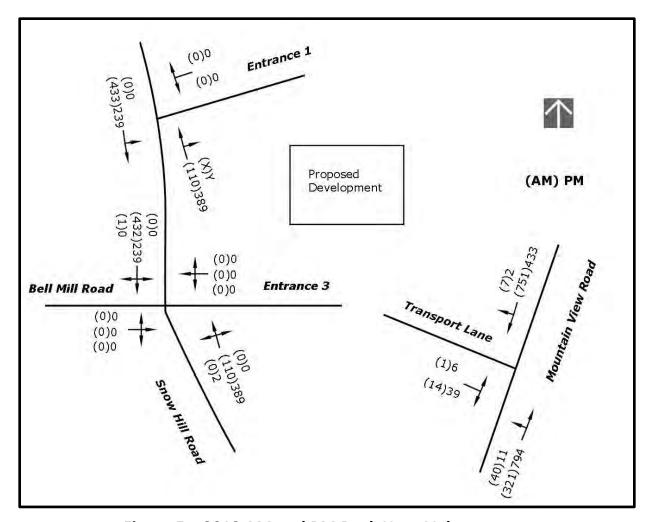


Figure 5 – 2019 AM and PM Peak Hour Volumes

A capacity and Level of Service (LOS) were performed on the existing street network prior to the new development for the AM and PM periods above using the SYNCHRO® 10.1 traffic simulation program as defined by the Highway Capacity Manual (HCM).

What is (LOS) in traffic engineering terms? Level of service is a system of ranking intersection performance using the average delay per vehicle as the evaluation criteria (expressed as seconds of delay per vehicle, or sec/veh). The HCM LOS rankings are displayed in **Table 1**. Normally if an intersection operates at a LOS of C or better, that is satisfactory.

TABLE 1				
	HCM Level of S	Service (LOS)		
LOS	Average [Delay (sec/veh)		
LUS	Signalized	Unsignalized		
Α	≤ 10	≤ 10		
В	>10-20	>10-15		
С	>20-35	>15-25		
D	>35-55	>25-35		
E	>55-80	>35-50		
F	>80	>50		

Table 2 illustrates the existing 2019 level of service for the intersections of Snow Hill Road at Bell Mill Road and then at Mountain View Road at Transport Lane. Snow Hill Road at Bell Mill Road operates at a LOS of A during the AM and PM Peaks. Mountain View Road at Transport Lane operates at a LOS of B during the AM Peak and at a LOS of A in the PM Peak. The SYNCHRO print out sheets are shown in **Appendix 2** for 2019.

TABLE 2							
EXISTING 2019	EXISTING 2019 LEVEL OF SERVICE (Delay in Sec)						
Snow Hill Road at Bell Mill Road AM PEAK PM PEAK							
Eastbound Left/Right	A (0.0)	A (0.0)					
Northbound Left/Thru	A (0.0)	A (0.1)					
Southbound Right/Thru	A (0.0)	A (0.0)					
Intersection LOS	A (0.0)	A (0.0)					

TABLE 2 (Cont.) EXISTING 2019 LEVEL OF SERVICE							
Mountain View Road at Transport Lane AM PEAK PM PEAK							
Eastbound Left/Right C (15.7) A (0.0)							
Northbound Left/Thru	A (1.6)	A (0.1)					
Southbound Thru/Right	A (0.0)	A (0.0)					
Intersection LOS B (0.7) A (0.0)							

2.2 2025 Traffic Volumes and Capacity Analysis

The SUBDIVISION is planned to be completed by 2025, thus the 2019 Annual Average Daily Traffic (AADT) volumes will need to be expanded to 2025. From the TDOT count station 00251 on Snow Hill Road near Amos Road there were 15 years of volumes from 2001 to 2016. **Figure 6** below shows the volume data points and the projections using regression analysis to 2019 and 2025. The AADT for Snow Hill Road expand from 7,920 to 8,800 vehicles per day.

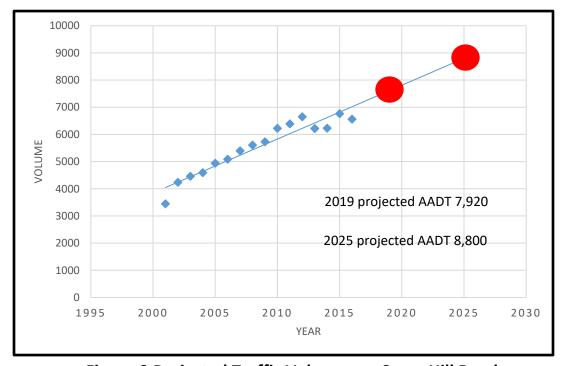


Figure 6-Projected Traffic Volumes on Snow Hill Road

From the TDOT count station 00534 on Mountain View Road near Transport Lane there were also 15 years of volumes from 2001 to 2016. **Figure 7** below shows the volume data points and the AADT projections on Mountain View Road from 12,500 to 15,200 vehicles per day in 2019 and 2025, respectively.

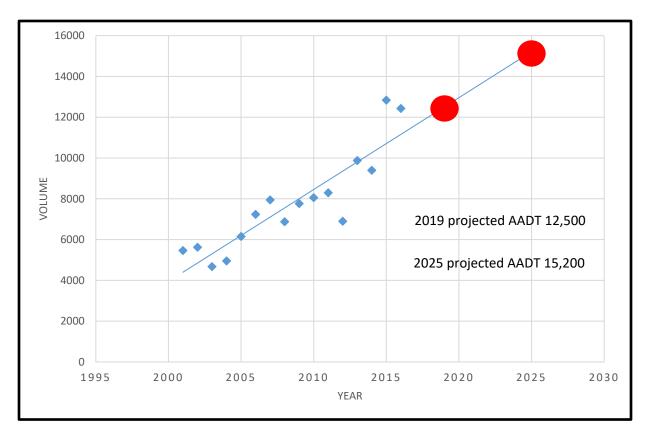


Figure 7- Projected Traffic Volumes on Mountain View Road

The percentage increase from 2019 to 2025 for Snow Hill Road is

8,800/7,920 or 11%

The percentage increase from 2019 to 2025 for Mountain View Road is

15,200/12.500 or 22%

These values will be used to expand the 2019 hourly volumes to 2025 hourly volumes. **Figure 8** illustrates the expanded volumes for the 2025 AM and PM Peak Hour Volumes.

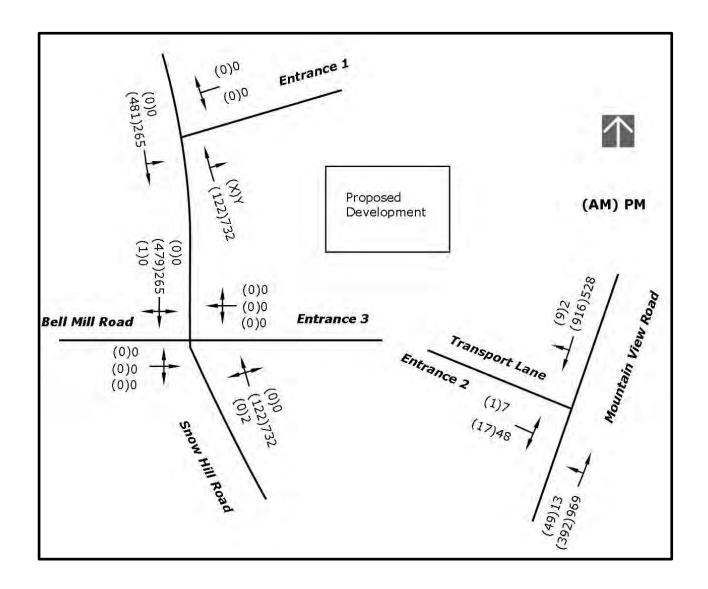


Figure 8 – 2025 AM and PM Peak Hour Volumes

Table 3 illustrates the estimated 2025 LOS for the intersections of for Snow Hill Road at Bell Mill Road and for Mountain View Road at Transport Lane for the AM Peak and PM Peak in 2025 without the development. Snow Hill Road at Bell Mill Road operates at a LOS of A in the AM and PM Peaks. Mountain View Road at Transport Lane operates at a LOS of C in the AM and the PM Peaks. This is due mostly to the delay on Transport Lane. The SYNCHRO print out sheets are shown in **Appendix 4** for 2021.

TABLE 3							
ESTIMATED 20	ESTIMATED 2025 LEVEL OF SERVICE (Delay in Sec)						
Snow Hill Road at Bell Mill Road AM PEAK PM PEAK							
Eastbound Left/Right	A (0.0)	A (0.0)					
Northbound Left/Thru	A (0.0)	A (0.0)					
Southbound Right/Thru	A (0.0)	A (0.0)					
Intersection LOS	A (0.0)	A (0.0)					

TABLE 3 (Cont.) ESTIMATED 2025 LEVEL OF SERVICE (Delay in Sec)						
Mountain View Road at Transport Lane AM PEAK PM PEAK						
Eastbound Left/Right	C (19.2)	C (17.8)				
Northbound Left/Thru	A (2.2)	A (0.4)				
Southbound Thru/Right	A (0.0)	A (0.0)				
Intersection LOS	C (0.9)	C (0.9)				

3.0 NEW DEVELOPMENT LOS IMPACT

3.1 Trip Generation

The ITE Trip Generation Manual Version 10 was used to estimate the number of trips generated by the new development. To estimate which entrance would be used by residents, three sections were identified to project from which lots trips would be generated. **Figure 9** illustrates the Section designation. Section 1 has 101 lots, Section 2 has 185 lots and Section 3 has 167 lots. The total number of lots is again at 453. For simplicity, trips from Section 1 will use Entrance 1, trips from Section 2 will use Entrance 2 and Trips from Section 3 will use Entrance 3.

Figure 9 – Sections Used for Three Entrances

The number of trips entering and exiting the new development by Section is summarized in **Table 4**. The report from the Trip Generation software is shown in **Appendix 5**.

TABLE 4								
	TRIP GENERATION FOR NEW DEVELOPMENT							
	,	AM PEAK HOU	₹	PI	M PEAK HOL	JR		
	ENTER EXIT TOTAL ENTER EXIT TOTAL							
Section 1	19	56	75	63	37	100		
Section 2	31	93	124	104	61	165		
Section 3	34	103	137	115	68	183		
TOTAL	TOTAL 84 252 336 282 166 448							

3.2 Trip Distribution and New Development Trips

The trip distribution is based on the existing directional split (turning movements) of the traffic in the AM and PM Peak periods from the 2019 traffic counts. **Figure 10** illustrates the percentages used to make assignments for the approaching vehicles for the AM and PM periods.

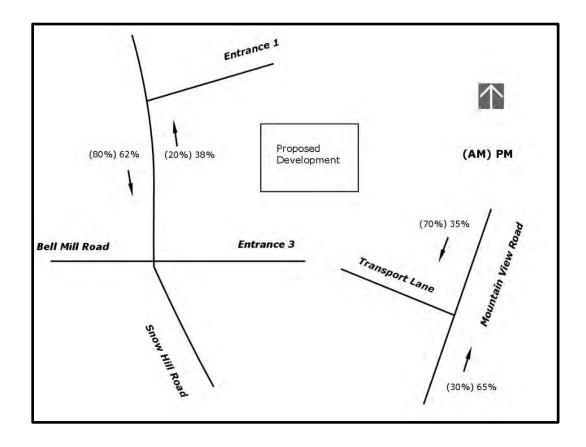


Figure 10 – AM and PM Percentage Trip Distribution for Development

Using the trip generation shown in **Table 4** and the percentage trip distribution shown in **Figure 8**, trip assignments were made for each of the new development's entrances. Those assignments are shown in **Figure 11**.

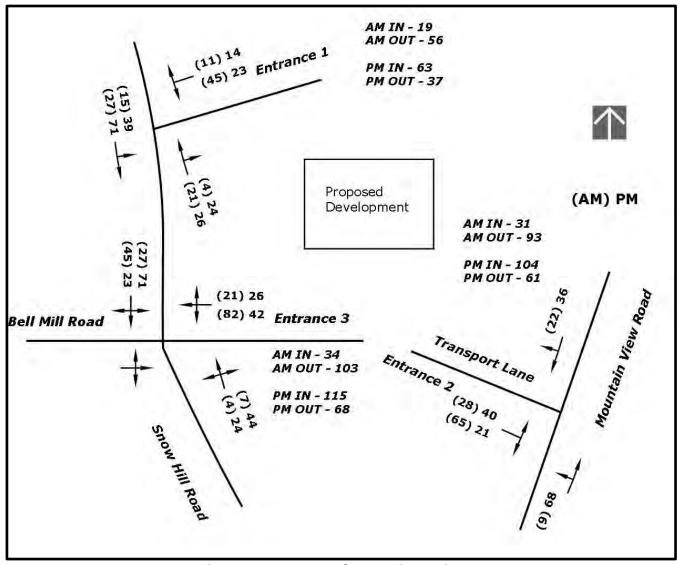


Figure 11 – AM and PM Trip Assignments

The estimated additional trips from the new development in **Figure 11** were added to the 2025 AM and PM peak hour trips from **Figure 8** to produce the 2025 total volumes after development is occupied and are shown in **Figure 12**.

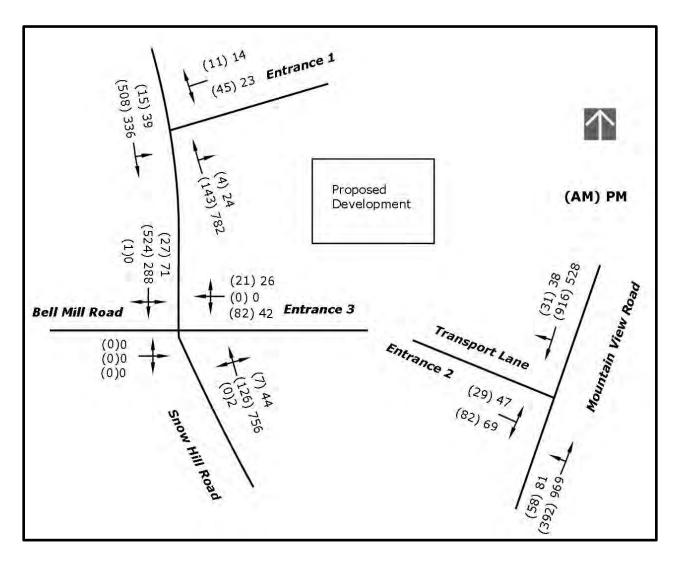


Figure 12 – 2025 Total Trips After New Development

3.3 LOS Evaluation

The volumes in **Figure 12** were input to SYNCHRO® 10.1 and produced the estimated LOS for each intersection movement along with the estimated delay in seconds. **Table 5** illustrates the estimated LOS of the intersections with the new development volumes added to the street network. The SYNCHRO print out sheets are shown in **Appendix 5** for 2025 with development.

TABLE 5								
2025 WITH NEW DEVELOPMENT LEVEL OF SERVICE (Delay in Sec)								
Snow Hill Road at	AM I	PEAK	PM I	PEAK				
Bell Mill Road	No Devel	opment->	No Devel	opment->				
	With Dev	elopment	With Dev	elopment				
Eastbound Left/Thru/Right	A (0.0) -> A (0.0)							
Westbound Left	N/A -> C (21.0)	N/A -> C (18.6)	N/A -> F (50.2)	N/A-> E (37.2)				
Westbound Thru/Right	N/A -> A (9.1)	N/A -> C (18.0)	N/A-> C (15.8)	N/A-> E (37.2)				
Northbound Left/Thru/Right	A (0.0) -> A (0.0)							
Southbound Left/Thru/Right	A (0.0) -> A (0.0)	A (0.0) -> A (0.6)	A (0.0) -> A (3.0)	A (0.0) -> A (0.0)				
Intersection LOS	A (0.0) -	> A (2.8)	A (0.0) -	> D (3.0)				

TABLE 5 (Cont.)								
2025 WITH NEW DEVELOPMENT LEVEL OF SERVICE (Delay in Sec)								
Snow Hill Road at Entrance 1 AM PEAK No Development-> With Development With Development Myth Development								
Northbound Thru/Right	A (0.0) ->	A (0.0) -> A (0.0)	A (0.0) -> A (0.0)	A (0.0) -> A (0.0)				
Southbound Thru/Left	A (0.0) ->	A (0.0) -> A (0.0)	A (0.0) -> A (1.4)	A (0.0) -> A (1.4)				
Westbound Left Westbound Right	N/A -> C (15.9) N/A -> A (9.1)	N/A -> B (14.6)	N/A -> E (40.1) N/A -> C (15.6)	N/A -> D (30.9)				
Intersection LOS A (0.0) -> A (1.4) A (0.0) -> C (1.4)								

	TABLE 5 (Cont.)										
2025 W	2025 WITH NEW DEVELOPMENT LEVEL OF SERVICE (Delay in Sec)										
Mountain View Road at AM PEAK PM PEAK											
Transport Lane	Transport Lane No Development-> With Development No Development-> With Development										
Eastbound Left/Right	C (19.2) -> E (45.8)	C (19.2) -> E (45.8)	C (17.8) -> F (86.1)	C (17.8) -> F (86.1)							
Northbound Thru/Left	A (2.2) -> A (2.6)	A (2.2) -> A (2.6)	A (0.4) -> A (2.7)	A (0.4) -> A (2.7)							
Southbound Thru/Right	A (0.0) -> A (0.0)	A (0.0) -> A (0.0)	A (0.0) -> A (0.0)	A (0.0) -> A (0.0)							
Intersection LOS	C (0.9) -> E (4.1) C (0.9) -> F (7.5)										

The additional number of trips according to SYNCHRO have the greatest impact on the vehicles leaving the new development.

- For Bell Mill Road at Entrance 3, the LOS for Snow Hill Road in the AM and PM Peaks continues to operate at LOS A. However, the vehicles leaving the development are estimated to operate at a LOS C in the morning and E in the afternoon.
- For Snow Hill Road at Entrance 1, the LOS for Snow Hill Road in the AM and PM Peaks continues to operate at LOS A. However, the vehicles leaving the development at Entrance 1 are estimated to operate at a LOS B in the morning and D in the afternoon.
- For Mountain View Road at Entrance 2, the LOS for Mountain View Road in the AM and PM Peaks continues to operate at LOS A. However, the vehicles leaving the development at Entrance 2 are estimated to operate at a LOS E in the morning and F in the afternoon.

One solution when the development is fully occupied in 2025 to the extended delays exiting the development is to add a two way left turn lane (TWLTL) to Snow Hill Road and to Mountain View Road at each entrance. For those turning left into the development, this would provide a refuge and allow the vehicles not turning to safely move past the entrance. The TWLTL would also allow vehicles leaving the entrances to cross the oncoming traffic from the left and have a refuge to merge into the through

traffic on their right. The TWLTL would need to be a minimum of 150 including tapers feet on either side of each entrance to the subdivision.

4.0 CRASH and SPEED DATA REVIEW

4.1 Traffic Crash Data

The Hamilton County Engineering Department provided traffic crash data on Snow Hill Road from the 6100 block to the 6900 block from 2014 to 2018. The crash data was summarized by block and is shown in **Figure 13**.

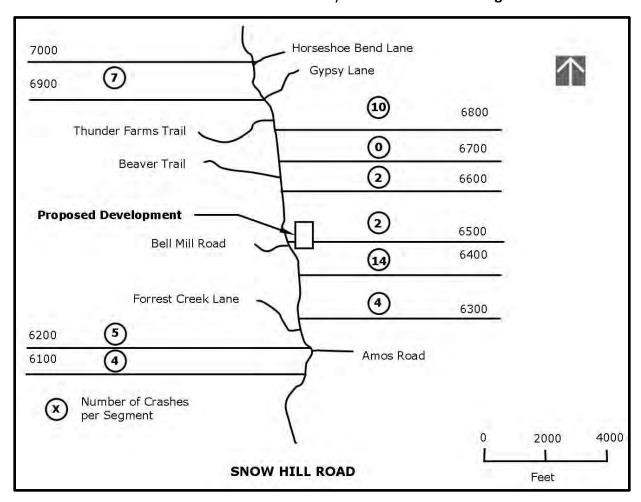


Figure 13 – Crash Data from 2015 to 2019

From January 2015 to May 2019 there were a total of 48 crashes on Snow Hill Road from the 6100 Block through the 6900 block. The 6400 to 6500 Block experienced 14 crashes while the 6800 to 6900 Block experienced 10 crashes. Since the blocks are of differing lengths, to normalize this

information a calculation of Crash Rate by Length is made. The formula for calculating the Crash Rate by Length is shown below:

R=C/(NxL) crashes per mile per year

Where R=Crashes per mile for the road segment expressed as crashes per each one mile of roadway per year C=Total number of crashes in study period N=Number of years

L= Length of roadway segment in miles

For example, the 6100 Block of Snow Hill Road experienced 4 crashes, is 670 feet long (0.13 miles) over the 4-year period. The Crash Rate by Length is then:

R=4/(4*0.13)= 7.88 crashes per mile per year

Table 6 summarizes the crashes per mile per year for each of the Blocks studied.

	TABLE 6											
	CRASH RATE BY ROADAY SEGMENT											
BLOCK NUMBER	BLOCK LENGTH (FT)	LENGTH (MILES)	ADT	CRASHES	CRASH RATE BY LENGTH	INJURY	FATALITY					
6100	670	0.13	7518	4	7.88	0	0					
6200	1330	0.25	7518	5	4.96	0	0					
6300	1405	0.27	7518	4	3.76	0	0					
6400	1700	0.32	7518	14	10.87	1	1					
6500	980	0.19	7518	2	2.69	0	0					
6600	932	0.18	7518	2	2.83	0	0					
6700	1534	0.29	7518	0	0.00	0	0					
6800	820	0.16	7518	10	16.10	1	0					
6900	1165	0.22	7518	7	7.93	1	1					
TOTAL	10536	2.00	7518	48	6.01	3	2					

The highest crash rates by roadway segment from the 6100 to 6900 blocks occurred in the 6800 Block at 16.10 crashes per mile per year and the 6400 Block at 10.87 crashes per mile per year. The crash

rate for the total length from the 6100 Block to the 6900 Block was 6.01 crashes per mile per year.

It should be noted that there were three injuries and two fatalities for the studied blocks from 2015 to 2019. One of the fatalities occurred in the 6400 Block. The driver was not wearing a seat belt, the car rolled and the driver was thrown from the car. The second fatality occurred in the 6900 Block when a northbound driver ran into the right-side ditch, crossed the center line partially hitting the left-side ditch and then hit a southbound vehicle. The first vehicle driver died at the hospital.

The list of the crashes in the 6400 Block of Snow Hill Road is shown in **Table 7**.

				TABLE	7								
	CRASH LIST FOR 6400 BLOCK OF SNOW HILL ROAD												
Crash						NO.	FIRST HARMFUL						
Number	DATE	TIME	WEATHER	LIGHT COND	ALCOHOL	VEHICLES	EVENT	Fatality					
1	12/13/2015	19:41	Cloudy	Daylight	Yes	1	Embankment	0					
2	7/23/2016	20:23	Cloudy	Daylight	No	1	Deer	0					
3	12/5/2016	23:29	Rain	Dark	Yes	1	Ditch	0					
							Curve/						
4	2/5/2017	4:18	Clear	Dark	No	1	Overcorrection	0					
5	2/21/2017	16:49	Rain	Daylight	No	2	Left Turn T-Bone	0					
6	4/24/2017	00:01	Rain	Dark	No	1	Embankment	0					
7	6/17/2017	1:.59	Cloudy	Daylight	No	2	Golf Cart/Car	0					
8	8/8/2017	8:56	Cloudy	Daylight	No	1	Curve/Speed	0					
9	8/19/2017	18:09	Clear	Daylight	No	1	Hit and Run	0					
10	9/6/2017	15:51	Clear	Daylight	Yes	1	Pedestrian/Speed	0					
11	10/16/2017	19:36	Clear	Dark/Lighted	No	2	Reckless Driving	0					
12	4/19/2018	21:43	Cloudy	Dark	No	1	Roll Over	1					
13	8/29/2018	23:35	Clear	Dark	No	1	Mail Box	0					
14	1/19/2019	16:21	Rain	Daylight	Yes	2	Sideswipe	0					

Of the 14 crashes:

- 8 (57%) occurred during daylight hours
- 4 (29%) occurred during rain events
- 3 (21%) involved alcohol
- 10 (71%) were single vehicle crashes
- 11 (79%) could be considered related to speed

It appears that speed is a contributing factor for over 75% of the crashes in the 6400 Block of Snow Hill Road. Since 71% of the crashes are single vehicle, consideration for reviewing geometric changes of the roadway should be considered.

4.2 Speed Data

The Hamilton County Sheriff's Office collected speed data at approximately the 6300 Block of Snow Hill Road from May 24, 2019 to May 28, 2019. The Sheriff's Office found that:

•	Number of vehicles recorded	25140 (100%)
•	Number of vehicles recorded travelling below,	
	at and up to 5 MPH over the posted speed limit	15772 (63%)
•	Number of vehicles recorded travelling 6-10 MPH	
	over the posted speed limit	7551 (30%)
•	Number of vehicles recorded travelling 11-15 MPH	
	over the posted speed limit	1609 (6%)
•	Number of vehicles recorded travelling 16 MPH	
	over the posted speed limit	208 (1%)

Considering that 37 per cent of the number of vehicles travelled over 6 MPH over the posted speed limit, the Hamilton County Sheriff's Office may wish to consider some additional speed enforcement on Snow Hill Road.

5.0 CONCLUSIONS

The development of the new subdivision on Snow Hill Road with 453 homes in 2025 is going to add traffic to Snow Hill Road and to Mountain View Road. The highest impact is estimated to occur for the residents leaving the development is fully developed in 2025. There will be considerable delays experienced during the AM and PM peaks as shown in the discussion above. To help reduce those delays and to improve safety one solution is to have a two way left turn lane be installed a minimum of 150 feet with tapers on either side of each entrance to the subdivision in 2025. This will allow vehicles turning left into the subdivision a safe area to wait for a gap in the traffic and allow the traffic behind the turning vehicle to move through the intersection. It will also allow vehicles exiting the subdivision a place to pause for a gap to develop in the through traffic movement.

From the traffic crash and speed data review, it appears that regular speed enforcement would help reduce the speed of vehicles in the 6400 Block of Snow Hill Road since over 75% appear have speed as a contributing factor. Further crash analyses should be made to determine if other safety measures are needed on Snow Hill Road.

APPENDIX 1

15-minute Turning Movement Counts

National Data & Surveying Services

Intersection Turning Movement Count

Location: Snow Hill Rd & Bell Mill Rd City: Ooltewah Control: 1-Way Stop (EB)

Project ID: 19-10010-001

Control:	L-Way Stop	(CB)				To	tal				Date:	5/21/2019	
NS/EW Streets:	S	now Hill Rd		Si	now Hill Rd	3	E	Bell Mill Rd			1		
	N	ORTHBOUN	n	SOUTHBOUND			EASTBOUND			WESTBOUND			
AM	0	1	0	0	1	0	0	1	0	0	0	0	
LIMI	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOT
7:00 AM	0	15	0	0	103	0	0	0	0	0	0	0	118
7:15 AM	0	16	0	0	121	0	0	0	0	0	0	0	13
7:30 AM	0	28	0	0	113	0	0	0	ō	o	0	0	14
7:45 AM	0	30	0	0	108	1	0	0	0	0	0	0	13
8:00 AM	0	36	0	0	90	0	0	0	0	0	0	0	12
8:15 AM	0	28	0	0	82	0	0	0	0	0	0	0	11
8:30 AM	0	27	o	O	72	0	0	0	1	Ö	O	0	10
8:45 AM	o	31	ō	0	72	o	0	0	ō	0	Ö	o	10
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	ТОТ
TOTAL VOLUMES:	0	211	0	0	761	1	0	0	1	0	0	0	97
APPROACH %'s :	0.00%	100.00%	0.00%	0.00%	99.87%	0.13%	0.00%	0.00%	100.00%				
PEAK HR :	07:15	AM - 08:1	5 AM						-	1.00			TOT
PEAK HR VOL :	0	110	0	0	432	1	0	0	0	0	0	0	54
PEAK HR FACTOR :	0.000	0.764	0.000	0.000	0.893	0.250	0.000	0.000	0.000	0.000	0.000	0.000	
Carte Alle Color Cart	2355	0.764	23525	7/525	0.895		2322		10.000	5955	2555	191919	0.9
266	NORTHBOUND		D	SOUTHBOUND			E	ASTBOUND			WESTBOU	ND	
PM	0	1	0	0	1	0	0	1	0	0	0	0	
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOT
2:00 PM	0	57	0	0	52	0	0	0	0	0	0	0	10
2:15 PM	1	69	0	0	35	0	0	0	0	0	0	0	10
2:30 PM	0	67	0	0	47	0	0	0	0	0	0	0	11
2:45 PM	1	80	0	0	53	0	0	0	0	0	0	0	13
3:00 PM	0	66	0	0	47	1	1	0	0	0	0	0	11
3:15 PM	0	84	0	0	53	0	1	0	0	0	0	0	13
3:30 PM	1	83	0	0	40	0	0	0	0	0	0	0	12
3:45 PM	1	64	0	0	62	0	0	0	0	0	0	0	12
4:00 PM	0	63	0	0	58	0	0	0	2	0	0	0	12
4:15 PM	0	82	0	0	47	0	0	0	0	0	0	0	12
4:30 PM	1	78	0	0	51	0	1	0	0	0	0	0	13
4:45 PM	0	100	0	0	61	0	0	0	1	0	0	0	16
5:00 PM	0	101	0	0	53	0	0	0	0	0	0	0	15
5:15 PM	0	97	0	0	48	0	0	0	0	0	0	0	14
5:30 PM	0	97	0	0	60	0	0	0	0	0	0	0	15
5:45 PM	2	94	0	0	78	0	0	0	0	0	0	0	17
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOT
Make Manage	7	1282	0	0	845	1	3	0	3	0	0	0	21
TOTAL VOLUMES:		00 100					50.00%	0.00%	50.00%				1
APPROACH %'s:	0.54%	99,46%	0.00%	0.00%	99.88%	0.12%	30.00 70	0,00,0	30,00 /0				_
APPROACH %'s: PEAK HR:	0.54%	PM - 06:00) PM							140		- 10	
APPROACH %'s:	0.54%			0,00%	239 0.766	0 0.000	0 0.000	0 0.000	0 0.000	0,000	0,000	0.000	TO1

National Data & Surveying Services

Intersection Turning Movement Count

Location: Mountain view Rd & Transport Ln City: Ooltewah Control: 1-Way Stop (EB)

Project ID: 19-10010-002 Date: 5/21/2019

Total

NS/EW Streets:	Mou	Mountain view Rd		Mou	ntain view	Rd	Т	ransport Ln	-				
7.000	N	ORTHBOUN	D	SOUTHBOUND			EASTBOUND			WESTBOUND			
AM	O NL	NT NT	0 NR	0 SL	1 ST	0 SR	0 EL	1 ET	0 ER	0 WL	0 WT	0 WR	TOTAL
7:00 AM	3	50	0	0	136	1	0	0	1	0	0	0	191
7:15 AM	2	67	0	0	144	0	0	0	1	0	0	0	214
7:30 AM	4	56	0	0	229	0	0	0	1	0	0	0	290
7:45 AM	15	78	0	0	153	5	0	0	4	0	0	0	255
8:00 AM	7	103	0	0	151	1	1	0	5	0	0	0	268
8:15 AM	14	84	0	0	218	1	0	0	4	0	0	0	321
8:30 AM	7	51	0	0	190	1	1	0	0	0	0	0	250
8:45 AM	11	77	0	0	113	0	0	0	5	0	0	0	206
	NL	NT	NR.	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
TOTAL VOLUMES:	63	566	0	0	1334	9	2	0	21	0	0	0	1995
APPROACH %'s:	10.02%	89.98%	0.00%	0.00%	99.33%	0.67%	8.70%	0.00%	91.30%				
PEAK HR :	07:30	AM - 08:30) AM										TOTAL
PEAK HR VOL :	40	321	0	0	751	7	1	0	14	0	0	0	1134
PEAK HR FACTOR :	0.667	0.779	0.000	0.000	0.820	0.350	0.250	0.000	0.700	0.000	0.000	0.000	0.883
4460 4400 4400		0.820	10000		0.828	- 4 - 1		0.625	1000				0.883

2000	N	ORTHBOUN	D	SC	DUTHBOUN	D	E	ASTBOUND			WESTBOUN	ID	
PM	0 NL	1 NT	0 NR	0 SL	1 ST	0 SR	0 EL	1 ET	0 ER	0 WL	0 WT	0 WR	TOTAL
2:00 PM	5	94	0	0	76	0	2	0	8	0	0	0	185
2:15 PM	5	105	0	0	101	1	2	0	5	0	0	0	219
2:30 PM	3	117	0	0	112	0	0	0	7	0	0	0	239
2:45 PM	4	127	0	0	95	1	0	0	6	0	0	0	233
3:00 PM	3	119	0	0	85	0	3	0	8	0	0	0	218
3:15 PM	6	133	0	0	63	0	0	0	1	0	0	0	203
3:30 PM	4	141	0	0	122	0	0	0	22	0	0	0	289
3:45 PM	3	128	0	0	137	1	0	0	9	0	0	0	278
4:00 PM	4	137	0	0	92	1	0	0	6	0	0	0	240
4:15 PM	3	180	0	0	96	0	1	0	1	0	0	0	281
4:30 PM	3	167	0	0	109	1	4	0	9	0	0	0	293
4:45 PM	1	160	0	0	107	0	1	0	10	0	0	0	279
5:00 PM	5	181	0	0	111	0	3	0	17	0	0	0	317
5:15 PM	2	197	0	0	110	1	2	0	10	0	0	0	322
5:30 PM	3	203	0	0	128	0	0	0	5	0	0	0	339
5:45 PM	1	213	0	0	84	1	1	0	7	0	0	0	307
	NL	NT	NR.	SL	ST	SR	EL.	ET	ER	WL	WT	WR	TOTAL
TOTAL VOLUMES : APPROACH %'s :	55 2.24%	2402 97.76%	0.00%	0.00%	1628 99.57%	7 0.43%	19 12.67%	0.00%	131 87.33%	0	0	0	4242
PEAK HR:	05:00	PM - 06:00) PM										TOTAL
PEAK HR VOL : PEAK HR FACTOR :	11 0.550	794 0.932 0.940	0,000	0.000	433 0.846 0.850	2 0,500	6 0.500	0 0.000 0.563	39 0.574	0,000	0.000	0.000	1285 0.948

APPENDIX 2 2019 SYNCHRO PRINTOUTS

	1	-	1	1	+	1	1	1	1	1	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		4		7	13			4			€ Î>	
Traffic Volume (veh/h)	0	0	0	0	0	0	0	110	0	0	432	1
Future Volume (Veh/h)	0	0	0	0	0	0	0	110	0	0	432	1
Sign Control		Stop			Stop	-	- 0	Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	0	0	0	0	0	0	120	0	0	470	1
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	590	590	470	590	591	120	471			120		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	590	590	470	590	591	120	471			120		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)												
tF(s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	100	100	100	100	100	100	100			100		
cM capacity (veh/h)	419	420	593	419	420	931	1091			1468		
Direction, Lane #	EB1	WB1	WB 2	NB1	SB1							
Volume Total	0	0	0	120	471							
Volume Left	0	0	0	0	0							
Volume Right	0	0	0	0	1							
cSH	1700	1700	1700	1091	1468							
Volume to Capacity	0.00	0.00	0.00	0.00	0.00							
Queue Length 95th (ft)	0	0	0	0	0							
Control Delay (s)	0.0	0.0	0.0	0.0	0.0							
Lane LOS	A	A	A									
Approach Delay (s)	0.0	0.0		0.0	0.0							
Approach LOS	A	A										
Intersection Summary												
Average Delay			0.0			N. D. Warre						
Intersection Capacity Utiliza	ation		26.1%	IC	U Level	of Service			А			
Analysis Period (min)			15									

11: Mountain	View Road	& Transport	Lane

	1	1	1	1	1	1	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	W			4	13		
Traffic Volume (veh/h)	1	14	40	321	751	7	
Future Volume (Veh/h)	1	14	40	321	751	7	
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	1	15	43	349	816	8	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type				None	None		
Median storage veh)					20204)		
Upstream signal (ft)							
pX, platoon unblocked							
vC, conflicting volume	1255	820	824				
vC1, stage 1 conf vol			177				
vC2, stage 2 conf vol							
vCu, unblocked vol	1255	820	824				
tC, single (s)	6.4	6.2	4.1				
tC, 2 stage (s)							
tF (s)	3.5	3.3	2.2				
p0 queue free %	99	96	95				
cM capacity (veh/h)	179	375	806				
Direction, Lane #	EB1	NB1	SB 1				
Volume Total	16	392	824				
Caramita Vale	16	43	824				
Volume Left	15	43					
Volume Right	351		1700				
CSH Volume to Consetty		806	0.48				
Volume to Capacity	0.05	0.05					
Queue Length 95th (ft)	4 4 7	4	0				
Control Delay (s)	15.7	1.6	0.0				
Lane LOS	C	A					
Approach Delay (s)	15.7	1.6	0.0				
Approach LOS	C						
Intersection Summary							
Average Delay			0.7				
Intersection Capacity Utiliza	ation		60.4%	- 10	OU Level o	of Service	В
Analysis Period (min)			15				

KSM Developing Ooltewah Subdivision 7:15 am 05/21/2019 Collected Scenario 2019 Existing AM Traffic SEM

	1	-	1	1	+	*	1	1	1	1	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		4		7	1			4			443	
Traffic Volume (veh/h)	0	0	0	0	0	0	2	389	0	0	239	(
Future Volume (Veh/h)	0	0	0	0	0	0	2	389	0	0	239	(
Sign Control		Stop			Stop	-		Free			Free	- 1
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph) Pedestrians	0	0	0	0	0	0	2	423	0	0	260	(
Lane Width (ft)												
Walking Speed (ft/s)												-
Percent Blockage												
Right turn flare (veh)								_				-
Median type								None			None	
Median storage veh)								None			None	
Upstream signal (ft)												
pX, platoon unblocked			_				_					_
vC, conflicting volume	687	687	260	687	687	423	260			423		
vC1, stage 1 conf vol	007	007	200	007	007	420	200			420		_
vC2, stage 2 conf vol												
vCu, unblocked vol	687	687	260	687	687	423	260			423		_
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)	· (*.1	0.0	0.2	e.1	0.0	0.2	4.1			4.1		
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	100	100	100	100	100	100	100			100		
cM capacity (veh/h)	361	369	779	361	369	631	1304			1136		_
30.00	A. A. A.	1.734		-	900	631	1304			1130		
Direction, Lane #	EB1	WB1	WB 2	NB 1	SB1							
Volume Total	0	0	0	425	260							
Volume Left	0	.0	0	2	0							
Volume Right	0	0	0	0	0							
cSH	1700	1700	1700	1304	1136							
Volume to Capacity	0.00	0.00	0.00	0.00	0.00							
Queue Length 95th (ft)	0	0	0	0	0							
Control Delay (s)	0.0	0.0	0.0	0.1	0.0							
Lane LOS	A	A	A	A								
Approach Delay (s)	0.0	0.0		0.1	0.0							
Approach LOS	A	A										
Intersection Summary												
Average Delay	-0		0.0			Na Santana						
Intersection Capacity Utiliza	ation		25.4%	IC	U Level	of Service			А			
Analysis Period (min)			15									

KSM Developing Ooltewah Subdivision 5:00 pm 05/21/2019 Collected Scenario 2019 Existing PM Traffic SEM

	1	1	1	1	1	1	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	Y			4	1+		
Traffic Volume (veh/h)	6	39	11	794	433	2	
Future Volume (Veh/h)	6	39	11	794	433	2	
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	7	42	12	863	471	2	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)				9	-		
Median type				None	None		
Median storage veh)							
Upstream signal (ft)							
pX, platoon unblocked			200				
vC, conflicting volume	1359	472	473				
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	1359	472	473				
tC, single (s)	6.4	6.2	4.1				
tC, 2 stage (s)							
tF(s)	3.5	3.3	2.2				
p0 queue free %	96	93	99				
cM capacity (veh/h)	162	592	1089				
Direction, Lane #	EB1	NB1	SB 1				
Volume Total	49	875	473				
Volume Left	7	12	0				
Volume Right	42	0	2				
c8H	429	1089	1700				
Volume to Capacity	0.11	0.01	0.28				
Queue Length 95th (ft)	10	1	0				
Control Delay (s)	14.5	0.3	0.0				
Lane LOS	В	A					
Approach Delay (s)	14.5	0.3	0.0				
Approach LOS	В						

ICU Level of Service

KSM Developing Ooltewah Subdivision 5:00 pm 05/21/2019 Collected SEM

0.7 60.6% 15

Intersection Summary
Average Delay
Intersection Capacity Utilization
Analysis Period (min)

Scenario 2019 Existing PM Traffic

В

APPENDIX 3 2025 SYNCHRO REPORTS NO DEVELOPMENT

	1	1	1	1	1	1	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	4	7	To.			el .	
Traffic Volume (veh/h)	0	0	122	0	0	481	
Future Volume (Veh/h)	0	0	122	0	0	481	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	0	0	133	0	0	523	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			None			None	
Median storage veh)							
Upstream signal (ft)							
pX, platoon unblocked							
vC, conflicting volume	656	133			133		
vC1, stage 1 conf vol					- 111		
vC2, stage 2 conf vol							
vCu, unblocked vol	656	133			133		
tC, single (s)	6.4	6.2			4.1		
tC, 2 stage (s)							
tF(s)	3.5	3.3			2.2		
p0 queue free %	100	100			100		
cM capacity (veh/h)	430	916			1452		
Direction, Lane #	WB1	WB2	NB 1	3B1			
Volume Total	0	0	133	523			
Volume Left	0	0	0	0			
Volume Right	0	0	0	0			
cSH	1700	1700	1700	1452			
Volume to Capacity	0.00	0.00	0.08	0.00			
Queue Length 95th (ft)	0	0	0	0			
Control Delay (s)	0.0	0.0	0.0	0.0			
Lane LOS	A	A	7.7	*.*			
Approach Delay (s)	0.0		0.0	0.0			
Approach LOS	A		777				
Intersection Summary							
Average Delay			0.0				
Intersection Capacity Utilization		28.6%		IC	ULevel	of Service	Α
Analysis Period (min)			15		fig - dalar		

KSM Developing Ooltewah Subdivision 7:15 am 05/21/2019 Collected SEM

Scenario 2025 AM Traffic

2.2

2.2

19.2

19.2 C

Control Delay (s)

Lane LOS Approach Delay (s) Approach LOS

Analysis Period (min)

Intersection Summary
Average Delay
Intersection Capacity Utilization

0.0

0.0

0.9 71.7% 15

			. 1	1			
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	W			4	1+		
Traffic Volume (veh/h)	1	17	49	392	916	9	
Future Volume (Veh/h)	1	17	49	392	916	9	
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	1	18	53	426	996	10	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type				None	None		
Median storage veh)							
Upstream signal (ft)							
pX, platoon unblocked							
vC, conflicting volume	1533	1001	1006				
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	1533	1001	1006				
tC, single (s)	6.4	6.2	4.1				
C, 2 stage (s)							
tF(s)	3.5	3.3	2.2				
p0 queue free %	99	94	92				
cM capacity (veh/h)	118	295	689				
Direction, Lane #	EB1	NB1	SB 1				
Volume Total	19	479	1006				
Volume Left	1	53	0				
Volume Right	18	0	10				
c8H	273	689	1700				
Volume to Capacity	0.07	0.08	0.59				
Queue Length 95th (ft)	6	6	0				
Control Delay (s)	19.2	22	0.0				

KSM Developing Ooltewah Subdivision 7:15 am 05/21/2019 Collected Scenario 2025 AM Traffic Synchro 10 Report Page 3

ICU Level of Service

С

	1	-	1	1	*	*	1	1	1	1	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBI
Lane Configurations		4		7	1+			4			€\$	
Traffic Volume (veh/h)	0	0	0	0	0	0	2	732	0	0	265	i
Future Volume (Veh/h)	0	0	0	0	0	0	2	732	0	0	265	1
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.9
Hourly flow rate (vph)	0	0	0	0	0	0	2	796	0	0	288	1
Pedestrians .												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked					-							
vC, conflicting volume	1088	1088	288	1088	1088	796	288			796		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	1088	1088	288	1088	1088	796	288			796		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)				- ///								
tF(s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	100	100	100	100	100	100	100			100		
cM capacity (veh/h)	193	215	751	193	215	387	1274			826		
Direction, Lane #	EB1	WB1	WB 2	NB 1	SB1							-
Volume Total	0	0	0	798	288							
Volume Left	0	0	0	2	0							
Volume Right	0	0	0	0	0							
cSH	1700	1700	1700	1274	826							
Volume to Capacity	0.00	0.00	0.00	0.00	0.00							
Queue Length 95th (ft)	0	0	0	0	0							
Control Delay (s)	0.0	0.0	0.0	0.0	0.0							
Lane LOS	A	A	A	A	*.*							
Approach Delay (s)	0.0	0.0	.,,	0.0	0.0							
Approach LOS	A	A		V.V	V.V							
Intersection Summery												
Average Delay			0.0									
Intersection Capacity Utiliza	ation		43.4%	IC	U Level r	of Service			А			
Analysis Period (min)			15									_

KSM Developing Ooltewah Subdivision 5:00 pm 05/21/2019 Collected Scenario 2025 Existing PM Traffic SEM

TE MOUNTAIN VIEW ROAD & Transport Lan	Niew Road & Transport La	Transport	d &	Ro	View	Aountain.	1: N	1
---------------------------------------	--------------------------	-----------	-----	----	------	-----------	------	---

	1	*	1	1	1	1		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	W			4	ĵ»			
Traffic Volume (veh/h)	7	48	13	969	528	2		
Future Volume (Veh/h)	7	48	13	969	528	2		
Sign Control	Stop			Free	Free			
Grade	0%			0%	0%			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Hourly flow rate (vph)	8	52	14	1053	574	2		
Pedestrians.								
Lane Width (ft)								
Walking Speed (ft/s)								
Percent Blockage								
Right turn flare (veh)					-			
Median type				None	None			
Median storage veh)								
Upstream signal (ft)								
pX, platoon unblocked		- 3	-					
vC, conflicting volume	1656	575	576					
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								
vCu, unblocked vol	1656	575	576					
tC, single (s)	6.4	6.2	4.1					
tC, 2 stage (s)								
tF (s)	3.5	3.3	2.2					
p0 queue free %	92	90	99					
cM capacity (veh/h)	106	518	997					
Direction, Lane #	EB1	NB1	SB 1					
Volume Total	60	1067	576					
Volume Left	8	14	0					
Volume Right	52	0	2					
c8H	341	997	1700					
Volume to Capacity	0.18	0.01	0.34					
Queue Length 95th (ft)	16	1	0					
Control Delay (s)	17.8	0.4	0.0					
Lane LOS	C	A						
Approach Delay (s)	17.8	0.4	0.0					
Approach LOS	C							
Intersection Summary								
Average Delay			0.9			200		
Intersection Capacity Utiliza	ation		71.4%	- 10	OU Level o	of Service	C	
Analysis Period (min)			15					

KSM Developing Ooltewah Subdivision 5:00 pm 05/21/2019 Collected Scenario 2025 Existing PM Traffic SEM

APPENDIX 4

TRIP GENERATION

9

Trip Generation Summary

Alternative: Alternative 1 Phase:

Project:

Ooltewah Subdivision

Open Date: 6/7/2019 Analysis Date: 6/7/2019

			W	Weekday Average Daily Trips	erage Dail	y Trips	3	Weekday AM Peak Hour of Adjacent Street Traffic	/ Peak H	our of Iffic	Wee	Weekday PM Peak Hour of Adjacent Street Traffic	Peak Hore	ur of fic	Weekd	Weekday AM Peak Hour of Generator	eak Hou	r of
ITE	Land Use		*	Enter	Exit	Total	*	Enter	Exit	Total	*	Enter	Exit	Total	* Enter	Ĭ	Exit	Total
210	Section 2 167	Dwelling Units		788	788	1576		33	93	124		104	61	165	33		94	127
210	Section 3 185	Dwelling Units		873	873	1746		34	103	137		115	89	183	37		104	4
210	Section 1 101	Dwelling Units		477	476	.953		ē	99	22		B	37	100	20		22	77
Juad	Unadjusted Volume			2138	2137	4275		84	252	336		282	166	448	06		255	345
terr	nternal Capture Trips			0	0	0		0	0	0		0	0	0	0		0	0
ass	Pass-By Trips			0	0	0		0	0	0		0	0	0	0		0	0
olur	Volume Added to Adjacent Streets	nt Streets		2138	2137	4275		84	252	336	90	282	166	448	90		255	345

Total Weekday Average Daily Trips Internal Capture = 0 Percent

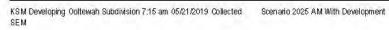
Total Weekday AM Peak Hour of Adjacent Street Traffic Internal Capture = 0 Percent

Total Weekday PM Peak Hour of Adjacent Street Traffic Internal Capture = 0 Percent Total Weekday AM Peak Hour of Generator Internal Capture = 0 Percent

Custom rate used for selected time period.

Source: Institute of Transportation Engineers, Trip Generation Manual 10th Edition.

TRIP GENERATION 10, TRAFFICWARE, LLC



APPENDIX 5

SYNCHRO REPORTS 2025 WITH DEVELOPMENT

	1	-	*	1	+		1	1	1	1	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		4		7	1			4			€ Î>	
Traffic Volume (veh/h)	0	0	0	82	0	21	0	126	7	27	524	- 1
Future Volume (Veh/h)	0	0	0	82	0	21	0	126	7	27	524	1
Sign Control		Stop			Stop		- 60	Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	0	0	89	0	23	0	137	8	29	570	1
Pedestrians .												
Lane Width (ft)												
Walking Speed (ft/s)												_
Percent Blockage												
Right turn flare (veh)												_
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												-
vC, conflicting volume	792	774	570	770	770	141	571			145		
vC1, stage 1 conf vol					- '''							-
vC2, stage 2 conf vol												
vCu, unblocked vol	792	774	570	770	770	141	571			145		-
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)				,,,,		-						-
tF(s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	100	100	100	72	100	97	100	-		98		
cM capacity (veh/h)	294	323	521	313	324	907	1002			1437		
Direction, Lane #	EB1	WB1	WB 2	NB1	SB1							-
Volume Total	0	89	23	145	600							_
Volume Left	0	89	0	0	29							
Volume Right	0	0	23	8	1							_
cSH	1700	313	907	1002	1437							
Volume to Capacity	0.00	0.28	0.03	0.00	0.02							_
Queue Length 95th (ft)	0	29	2	0	2							
Control Delay (s)	0.0	21.0	9.1	0.0	0.6							_
Lane LOS	A	C	A	×.×	A							
Approach Delay (s)	0.0	18.6	- ^	0.0	0,6							
Approach LOS	A	C		¥.y								
Intersection Summery												
Average Delay			2.8									
Intersection Capacity Utiliza	tion		50.7%	10	UI evel	of Service			А			
Analysis Period (min)	molt.		15	- 10	O LCOCI (J. OCI 0166						_

	1	1	1	1	1	1	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	7	7	1			4	
Traffic Volume (veh/h)	45	11	143	4	15	508	
Future Volume (Veh/h)	45	11	143	4	15	508	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	49	12	155	4	16	552	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			None			None	
Median storage veh)							
Upstream signal (ft)							
pX, platoon unblocked							
vC, conflicting volume	741	157			159		
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	741	157			159		
tC, single (s)	6.4	6.2			4.1		
tC, 2 stage (s)							
tF(s)	3.5	3.3			2.2		
p0 queue free %	87	99			99		
cM capacity (veh/h)	379	889			1420		
Direction, Lane #	WB1	WB2	NB 1	SB 1			
Volume Total	49	12	159	568			
Volume Left	49	0	0	16			
Volume Right	0	12	4	0			
cSH	379	889	1700	1420			
Volume to Capacity	0.13	0.01	0.09	0.01			
Queue Length 95th (ft)	11	1	0	1			
Control Delay (s)	15.9	9.1	0.0	0.3			
Lane LOS	C	A		A.			
Approach Delay (s)	14.6		0.0	0.3			
Approach LOS	В						
Intersection Summary							
Average Delay			1.4		mercia d	NAME OF THE OWNER, THE	
Intersection Capacity Utiliz	ation		48.7%	IC	U Level	of Service	A
Analysis Period (min)			15				

KSM Developing Ooltewah Subdivision 7:15 am 05/21/2019 Collected Scenario 2025 AM With Development SEM

		The state of the s	
11: Mountain	View Road	& Transpo	rt Lane

	1	1	1	1	1	1	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	W			4	1>		
Traffic Volume (veh/h)	29	82	58	392	916	31	
Future Volume (Veh/h)	29	82	58	392	916	31	
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	32	89	63	426	996	34	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type				None	None		
Median storage veh)							
Upstream signal (ft)							
pX, platoon unblocked							
vC, conflicting volume	1565	1013	1030				
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	1565	1013	1030				
C, single (s)	6.4	6.2	4.1				
C, 2 stage (s)							
tF(s)	3.5	3.3	2.2				
p0 queue free %	71	69	91				
cM capacity (veh/h)	111	290	674				
Direction, Lane #	EB1	NB1	SB 1				
Volume Total	121	489	1030				
Volume Left	32	63	0				
Volume Right	89	0	34				
c8H	203	674	1700				
Volume to Capacity	0.59	0.09	0.61				
Queue Length 95th (ft)	83	\$	0				
Control Delay (s)	45.8	2.6	0.0				
Lane LOS	E	A					
Approach Delay (s)	45.8	2.6	0.0				
Approach LOS	E						
Intersection Summary							
Average Delay			4.1			NAME OF TAXABLE PARTY.	
Intersection Capacity Utiliza	ation		82.9%	- 10	CU Level o	of Service	E
Analysis Period (min)			15				

KSM Developing Ooltewah Subdivision 7:15 am 05/21/2019 Collected Scenario 2025 AM With Development SEM

	1	-	1	1	-	*	1	1	-	1	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		4		7	1			4			44>	
Traffic Volume (veh/h)	0	0	0	42	0	26	2	756	44	71	288	- (
Future Volume (Veh/h)	0	0	0	42	0	26	2	756	44	71	288	- 1
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.93
Hourly flow rate (vph) Pedestrians	0	0	0	46	0	28	2	822	48	77	313	(
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	1345	1341	313	1317	1317	846	313			870		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	1345	1341	313	1317	1317	846	313			870		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)												
tF(s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	100	100	100	63	100	92	100			90		
cM capacity (veh/h)	110	137	727	124	142	362	1247			775		
Direction, Lane #	EB1	WB1	WB2	NB1	SB1							
Volume Total	0	46	28	872	390							
Volume Left	0	46	0	2	77							
Volume Right	0	0	28	48	0							
c8H	1700	124	362	1247	775							
Volume to Capacity	0.00	0.37	0.08	0.00	0.10							
Queue Length 95th (ft)	0	38	6	0	8							
Control Delay (s)	0.0	50.2	15.8	0.0	3.0							
Lane LOS	A	F	C	A	A							
Approach Delay (s)	0.0	37.2		0.0	3.0							
Approach LOS	A	Е										
Intersection Summary												
Average Delay			3.0			N. D. W. W.						- 8
Intersection Capacity Utiliza	ation		75.0%	IC	OU Level o	of Service			D			
Analysis Period (min)			15									

KSM Developing Ooltewah Subdivision 5:00 pm 05/21/2019 Collected Scenario 2025 PM with Development Traffic Synchro 10 Report

	1	1	Ť	-	1	1	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	7	7	1			ર્ન	
Traffic Volume (veh/h)	23	14	782	24	39	508	
Future Volume (Veh/h)	23	14	782	24	39	508	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	25	15	850	26.	42	552	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)			- 1				
Median type			None			None	
Median storage veh)			111111111111111111111111111111111111111				
Upstream signal (ft)							
pX, platoon unblocked							
vC, conflicting volume	1499	863			876		
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	1499	863			876		
tC, single (s)	6.4	6.2			4.1		
tC, 2 stage (s)	-						
tF(s)	3.5	3.3			2.2		
p0 queue free %	80	96			95		
cM capacity (veh/h)	127	354			771		
Direction, Lane #	WB1	WB2	NB 1	SB 1			
Volume Total	25	15	876	594			
Volume Left	25	0	0	42			
Volume Right	0	15	26	0			
cSH	127	354	1700	771			
Volume to Capacity	0.20	0.04	0.52	0.05			
Queue Length 95th (ft)	17	3	0	4			
Control Delay (s)	40.1	15.6	0.0	1.4			
Lane LOS	E	C	- 100%	A			
Approach Delay (s)	30.9	7	0.0	1.4			
Approach LOS	D		17.17				
Intersection Summary							
Average Delay			1.4				
Intersection Capacity Utiliza	ation		68.9%	IC	ULevel	of Service	C
Analysis Period (min)	a o. i		15	10	2 20001	2. 201 1100	

KSM Developing Ooltewah Subdivision 5:00 pm 05/21/2019 Collected Scenario 2025 PM with Development Traffic Synchro 10 Report SEM

		The state of the s	
11: Mountain	View Road &	Transport	Lane

	1	1	1	1	1	1		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	W			4	1			
Traffic Volume (veh/h)	47	69	81	969	528	38		
Future Volume (Veh/h)	47	69	81	969	528	38		
Sign Control	Stop			Free	Free			
Grade	0%			0%	0%			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Hourly flow rate (vph)	.51	75	88	1053	574	41		
Pedestrians								
Lane Width (ft)								
Walking Speed (ft/s)								
Percent Blockage								
Right turn flare (veh)					-			
Median type				None	None			
Median storage veh)								
Upstream signal (ft)								
pX, platoon unblocked								
vC, conflicting volume	1824	594	615					
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								
vCu, unblocked vol	1824	594	615					
tC, single (s)	6.4	6.2	4.1					
tC, 2 stage (s)								
tF (s)	3.5	3.3	2.2					
p0 queue free %	34	85	91					
cM capacity (veh/h)	77	505	965					
Direction, Lane #	EB1	NB1	SB 1	_				
Volume Total	126	1141	615	_				
Volume Left	51	88	0					
Volume Right	75	0	41					
cSH	156	965	1700					
Volume to Capacity	0.81	0.09	0.36					
Queue Length 95th (ft)	132	8	0					
Control Delay (s)	86.7	2.7	0.0					
Lane LOS	F	A	7117					
Approach Delay (s)	86.7	2.7	0.0					
Approach LOS	F		0.17					
Intersection Summary								
Average Delay 7.5					and the second second			
		102.4%	10	U Level o	of Service	G		
Analysis Period (min)			15					

KSM Developing Ooltewah Subdivision 5:00 pm 05/21/2019 Collected Scenario 2025 PM with Development Traffic Synchro 10 Report Page 3

