EP 2 485 864 B1 Patent Office (11) EP 2 485 864 B1 (19) Europ?ismes Patentamt 0 European (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int CI.: of the grant of the patent: 323K 26/38 (2014-91) 30.07.2014 Bulletin 2014/31 (86) International application number: (21) Application number: 09783865.0 (22) Date of filing: 08.10.2009 International publication number: WO 2011/042058 (14.04.2011 Gazette 2011/15) (54) CONTROLLING RULES AND VARIABLES FOR CUTTING STEUERREGELN UND FUR SCHNEIDVERFAHREN REGLES ET VARIABLES DE COMMANDE POUR DECOUPAGE (84) Designated Contracting States: (72) Inventor: NORBERG OHLSSON, Magnus 5-534 95 Vara (SE(74) Representative: Bjerndell, Per Ingvar et al Bergenstrahle Lindvall AB (43) Date of publication of application: P.0. Box 17704 15.08.2012 Bulletin 2012/33 118 93 Stockholm (SE) (73) Proprietor: Tomologic AB (56) References cited: 114 28 Stockholm (SE) EP-A- 1 563 940 DE-A1- 10 129 751 GB-A- 2189179 Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice ofopposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention). Printed by Jouve. 75001 PARIS (FR) Desc?p?on Field of invention [0001] The present invention relates to a method for machine cutting several parts out of a piece of material using a beam cutting technology, the method providing a set of controlling rules and variables for cutting two dimensionalshapes orpatterns,whereonerule oracom- bination ofseveral rules are used forthe cutting operation depending on the shape or pattern to be cut, the shape or pattern forming the parts out of the piece of material. [0002] The present invention also relates to a system and to a computer program product through which the inventive method can be implemented. [0003] There are various cutting technologies known to out parts out of a piece of material and the present invention relates to what here is called beam cutting tech- nology. Beam cutting is defined as having some kind of beam as the cutting agent, such as laser cutting, plasma cutting, ion beam cutting, flame or torch cutting, water cutting, pellet cutting or air cutting. This is not to be con- fused with mechanical cutting where the cutting agent is a mechanical member such as a cutting blade or a rotat- ing cutting head. Description of background art [0004] it is previously known to use a work plan opti- mization tool based on nesting part placement methods to place out the parts that are to be cut out of a piece of material. Nesting is a geometry optimization tool working in two dimensions that is based on different heuristic search algorithms that rotate and pack polygons in a giv- en work area. ln a graphic way nested work plans gives a quite good solution but in production it is required that a safe distance is used between parts. Safe distances have to take into account the machining and material technical conditions that arise in the production process. The size of the safe distance varies depending on used material and used cutting technology, a normal safe dis- tance between parts is 5 - 20 mm. [0005] Examples of used controlling rules for control- ling the cutting operation ofa machine are how to handle: - sharp edges, - turning points, - beam breaking in critical areas, - sensing the cutting head, - take into account of the grid which materials can be located at, - take into account the pivot risk of pre-cut details, - length and angle of lead in, - length and angle of lead out, - micro joint for parts, and - different use of gas when cutting and volume of ab- stractive material in water cutting[0006] Examples of controlling rules related to used material can be: - rolling direction for different metal, - heat, - that the material settles, - different patterns in the material, - material stretch, - tolerances for parts, and - part quality. [0007] Due to the above mentioned production and material related conditions there will be waste material between the cut parts. [0008] As the beam makes the cut in the material the thickness of the cut is the same as, or corresponds to, the thickness of the beam, hence the beam thickness has to be taken into consideration when positioning the parts on the material and setting the safe distance be- tween the parts. It is known to use tool radius compen- sation in the cutting process, where left tool radius com- pensation is used if the cut is made to the left of the part in the cutting direction, and right tool radius compensa- tion is used if the cut is made to the right of the part in the cutting direction. Whenever the tool radius compen- sation is changed, the cutting process is stopped, the beam is turned off, and a new piercing is made. [0009] Some known technologies that are used to pro- vide a reliable production process is to use micro joints between a part and the material surrounding the part, normally called the material skeleton. A micro joint is cre- ated by stopping the cutting beam in a out along a cutting path, moving the cutting device a small distance along the cutting path, and then starting the cutting beam again to continue the cutalong the cutting path. The small uncut part will then constitute the micro joint. [0010] In order to minimize the number of piercings and positioning distance in the cutting process it is known to manually position bridges between parts and to chain cut. [0011] It is also known to minimize material waste by using common cut for straight lines between two points in order to minimize material waste and cutting length. In a common cut the distance between the two parts is only the thickness of one cut made by the cutting beam and no tool radius compensation is used during the cut- ting process. Summary of the present invention Problems [0012] With any kind of beam cutting technology there is a huge problem with waste. A normal production reli- able cutting plan has 20-50 percent waste. The back- ground to why the wastage incurred in production is the ineffective methods for part placement on the raw mate- rial in combination with technology rules for each cutting method and each material. [0013] When cutting technology is used as production method there are four different costs that bring the detail price. Material costs, which normally is significantly more than 50 percent of the detail price, and three different categories of machine costs; piercings, position distance and cutting distance. It is a problem to bring down the amount of waste material. It is also a problem to limit the numberof piercings thatare required in a cutting process and it is a problem to optimize the position distances and the cutting distances in the cutting process. [0014] It is a problem to minimize the distance between free shaped parts in orderto minimize the waste material. [0015] If parts are positioned very close to each other, it is also a problem to keep the number of piercings to a minimum, to provide turning areas for the beam cutting process and to avoid that parts will pivot if there is no neighboring skeleton that the part can be joined to. [0016] In beam cutting techniques it is a problem that the cutting beam lags behind from the upper surface of the material to the bottom surface of the material in the relative movement between the cutting device and the material. This means that if the machine stops the move- ment and turns the beam of then the material will not have been cut totally through in the end point ofthe out. [0017] Another problem is that if the cutting movement stands still with the beam turned on to catch up this lag, then the properties of the material in the area around the stopping pointwill be affected, for instance might the ma- terial be heated and hardened with some cutting tech- nologies. The same is true at the starting point of a new out where the piercing of the material will create a crater with a radius of material with affected properties around this starting point. Because ofthese problems so called lead ins and lead outs are sometimes used at the start point and end point of each cut, where the lead in and lead out is outside the actual cut so that this area of af- fected material will not be a part of the out part. Solution [0018] With the purpose of solving one or more of the above indicated problems, and from the standpoint ofthe above indicated field of invention, the present invention provides a method according to claim 1, a system ac- cording to claim 19 and a computer program product ac- cording to claim 37. The present invention teaches that the set of controlling rules comprises rules for the forming of a cluster of parts with free form shapes, where the parts are positioned so close to each other so that only the thickness of one cut made by the cutting beam is found between adjacent parts whenever the shape ofthe parts allows it. [0019] This will reduce waste material and it will opti- mize the position distances and the cutting distances in the cutting process. [0020] The present invention teaches that the set of controlling rules comprises rules for the joining together ofthe parts in the cluster by micro joints holding adjacent parts together with each other. It is specifically taught that a micro joint is made by starting the cut of a contour a set distance into the contour to be cut, or by stopping the cut of a contour a set distance before the end of the contour to be cut, thus not closing the complete cut of the contour, where the uncut beginning orend ofthe con- tour constitute the micro joint and the size of the hereby made micro joint corresponds to the set distance. This will allow the making of micro joints without having to start and stop the cutting beam during the cutting proc- ess, which will give a cutting process with fewer starts and stops of the cutting beam. By doing this the cluster of parts that are connected to each other by means of micro joints can be treated as one complex part in the cutting process. [0021] It is also proposed that the set of controlling rules comprises rules for separating the parts within the cluster andjoining the parts with the material surrounding the cluster by micro joints holding the parts togetherwith the surrounding material. Also this micro joint is made by starting the cutofa contoura setdistance into the contour to be cut, or by stopping the cut of a contoura setdistance before the end of the contour to be cut, thus not closing the complete cut of the contour, where the uncut begin- ning or end of the contour constitute the micro joint and the size of the hereby made micro joint corresponds to the set distance. This might be more advantageous if the cluster of parts only includes a small number of parts that are all easily connected to the surrounding material. [0022] It is proposed that the size of the micro joints is controlled through the controlling rules, where those var- iables for controlling the size are depending on the set distance, used material and used cutting device. [0023] Tool radius compensation is sometimes re- quired to maintain the wanted distance between neigh? bouring parts and ifthe wanted quality ofcut part requires tool radius compensation. With the purpose of limiting the number of piercings and thereto belonging lead ins and lead outs, and with the purpose of enabling complex combinations of parts belonging to one cluster, it is pro- posed that the set of controlling rules comprises rules for switching between right tool radius compensation, left tool radius compensation and no tool radius compensa- tion during a continuous cut of a line or contour without turn-off and turn-on of the cutting beam. [0024] For the same reason it is also proposed that the set of controlling rules comprises rules for the creation of strategically positioned turning areas by making a split cut for this purpose or by cutting a line or contour longer then necessarily required, and using the hereby created gap as a turning area. [0025] The use of such gap as a turning area is done by allowing the cutting beam to catch up with used cutting device in the turning area, meaning that the lag of the cutting beam can be eliminated in the turning area, al- lowing a straight cutting beam as the cutting beam has changed direction and continues its out in the new direc- tion. [0026] This will make sure that as the machine turns the cutting beam into another direction the cut will be complete all through the material even in the turning point, without leaving unwanted bridging material be- tween adjacent materials in the turning point. [0027] It is also proposed that the set of controlling rules comprises rules for allowing the cutting beam to catch up with used cutting device in an interception point as the cutting beam crosses the interception point. [0028] As several parts positioned close to each other, there will, depending on their form, sometimes be re- quired the cutting of very small angles. These small an- gles can be formed by two straight cuts, by two tangents or curves, or by a combination of a straight out and a curve leading into the angle. There is technical problem to cut small angles and the present invention proposes thatthe set of controlling rules comprises a rulefor cutting small angles, said rule stating that a small angle is cut in two cuts, one cutfor each line leading into the angle, and each cut leading into the tip of the angle. [0029] The forming ofa cluster of parts positioned very close to each otherwillsometimes require thatthin stripes is cutout ofthe material, and the present invention teach- es that when the distance between two cuts is so small that the properties of the material between the two cuts can be affected and start struggle, respective cut is made in two partial cuts, and thereby minimizing the problem with affected material in thin parts. These partial cuts are started from the outer parts of respective out towards the centre of respective cut. [0030] It is also proposed that the partial cuts are not made all the way along respective cut, but that a micro joint is left between the two partial cuts, thus providing support for the thin part with the neighbouring part. [0031] If the parts of the cluster are joined together by micro joints, it is proposed that the cluster of parts is cut from surrounding material or material between parts not belonging to any part. [0032] In order to further minimize the waste material, it is proposed that, whenever two or more clusters are cut from one piece of material, at least two different var- iables are used to set the distance between neighbouring parts from two different clusters. A first variable repre- senting a first smallest distance between neighbouring parts with bordering parallel lines, and a second variable representing a second smallest distance between neigh- bouring parts where at leastone ofthe neighbouring parts has a bordering tangent, where the distance represented by the second variable is shorter than the distance rep- resented by the first variable since two parallel cuts will affect the material of the neighbouring part more than a cut with a tangent. [0033] it is also proposed that the second distance, represented by the second variable, is dependant on the radius of the tangent, where a smaller radius will allow a shorter smallest distance. [0034] It is also possible to provide a third variable representing a third smallestdistance between neighbouring parts where at least one of the neighbouring parts has a bordering corner, where the third distance, represented by the third variable, is shorter than the distances repre- sented by the first and second variables. [0035] ltshould be understood that the implementation of these rules depend on used beam cutting technology and used material, thus it is proposed that a fourth vari- able is representing used material, and thatafifth variable is representing used beam cutting technology, such as cutting with plasma, laser, flame, water, ions, torch, pel- lets or air, so that these variables can be taken into ac- count when applying the rules in a certain cutting oper- ation. [0036] Different cutting technologies will provide cut- ting beams with different thickness, and different cutting devices using the same cutting technologies will also pro- vide cutting beams with different thickness depending on the conditions of the cutting device. Hence it is proposed that a sixth variable is representing the width or thickness of the cutting beam. This sixth variable is also depending on the fourth and fifth variable. [0037] The present invention teaches that the set of controlling rules may provide rules for a lead in or lead out by means of automatic angle adjustment and length adjustmentfor the lead in or lead out, depending on used material, the thickness of the used material and used cutting technology, the angle and length adjustment be- ing adapted to position the start and stop point of the cut sufficiently far away from the cut and with a lead in or lead out angle that is as small as possible. [0038] The present invention proposes that the cutting operation is performed in the following sequence: - cut all holes, strategically positioned split cuts and common cuts, - cutall pockets created between clusters or parts, and - cut the outer contour of the cluster. [0039] It should be understood that the inventive meth- od can be implemented as a toolfor computeraided man- ufacturing (CAM), computer aided design (CAD), or as a part of the controlling rules and variables used by a numerical controller in cutting equipment controlled by means of computer numerical control (CNC). [0040] The present invention also relates to a system for machine cutting several parts out of a piece of mate- rial, comprising a beam cutting device and a control unit for controlling the beam cutting device adapted to per- form the control according to the inventive method. [0041] The present invention also relates to a computer program product comprising computer program code, which when executed enables a computer to implement the controlling rules and variables according to the in- ventive method. Advantages [0042] The advantages of a method, system, a com- puter program product according to the present invention are that through the invention it is possible to minimize the material waste and create a production reliable cut- ting plan with optimized machine cost, meaning an opti- mization regarding the number of piercings, position dis- tances and cutting distances. [0043] The present invention provides an optimal cut- ting with a cutting work plan where it is possible to control the cutting variables in the cutting machine to get a reli- able process. The invention provides control overturning areas, distance between parts, micro joints between parts, when clustering together more than one free formed part, length and angle of lead in, length and angle of lead out, switching between tool radius compensa- tions, and scanning within the cluster area, that is the possibility to use the sensing cutting head and without lifting the head between holes, splits, common cuts, and pockets within the cluster area, to minimize the position- ing distances. [0044] The provided production reliability meansa safe process, right tolerance for parts, and an optimal quality for parts with minimum resource waste. [0045] This present invention provides the possibility to create clusters for free form parts. Single parts opti- mized on the work area in close clusters provide a chance to minimize the material waste. As clusters are created details are positioned against each other which make it possible to use all tangent segments when clustering. The inventive cluster of several parts creates a new part without safe distance only tangents, splits, bridges, turn- ing areas, micro joints, common cut lines and pockets. Different constellations of the inventive rules and varia- bles provides the possibility to give a reliable cutting proc? ess for any kind of upcoming situation when free formed two dimensional parts are going to be clustered without safe distance. [0046] The use of microjoints between the parts to be out instead of between the parts and the skeleton also gives advantages in the manual or automated sorting process. [0047] The use of inventive turning areas will also pro- vide the possibility to avoid using areas of the skeleton for changing the cutting direction and instead use already cut lines where the cutting direction is changed, which again minimize the waste. Brief description of the drawings [0048] A method, a system and a computer program product according to the present invention will now be described in detail with reference to the accompanying drawings, in which: is a schematic and simplified illus- tration of a method, system and Figure computer program product accord? ing to the present invention, Figure 2 is a schematic illustration of a clus- ter of parts with only two parts, Figure 3 is a schematic illustration of a clus- ter with several parts, Figure 4 is a schematic illustration of how to cutover several interception points, Figure 5 is a schematic and simplified illus- tration of how a common out can end in order to achieve different means, Figure 6 is a schematic and simplified illus- tration of how to out small angels, is a schematic illustration of two dif- ferent ways of cutting out two parts with neighbouring tangents at a dis- tance of the thickness of one cut made by the cutting beam, Figure 7a and 7b Figure 8 is a schematic illustration of how to cut thin strips, Figure 9 is a schematic illustration of how distances between different clus- ters can be set, Figure 10 is a schematic illustration of how to set lead ins and lead outs, and Figure 11 is a flow chart illustrating a se- quence of cutting operations. Description of embodiments as presently preferred [0049] The present invention will now be described with reference to figure 1 illustrating a method for ma- chine cutting several parts 12a, 12b, 120 out of a piece of material 12 using a beam cutting technology. The sche- matic illustration of figure 1 shows that a cutting device 13 is movable and the material 12 is fixed, however, it should understood that the present invention can also be implemented in a system where the cutting device is fixed and the material is movable. The invention relates to controlling the relative movement between the material 12 and the cutting device 13 regardless ofwhat is moving and what is fixed. [0050] In the description of the present invention cer- tain terminology might be used that implies that one spe- cific beam cutting technology is described, but it should be understood that the present invention relates to any beam cutting technology and the skilled person will un- derstand how a feature described with a terminology spe- cific for one beam cutting technology can be adapted and implemented in another beam cutting technology. [0051] The inventive method provides a set of control- ling rules and variables for cutting two dimensional shapes or patterns, where one rule or a combination of several rules are used for the cutting operation depend- ing on the shape or pattern to be cut, where the shape or pattern forms the parts out of the piece of material. The controlling rules and parameters are used to control the relative movement between a cutting device 13 and the piece of material 12 so that this movement is per- formed in a controlled manner to perform the cutting op- eration. [0052] it is specifically taught that the set of controlling rules comprises rules for the forming of a cluster of parts 15 with free form shapes. By free form shapes is meant that the parts could have any form or shape in the two dimensions that are cut out of the material. [0053] The present invention teaches that the parts 12a, 12b, 120 are positioned so close to each other so that only the thickness 13a? of the cutting beam 13a is found between adjacent parts whenever the shape ofthe parts allows it. [0054] This means thata common cutwill be required between parts where the common line to be cut is not a straight line between two points, rather it could be any curved form, or several connected straight lines. [0055] The different embodiments presented in the fol- lowing description shows examples of where parts with differentforms or shapes can be out without any required skeleton between the parts, thus saving a lot of material. [0056] One example is illustrated in figure 2 where a first part 21 and a second part 22 are positioned so close so that only the thickness of one cut 23 made by the cutting beam is found between the parts 21, 22. [0057] It is proposed that the set of controlling rules comprises rules for the making of microjoints for thejoin- ing together of said parts by microjoints holding adjacent parts together with each other, and that a micro joint is made by starting the cut of a contour a set distance into the contour to be cut, or by stopping the cut ofa contour a set distance before the end of the contour to be cut, thus not closing the complete cut of the contour, which will be shown in more detail with reference to figure 5. The size of the hereby made micro joint corresponds to said set distance [0058] It shall be understood that the set of controlling rules may also comprise rules for separating the parts within the cluster and joining the parts with the material surrounding the cluster by micro joints holding the parts together with the surrounding material, which is illustrat- ed in figure 2 showing a first micro joint 24 and a second micro joint25 isjoining the parts 21, 22 with the surround- ing material 2. [0059] As can be seen in figure 2 the first micro joint 24 is made by starting the cut ofthe contoura setdistance into the contour to be cut, and the second micro joint 25 is made by stopping the cut of the contour a set distance before the end of the contour to be cut, thus not closing the complete cut of the contour, where the size of the hereby made micro joints 24, 25 corresponds to the set distance. [0060] it should be understood that depending on the thickness of the material, micro joints might not be re- quired at all, since the out parts will stick to the skeleton and neighbouring parts when the material is thick enough without the risk of tilting for small parts[0061] The size of the microjoints is controlled through the controlling rules, and variables for controlling the size are depending on the set distance, used material and used cutting device. If for instance the combination of cutting technology and material causes a lag ofthe beam then the cut can be made almost all the way to another cut partwhere the beam is turned of, and where the thick- er joint on the back of the material due to beam lag is a part of the micro joint. If the combination of cutting tech- nology and material does not cause any lag of the beam, then the micro joints can be cut to precise size. [0062] If the first and second part 21, 22 requires tool radius compensation, the present invention teaches that when starting to cut in point 2a, left tool radius compen- sation is used for cutting the contour of the first part 21 to the point 2b where the common cut starts. From point 2b to the point 20, during the common out part of the contour, no tool radius compensation is used, and from point 20 to point 2d, right tool radius compensation is used for cutting the contour of the second part 22. It is thus proposed that the set of controlling rules comprises rules for switching between right tool radius compensa- tion, left tool radius compensation and no tool radius com- pensation during a continuous cut of a line or contour without turn-off and turn-on of the cutting beam. This means that cutting the two parts 21, 22 in figure 2 can be done in one continuous cut from point 2a to point 2d. The figure also shows how micro joints 24, 25 are formed by not completing the cut all the way. [0063] Figure 2 is an illustration of a very simple and also specific embodiment of the present invention since the cluster of parts only includes two parts. [0064] Figure 3 is another example of a cluster 3A with four parts, a first 31, second 32, third 33, and fourth 34 part. Here it can be seen that the out parts creates a pocket 38 in the middle between the four parts since the four parts have round corners. [0065] The present invention teaches that the set of controlling rules comprises rules for the creation of stra- tegically positioned turning areas by making a split cut for this purpose or by cutting a line or contour longer then necessarily required, and using the hereby created gap as a turning area. [0066] In figure 3 it is proposed that the common cuts between three of the parts are cut first, for instance first the first common cut 35 between the first and second part 31 32, and then the second common cut 36 between the second and third part 32, 33, and then third common cut 37 between the third and fourth part 33, 34. These three common cuts 35, 36, 37 are cut into the pocket SB in the middle, thereby creating three turning areas, a first burning area 35?, a second turning area 36?, and a third turning area 37? at the end of respective common cut. [0067] As the fourth common cut 38 is cut, the pocket in the middle is made by the same cut, where the three turning areas 35?, 36?, 37? allows the beam to enter into the turning area, turn around and then continue out of the turning area, cutting the next corner, and continue into the next turning area, and so on around the whole pocket 38. [0068] The embodiment according to figure 3 is also an example where change of tool radius compensation might be required during the cut. To exemplify this it is shown that as the fourth common cut 38 is made no tool radius compensation is used during the cut between the first part 31 and the fourth part 34, this is then changed into left tool radius compensation while cutting the round corner ofthe fourth part 34, while turning in the third turn- ing area 37?, while cutting the round corner of the third part 33, while turning in the second turning area 36?, while cutting the round corner of the second part 32, while turn- ing in the firstturning area 35?, and while cutting the round corner of the first part 31. [0069turning area is done by allowing the cutting beam to catch up with used cutting device in the turning area. [0070] The beam can be is allowed to catch up with the cutting device in different ways and which way to choose depends on the specific cutting situation. [0071] One way allow the beam to catch up with the cutting device is to allow the cutting speed to slow down within the turning area and accelerate to normal cutting speed as the cutting operation proceeds outofthe turning area. The tight turning area will in practical applications of the invention cause the cutting speed to slow down as turns within the turning area is made, thereby allowing the beam to catch up with the cutting device as the turn is made in the turning area. In some applications, de- pending on reliability and/orquality requirements, it might be required to actively slow down, oreven stop, the move- ment in the cutting process in order to make sure that the beam really is allowed to catch up. [0072] Another way to allow the beam to catch up with the cutting device is by allowing the cutting device to do a radius within the turning area. [0073] Another way to allow the beam to catch up with the cutting device is by allowing the cutting device to do an angle or phase within the turning area. [0074] Figure 4 shows an embodiment of the present invention where the cutting beam 41 crosses several al- ready cut lines 4a, 4b, 4c, 4d, or interception points. This could cause a problem if the beam is lagging behind the cutting device, since the upper part of the beam might start to cut on the other side of the interception point before the lower part of the beam has cut through the first side of the interception point, which might be a risk of cutting interruption. [0075] In order to prevent this the present invention teaches that the set of controlling rules comprises rules for allowing the cutting beam to catch upwith used cutting device in an interception pointas the cutting beam cross- es the interception point. [0076] This catching up can be done in different ways, three different proposed ways are to let the cutting device do a little radius A within the cut gap, to let the cutting device do a little phase in the cut gap, or to slow down the cutting speed when entering the gap and then start to cut with normal speed when exiting the gap C. [0077] Figure 5 shows an example of how cuts can be ended in different way in order to achieve different fea- tures of the present invention. The figure shows sche- matically a first part 51, a second part 52, a third part 53 and a fourth part 54 belonging to a cluster of parts 5A, the whole cluster not shown in the figure. [0078] The parts are positioned so that a first cut 512 between the first part 51 and the second part 52 is a common cut, a second cut 523 between the second part 52 and the third part 53 is a common cut, and a third cut 534 between the third part 53 and the fourth part 54 is a common cut, and all four parts border to an outer cut 55. [0079] Here it can be seen that the first cut 512 has been stopped before reaching the outer cut 55, thus form- ing a micro joint 56 between the first part 51 and the second part 52. [0080] it can also be seen thatthe second cut 523 has been cut all the way to the outer cut 55, thus separating the second and third parts 52, 53 from each other. [0081] It can also be seen that the third cut 534 has been cut over the outer cut, thus providing a strategically positioned cut that can be used as a turning area 57. [0082] Figure 6 illustrates how the present invention proposes a solution regarding cutting small angles 6A. The present invention teaches that the set of controlling rules comprises a rule stating that a small angle 6A is cut in two cuts, a first cut 61 and a second cut 62, one cut foreach line leading into the angle 6A, and each cut lead- ing into the tip of the angle 6A. in the figure, the angle is exemplified by two curves leading into each other, how- ever, it should be understood that it might also be two straight lines, or one straight line and one curve, leading into each other. [0083] Figure 7a shows an example where a first part 7a1 and a second part 7a2 is positioned so that the dis- tance between the neighbouring tangents is only the thickness ofone cut made by the cutting beam. in figure 7a the cutting operation is started by cutting a strategi- cally positioned splitcut 7a3throughthe commontangent of the first and second part 7a1, 7a2. After that the two parts 7a1, 7a2 are cut in one cut where the cutting beam will use the strategically positioned split cut 7a3 as a turn- ing area 7a3?. In this out no change of radius compensa- tion is required since the cut direction 7a4, 7a4? is such that the radius compensation remains the same during the whole out. [0084] Figure 7b also shows an example where a first part 7b1 and a second part 7b2 is positioned so that the distance between the neighbouring tangents is only the thickness ofone cut made by the cutting beam. in figure 7b the two parts 7b1, 7b2 are cut in one cut where the cutting beam will cross the already cut tangent point 7b3 as the cutting beam cuts through this point the second time, the already cut tangent point 7b3 thus being an interception point according to figure 4. if there are re- quirements of tool radius compensation, this can be pro- vided by a change of radius compensation as the cutting beam moves from cutting the first part 7b1 into cutting the second part 7b2 and vice versa since the out direction 7b4, 7b4? is such that the radius compensation changes as the cutting beam goes through the tangent point 7b3. [0085] Figure 8 illustrates that when the distance be- tween three cuts, a first cut 81, a second cut 82 and a third cut 83, is so small that the properties ofthe material between two neighbouring cuts is affected and start struggle, the present invention proposes that the first, second and third cuts 81, 82, 83 are made in two partial cuts 81 a, 81 b, 82a, 82b, 83a, 83b starting from the outer parts of respective cut 81, 82, 83 towards the centre of respective cut 81, 82, 83. [0086] Figure 8 also shows that the first and second partial cuts 81 a, 81 b, 823, 82b are not made all the way along respective cut 81, 82, but that a micro joint 81c, 820 is left between the two partial cuts 81 a, 81b, 82a, 82b, white the third partial cuts 83a, 83b, are made all the way to close the contour of the third cut 83. [0087] it is proposed that it is possible to se the cluster of parts as one single complex part, where the cluster of parts is cut totally free from surrounding material or ma- terial between parts not belonging to any part, in which case the parts in the cluster might, if required, be joined together by micro joints and the cluster is totally free from the surrounding skeleton material. [0088] The present invention teaches thatdifferentvar- iables are available for the control of the cutting device. [0089] Figure 9 illustrates that two or more clusters 9A, QB, QC are cut from one piece of material. The clusters can comprise several different parts but for the sake of simplicity the clusters 9A, QB, QC are only schematically illustrated as solid parts. At least two different variables are used to set the distance between neighbouring parts from two different clusters. A first variable represents a aQ between neighbouring parts QA, QB with bordering parallel lines A second vari- able represents a second smallest distance bQ between neighbouring parts QA, QC where at least one of the neighbouring parts QC has a bordering tangent The present invention teaches thatthe distance bQ represent- ed by the second variable is shorter than the distance aQ represented by the first variable. [0090] The present invention also teaches that the sec- ond distance bQ, represented by the second variable, is dependant on the radius of the tangent 90?. [0091] Figure 9 also shows that a third variable can represent a third smallest distance 09 between neigh- bouring parts QB, QC, where at least one of the neigh- bouring parts QB has a bordering corner where the third distance 09, represented by the third variable, is shorter than the distances aQ, bQ represented by the first and second variables. [0092] it is proposed that a fourth variable is represent- ing used material, and that a fifth variable is representing used beam cutting technology, such as cutting with plas- ma, laser, flame, water, ions, torch, pellets or air[0093] It is also proposed that a sixth variable is rep? resenting the width of the cutting beam, which is depend- ing on the fourth and fifth variable. [0094] Figure 10 shows that a lead in 101 or lead out 102 can be provided by means of automatic angle ad- justmentand length adjustmentforthe lead 101 in or lead out 102, depending on used material, the thickness of the used material and used cutting technology. [0095] It is proposed that the angle 101 a, 102a is cho- sen as small as possible in relation to the cut 103 so that the crater 101 created by the piercing as the cutting beam is started in the lead in 101, or affected zone 102b that is created as the beam is stopped in the lead out 102, will be positioned outside of the cut 103, while still minimizing the length of the lead 101 in and lead out 102 respectively. [0096] Figure 11 is a simplified flow chart showing a proposed sequence of performing the cutting operation: - cut all holes, strategically positioned split cuts and common cuts111, - cutall pockets created between clusters or parts 1 12, and - cut the outer contour of the cluster 113. [0097] The first operation 111 is to cut all holes, stra- tegically positioned split cuts and common cuts, and this is done first to create required turning areas and it can easily be done since the piece of material is still a stable piece since all parts are still connected to each other and to the skeleton while performing these operations. Cuts, splits and common cuts are all adapted to any micro joints that are positioned to connect the different parts in the cluster. [0098] The second operation 112 is to cut all pockets created between clusters or parts, and this can easily be done since the piece of material is still a stable piece since all parts are still connected to each other and to the skeleton while performing these operations. [0099] The third and last operation 113 is to cut the outer contour of the cluster, and as this is done, all parts will be released from the skeleton and only be connected to each other by means ofany microjoints created during the process. It should be understood that if an embodi- ment is used where micro joints are connecting the parts of the cluster with the skeleton instead ofwith each other, the micro joints are created while cutting the outer con- tour. [0100] It should be understood that a method accord- ing to the present invention can be implemented as a tool for computer aided manufacturing (CAM), computer aid- ed design (CAD), or as a part ofthe controlling rules and variables used by a numerical controller in cutting equip- ment controlled by means of computer numerical control (CNC). [0101] The present invention also relates to a system which will be described with renewed reference to figure 1, being a system 11 for machine cutting several parts 12a, 12b, 12c outofa piece of material 12, the inventive system 11 comprising a beam cutting device 13 and a control unit 14 for controlling the beam cutting device 13. [0102] The control unit 14 is adapted to follow a set of controlling rules for cutting two dimensional shapes or patterns, where one rule or a combination of several rules can be used for the cutting operation depending on the shape or pattern to be cut, which shape or pattern is formingthe parts 12a, 12b, 12coutofthe piece ofmaterial 12. [0103] The present invention specifically teaches that the control unit 14 is adapted to follow a set of controlling rules comprising rules for the forming of a cluster 15 of parts 12a, 12b, 120 with free form shapes, where the parts12a, 12b, 120 are positioned so close to each other so that only the thickness 13a? of the cutting beam 13a is found between adjacent parts whenever the shape of the parts allows it. [0104] It is proposed that the control unit is adapted to control the cutting device into leaving micro joints be- tween adjacent parts, thus allowing the micro joints to hold adjacent parts together with each other, where the control unit is adapted to control the cutting device into starting the cut ofa contour a set distance into the contour to be cut, or, as shown in figure 5, into stopping the cut of a contour 512 a set distance before the end of the contour to be cut, whereby the cutting device is controlled into not closing the complete cut of the contour, thus pro- viding a micro joint 56 joining the first part 51 and the second part 52, where the size of the micro joint corre- sponds to the set distance. [0105] As illustrated in figure 2, it is proposed that the control unit is adapted to control the cutting device into leaving micro joints 24, 25 between the parts 21, 22, and the material 2 surrounding the cluster thus allowing the micro joints 24, 25 to hold the parts 21, 22 together with the surrounding material. [0106] The control unit is adapted to follow controlling rules setting the size of the micro joints, and variables for controlling the size are depending on used material and used cutting device. [0107] it is proposed that the control unit is adapted to control the cutting device into switching between right tool radius compensation, left tool radius compensation and no tool radius compensation during a continuous cut of a line or contour without having to cut a new hole. Figure 2 illustrates this by showing that when starting to cut in point 2a, left tool radius compensation is used for cutting the contour of the first part 21 to the point 2b. Where the common cut starts, from point 2b to the point 20, during the common cut part of the contour, no tool radius compensation is used, and from point 20 to point 2d, right tool radius compensation is used for cutting the contour of the second part 22. [0108] As illustrated in figure 3, it is proposed that the control unit is adapted to control the cutting device into creating strategically positioned turning areas 35?, 36?, 37? by making a split cut for this purpose or by cutting line or contour longerthen necessarily required, and con? trolling the cutting device into using the hereby created gap as a turning area. [0109] The control unit is adapted to control the cutting device into using the gap as a turning area by controlling the cutting device so that the cutting beam is allowed to catch up with the cutting device in the turning area. [0110] The catching up of the beam can be provided in different ways. it is possible to adapt the control unit to control the cutting operation into slowing down the cut- ting speed within the cut gap and accelerate to normal cutting speed as the cutting operation is started on the other side of the gap. A natural cause of the tight turning point in the turning area is that the cutting speed is slowed down as the turn is made, however, in some applications, depending on reliability and/or quality requirements, it might be required to actively slow down, or even stop, the movement in the cutting process in order to make sure that the beam really is allowed to catch up. [0111] The control unit can also be adapted to control the cutting device into doing a radius within the cut gap, or into doing an angle or phase within the cut gap. [0112] In the same way, the control unit can be adapted to control the cutting device into allowing the cutting beam to catch up with used cutting device in an interception point as the cutting beam crosses the interception point. [0113] As shown in figure 6 it is proposed that the con- trol unit is adapted to control the cutting device into cutting small angles 6A in two cuts, a first cut 61 and a second cut 62, one cut for each line leading into the angle 6A, and each cut61 62 leading into the tip ofthe angle 6A. [0114] As shown in figure 8 it is proposed that when the distance between two cuts, a first cut 81 and second cut 82, is so small that the properties of the material be- tween the two cuts 81, 82 is affected and start struggle, the control unit is adapted to control the cutting device into making respective cut 81, 82 in two partial cuts 81 a, 81 b, 82a, 82bstarting from the outer parts of respective cut towards the centre of respective cut. [0115] It is also proposed that the control unit is adapt- ed to control the cutting device into not making the partial cuts 81 a, 81 b, 82a, 82b all the way along respective cut, but that a micro joint is left between said two partial cuts. Also a third cut 83 is shown where the two partial cuts 83a, 83b are made all the way to close the contour of the third cut 83 without leaving a micro joint. [0116] It is also proposed that the control unit is adapt- ed to control the cutting device into cutting the cluster of parts totally free from surrounding material or material between parts not belonging to any part. [0117] Figure 9 shows thatwhenever two or more clus- ters 9A, QB, QC are to be cut from one piece of material, it is proposed that the control unit is adapted to control the cutting device into using a first smallest distance a9 between neighbouring parts 9A, QB with bordering par- allel lines where this smallest distance a9 is represented by a first variable. A second smallest dis- tance b9 between neighbouring parts 9A, 9C where at 17 EP2485 864 B1 18 least one of the neighbouring parts has a bordering tan? gent this smallest distance b9 being represented by a second variable, where the second distance b9, being represented by the second variable, is shorter than the first distance a9, represented by the first variable. [0118] The second distance b9, represented by the second variable, is dependant on the radius of the tan- gent [0119] It is also proposed that a third variable is adapt- ed to represent a third smallest distance c9 between neighbouring parts QB, 9C where at least one of the neighbouring parts QB has a bordering corner where the third distance 09, represented by the third variable, is shorter than the distances a9, b9 represented by the first and second variables. [0120] It is also proposed that the control unit is adapt- ed to take into account a fourth variable representing used material, and a fifth variable representing used beam cutting technology, such as cutting with plasma, laser, flame, water, ions, torch, pellets or air. [0121] it is also proposed that that the control unit is adapted to take into account a sixth variable representing the width of the cutting beam, which is depending on the fourth and fifth variable. [0122] Figure 10 shows that the control unit is adapted to a provide lead in 101 or lead out 102 by means of automatic angle adjustment and length adjustment for said lead in 101 or lead out 102, depending on used ma- terial, the thickness ofthe used material and used cutting technology. [0123] A control unitaccording to the present invention can be adapted to control the cutting device into perform- ing the cutting operation in the following sequence as indicated by the flow chart of figure 11: - cut all holes, strategically positioned split cuts and common cuts 111, - cutall pockets created between clusters or parts 112, and - cut the outer contour of the cluster 113. [0124] An inventive system can be adapted to function as a tool for computer aided manufacturing (CAM) or computer aided design (CAD), and an inventive control unit can bea numerical controller in a computer numerical control (CNC) machine. [0125] The present invention also relates to a computer program product as schematically illustrated in figure 1, comprising computer program code P1, which when executed enables a computer to implement the con- trolling rules and variables according to the inventive method. [0126] It will be understood that the invention is not restricted to the aforedescribed and illustrated exempli- fying embodiments thereof and that modifications can be made within the scope of the invention, which is defined by the accompanying ClaimsClaims 1. Method for machine cutting several parts out of a piece of material using a beam cutting technology, said method providing a set of controlling rules and variables for cutting two dimensional shapes or pat- terns, where one rule or a combination of several rules are used for the cutting operation depending on the shape or pattern to be cut, said shape or pat- tern forming said parts out of said piece of material, characterised in, that said set of controlling rules comprises rules for the forming of a cluster of parts with free form shapes, said parts being positioned so close to each other so that only the thickness of one cut made by the cutting beam is found between adjacent parts whenever the shape of said parts al- lows it. 2. Method according to claim 1,characterised in, that said set of controlling rules comprises rules for the joining together of said parts by micro joints holding adjacent parts together with each other, and that a micro joint is made by starting the cut of a contour a set distance into the contour to be cut, or by stopping the cut of a contour a set distance before the end of the contour to be cut, thus not closing the complete cut ofthe contour, where the size of the hereby made micro joint corresponds to said set distance. 3. Method according to claim 1, characterised in, that said set of controlling rules comprises rules for sep- arating the parts within said cluster and joining the parts with the material surrounding said cluster by micro joints holding the parts together with the sur- rounding material, and that a microjoint is made by starting the cut of a contour a set distance into the contour to be cut, or by stopping the cut of a contour a set distance before the end of the contour to be cut, thus not closing the complete cut of the contour, where the size of the hereby made micro joint cor- responds to said set distance. 4. Method according to claim 2 or 3, characterised in, thatthe size of said microjoints is controlled through said controlling rules, and that variables for control- ling said size are depending on said set distance, used material and used cutting device. 5. Method according to any preceding claim, charac- terised in, that said set of controlling rules compris- es rules for switching between right tool radius com- pensation, left tool radius compensation and no tool radius compensation during a continuous cut of a line or contour without turn-off and turn-on ofthe cut- ting beam. 6. Method according to any preceding claim, charac- terised in, that said set of controlling rules compris- 10rules for the creation of strategically positioned turning areas by making a split cut for this purpose or by cutting a line or contour longer then necessarily required, and using the hereby created gap as a turn- ing area. Method according to claim 6, characterised in, that the use of said gap as a turning area is done by allowing the cutting beam to catch up with used cut- ting device in said turning area. Method according to any preceding claim, charac- terised in, that said set of controlling rules compris- es rules for allowing the cutting beam to catch up with used cutting device in an interception point as the cutting beam crosses said interception point. Method according to any preceding claim, charac- terised in, that said set of controlling rules compris- es 3 rule for cutting small angles, said rule stating that a small angle is cut in two cuts, one cut for each line leading into the angle, and each cut leading into the tip of the angle. Method according to any preceding claim, charac- terised in, thatwhen the distance between two cuts is so small that the properties ofthe material between the two cuts is affected and start struggle, respective cut is made in two partial cuts starting from the outer parts of said out towards the centre of said out. Method according to any one of claims 10, characterised in cutting said cluster of parts from surrounding material or ma- terial between parts not belonging to any part. Method according to any preceding claim, charac- terised in, that, whenever two or more clusters are cut from one piece of material, at least two different variables are used to set the distance between neighbouring parts from two different clusters, a first variable representing a first smallest distance be- tween neighbouring parts with bordering parallel lines, and a second variable representing a second smallest distance between neighbouring parts where at least one of said neighbouring parts has a bordering tangent, where the distance represented by said second variable is shorter than the distance represented by said first variable. Method according to any preceding claim, charac- terised in, that a fourth variable is representing used material, and thata fifth variable is representing used beam cutting technology, such as cutting with plas- ma, laser, flame, water, ions, torch, pellets or air. Method according to claim 13, characterised in, that a sixth variable is representing the width of said cutting beam, which is depending on said fourth and fifth variable. Method according to any preceding claim charac- terised in providing a lead in or lead out by means of automatic angle adjustment and length adjust- mentfor said lead in or lead out, depending on used material, the thickness of said used material and used cutting technology. Method according to any preceding claim charac- terised in performing said cutting operation in the following sequence: - cut all holes, strategically positioned split cuts and common cuts, - cut all pockets created between clusters or parts, and - cut the outer contour of the cluster. Method according to any preceding claim, charac- terised in that said method is implemented as a tool for computer aided manufacturing (CAM) or compu- ter aided design (CAD). Method according to anyone ofclaims 1 to 16, char- acterised in that said method is implemented as a part ofthe controlling rules and variables used by a numerical controller in cutting equipment controlled by means of computer numerical control (CNC). System for machine cutting several parts out of a piece of material, comprising a beam cutting device and a control unit for controlling said beam cutting device, said control unit being adapted to follow a set of controlling rules for cutting two dimensional shapes or patterns, where one rule or a combination ofseveral rules can be used for the cutting operation depending on the shape or pattern to be cut, said shape or pattern forming said parts out of said piece of material, characterised in, that said control unit is adapted to follow a set of controlling rules com- prising rules for the forming of a cluster of parts with free form shapes, said parts being positioned so close to each other so that only the thickness of one cut made by the cutting beam is found between ad- jacent parts whenever the shape of said parts allows it. System according to claim 19, characterised in, thatsaid control unit is adapted to controlsaid cutting device into leaving micro joints between adjacent parts, thus allowing said micro joints to hold adjacent parts together with each other, where said control unit is adapted to control said cutting device into starting the cut of a contour a set distance into the contour to be cut, or into stopping the cut ofa contour a set distance before the end of the contour to be 21cut, whereby the cutting device is controlled into not closing the complete cut of the contour, thus provid- ing a micro joint with a size that corresponds to said set distance. System according to claim 19, characterised in, that said control unit is adapted to control said cutting device into separating the parts within said cluster and leaving micro joints between the parts and the material surrounding said cluster, thus allowing said micro joints to hold the parts together with the sur- rounding material, where said control unit is adapted to control said cutting device into starting the cut of a contour a set distance into the contour to be cut, or into stopping the cut of a contour a set distance before the end of the contour to be cut, whereby the cutting device is controlled into not closing the com- plete cut of the contour, thus providing a micro joint with a size that corresponds to said set distance. System according to claim 20 or 21, characterised in, that said control unit is adapted to follow control- ling rules setting the size of said micro joints, and that variables for controlling said size are depending on said set distance, used material and used cutting device. System according to any one of claims 19 to 22, characterised in, that said control unit is adapted to control said cutting device into switching between right tool radius compensation, left tool radius com- pensation and no tool radius compensation during a continuous cut of a line or contour without having to cut a new hole. System according to any one of claims 19 to 23, characterised in, that said control unit is adapted to control said cutting device into creating strategi- cally positioned turning areas by making a split cut for this purpose or by cutting a line or contour longer then necessarily required, and controlling said cut- ting device into using the hereby created gap as a turning area. System according to claim 24, characterised in, that said control unit is adapted to control said cutting device into using said gap as a turning area by con- trolling said cutting device so that the cutting beam is allowed to catch up with the cutting device in said turning area. System according to any one of claims 19 to 25, characterised in, that said control unit is adapted to control said cutting device into allowing the cutting beam to catch up with used cutting device in an in- terception point as the cutting beam crosses said interception pointSystem according to any one of claims 19 to 26, characterised in, that said control unit is adapted to control said cutting device into cutting small angles in two cuts, one cut for each line leading into the angle, and each cut leading into the tip of the angle. System according to any one of claims 19 to 27, characterised in, that when the distance between two cuts is so small that the properties ofthe material between the two cuts is affected and start struggle, said control unit is adapted to control said cutting device into making respective cut in two partial cuts starting from the outer parts of said out towards the centre of said cut. System according to any one of claims 19, 20, 22, 23, 24,25, 26, 27 or 28, characterised in, that said control unit is adapted to control said cutting device into cutting said cluster of parts totally free from sur- rounding material or material between parts not be- longing to any part. System according to any one of claims 19 to 29, characterised in, that whenever two or more clus- ters are to be cut from one piece of material, said control unit is adapted to control said cutting device into using a first smallest distance between neigh- bouring parts with bordering parallel lines, said smallest distance being represented by a first vari- able, and using a second smallest distance between neighbouring parts where at least one of said neigh- bouring part has a bordering tangent, this smallest distance being represented by a second variable, where the second distance, represented by said sec- ond variable, is shorter than the first distance, rep- resented by said first variable. System according to any one of claims 19 to 30, characterised in that, said control unit is adapted to take into account a fourth variable representing used material, and a fifth variable representing used beam cutting technology, such as cutting with plas- ma, laser, flame, water, ions, torch, pellets or air. System according to any one of claims 19 to 31, characterised in, that said control unit is adapted to take into account a sixth variable representing the width of said cutting beam, which is depending on said fourth and fifth variable. System according to any one of claims 19 to 32, characterised in, that said control unit is adapted to a provide lead in or lead out by means ofautomatic angle adjustmentand length adjustmentfor said lead in or lead out, depending on used material, the thick- ness of said used material and used cutting technol- ogy. 34System according to any one of claims 19 to 33, characterised in that, said control unit is adapted to control said cutting device into performing said cutting operation in the following sequence: - cut all holes, strategically positioned split cuts and common cuts, - cut all pockets created between clusters or parts, and - cut the outer contour of the cluster. System according to any one of claims 19 to 34, characterised in, that said system is adapted to function as a tool for computer aided manufacturing (CAM) or computer aided design (CAD). System according to any one of claims 19 to 34, characterised in, that said control unit is a numer- ical controller in a computer numerical control (CNC) machine. Computer program product characterised in com- prising computer program code, which when execut- ed enables a computer to implement the controlling rules and variables according to any one of claims 1 to 18. Patentansprijche 1. Verfahren zum maschinellen Schneiden mehrerer Teile aus einem Materialstiick unter Einsatz einer Strahlen-Schneidtechnologie, wobei das Verfahren einen Satz von Steuerregeln und Variablen zum Schneiden zweidimensionaler Formen oder Muster bereitstellt, wobei eine Regel odereine Kombination mehrerer Regeln flir den Schneidvorgang in Abhan- gigkeit von der zu schneidenden Form oder dem zu schneidenden Muster verwendet wird, wobei die Form oder das Muster die Teile aus dem Material- stUck bilden, dadurch gekennzeichnet, dass der Satz von Steuerregeln Regeln zum Bilden einer Gruppe von Teilen mitfreien Formen aufweist, wobei die Teile so nahe aneinander positioniert sind, dass nur die Starke eines von dem Schneidstrahl herzu- stellenden Schnitts zwischen benachbarten Teilen gefunden wird, wenn die Form der Teile es erlaubt. Verfahren nach Anspruch 1, dadurch gekenn- zeichnet, dass der Satz von Steuerregeln Regeln zum Zusammenfiigen der Teile durch Mikroverbin- dungen aufweist, die benachbarte Teile miteinander zusammenhalten, und dass eine Mikroverbindung durch Beginnen des Schnitts einer Kontur in einer eingestellten Entfernung in die zu schneidende Kon- tur oder durch Stoppen des Schnitts einer Kontur in einem eingestellten Abstand vor dem Ende der zu schneidenden Kontur hergestellt wird, so dass der komplette Schnitt der Kontur nicht geschlossen wird, wobei die Grofse der dadurch hergestellten Mikro- verbindung dem eingestellten Abstand Verfahren nach Anspruch 1, dadurch gekenn- zeichnet, dass der Satz von Steuerregeln Regeln zum Trennen der Teile innerhalb der Gruppe auf- weist und das Verbinden derTeile mit dem Material, das die Gruppe umgibt, durch Mikroverbindungen, die die Teile mit dem umgebenden Material zusam- menhalten, und dass eine Mikroverbindung durch Beginnen des Schnitts einer Kontur in einer einge- stellten Entfernung in die zu schneidende Kontur oder durch Stoppen des Schnitts einer Kontur in ei- nem eingestellten Abstand vor dem Ende der zu schneidenden Kontur hergestellt wird, so dass der komplette wobei die GroBe der dadurch hergestellten Mikro- verbindung dem eingestellten Abstand Verfahren nach Anspruch 2 oder 3, dadurch ge- kennzeichnet, dass die Gro'Be der Mikroverbindun- gen durch die Steuerregeln gesteuertwird, und dass die Variablen zum Steuern der GroBe von dem ein- gestellten Abstand, dem verwendeten Material und dem verwendeten Schneidgerat abhangen. Verfahren nach einem der vorhergehenden Anspru- che, dadurch gekennzeichnet, class der einge- stellte Satz von Steuerregeln Regeln zum Umschal- ten zwischen rechter Werkzeugradiuskompensati- on, und keiner Werkzeugradiuskompensation wahrend eines un- unterbrochenen Schnitts einer Linie oder Kontur oh- ne Abschalten und Einschalten des Schneidstrahls aufweist. Verfahren nach einem der vorhergehenden Anspru- che, dadurch gekennzeichnet, dass der einge- stellte Satz von Steuerregeln Regeln zum Anlegen strategisch positionierter Wendebereiche aufweist, indem zu diesem Zweckein wird, oder indem eine Linie oder Kontur langer als notwendigerweise erforderlich geschnitten wird, wo- bei die dadurch angelegte Spalte als ein Wendebe- reich venNendet wird. Verfahren nach Anspruch 6, dadurch gekenn- zeichnet, dass der Gebrauch der Spalte als Wen- debereich erfolgt, indem es dem Schneidstrahl er- laubt wird, das verwendete Schneidgerat in dem Wendebereich einzuholen. Verfahren nach einem der vorhergehenden Anspru- che, dadurch gekennzeichnet, class der einge- stellte Satz von Steuerregeln Regeln aufweist, um es dem Schneidstrahl zu erlauben, das verwendete Schneidgerat in einer Abfangstelle einzuholen, 10wenn der Schneidstrahl die Abfangstelle durchquert. Verfahren nach einem der vorhergehenden Anspru- che, dadurch gekennzeichnet, class der Satz von Steuerregeln eine Regel zum Schneiden kleiner Winkel aufweist, wobei die Regel festlegt, dass ein kleiner Winkel in zwei Schnitten geschnitten wird, ein Linie, die in den Winkel fUhrt, und ein Schnitt, der in die Spitze des Winkels fiihrt. Verfahren nach einem der vorhergehenden Anspru- che, dadurch gekennzeichnet, class, wenn derAb- stand zwischen zwei Schnitten so klein ist, dass die Eigenschaften des Materials zwischen den zwei Schnitten beeinflusst und schwierig wird, der jewei- ige Schnitt in zwei teilweisen Schnitten ausgehend von den auEeren Teilen des Schnitts zu der Mitte des Schnitts ausgefiihrt wird. Verfahren nach einem der oder10, dadurch gekennzeichnet, class das Schneiden der Gruppe von Teilen Vollig frei von um- gebendem Material oder Material zwischen Teilen, das nicht zu irgendeinem Teil gehort, ist. Verfahren nach einem der vorhergehenden Anspru- che, dadurch gekennzeichnet dass, wenn zwei oder mehr Gruppen aus einem Materialstiick ge- schnitten werden, mindestens zwei unterschiedliohe Variablen verwendet werden, um den Abstand zwi- schen benaohbarten Teilen von zwei unterschiedli- chen Gruppen einzustellen, wobei eine erste Vari- able einen ersten kleinsten Abstand zwischen be- naohbarten Teilen mit angrenzenden parallelen Li- nien darstellt, und eine zweite Variable einen zweiten kleinsten Abstand zwischen benaohbarten Teilen le eine angrenzende Tangente hat, wo der Abstand, der von der zweiten Variablen dargestellt wird, k'Lir- zer ist als der Abstand, der von der ersten Variablen dargestellt wird. Verfahren nach einem der vorhergehenden Anspru- che, dadurch gekennzeichnet, dass eine Vierte Variable das venNendete Material darstellt, und dass eine ftinfte Variable die venlvendete Strahlen- Schneidtechnologie darstellt, wie zum Beispiel Schneiden mit Plasma, Laser, Flamme, Wasser, lo- nen, Pellets oder Luft. Verfahren nach Anspruch 13, dadurch gekenn- zeichnet, dass eine sechste Variable die Breite des Schneidstrahls, die von der vierten und ftinften Va- riablen abhangt, darstellt. Verfahren nach einem der vorhergehenden Anspru- che, dadurch gekennzeichnet, dassein HineinfUh- ren oder Hinausf'Lihren mittels automatischer Winkelanpassung und Langenanpassung ftir das Hin? einfiihren oder Hinausfiihren in Abhangigkeit von dem verwendeten Material, der Starke des verwen- deten Materials und der verwendeten Schneidtech- nologie bereitgestellt wird. Verfahren nach einem der vorhergehenden Anspru- che, dadurch gekennzeichnet, dass der Schneid- vorgang in der folgenden Abfolge ausgeftihrt wird: - Schneiden aller Locher, strategisch positio- nierter und gemeinsamer Schnit- te, - Schneiden aller Taschen, die zwischen Grup- pen oder Teilen angelegt werden und - Schneiden der auBeren Kontur der Gruppe. Verfahren nach einem der vorhergehenden Anspru- che, dadurch gekennzeichnet, dass das Verfah- ren als ein Tool fUr die computergesttitzte Fertigung (CAM) oder die oomputergestUtzte Konstruktion (CAD) umgesetzt wird. Verfahren nach einem der AnsprUche 1 bis 16, da- durch gekennzeichnet, class das Verfahren als ein Teil der Steuerregeln und Variablen umgesetztwird, die von einer numerischen Steuerung in Schneid- ausrtistung, die mittels computergestiitzter numeri- scher Steuerung (CNC) gesteuert wird, venNendet wird. System zum maschinellen Schneiden mehrererTei- Ie aus einem Materialstiick, das eine Strahlen- Schneidvorrichtung und eine Steuereinheit zum Steuern der Strahlen-Schneidvorriohtung aufweist, wobei die Steuereinheit angepasst ist, um einem Satz von Steuerregeln zum Schneiden zweidimen- sionaler Formen oder Muster zu folgen, wobei eine Regel oder eine Kombination mehrerer Regeln fiir den Schneidvorgang in Abhangigkeit von der zu schneidenden Form oder dem zu schneidenden Muster verwendet werden kann, wobei die Form oder das Muster die Teile aus dem Materialstiick formt, dadurch gekennzeichnet, dass die Steuer- einheit angepasst ist, um einem Satz von Steuerre- geln zu folgen, der Regeln zum Formen einer Grup- pe von Teilen mit freier Form aufweist, wobei die Teile so nahe aneinander positioniert sind, dass nur die Starke eines Schnitts,den der Sohneidstrahlaus? ftihrt, zwischen benaohbarten Teilen gefunden wird, wenn die Form der Teile es erlaubt. System nach Anspruch 19, dadurch gekennzeich- net, dass die Steuereinheit angepasst ist, um die Schneidvorrichtung zum Belassen von Mikroverbin- dungen zwischen benaohbarten Teilen zu steuern, wobei es den Mikroverbindungen erlaubt wird, be- naohbarte Teile miteinander zusammenzuhalten, 21. 22. 23. 24. 27 wobei die Steuereinheit angepasst ist, um die Schneidvorrichtung zum Beginnen des Schnitts ei- ner Kontur in einem eingestellten Abstand in die zu schneidende Kontur oder zum Stoppen des Schnei- dens einer Kontur in einem eingestellten Abstand vor dem Ende der zu schneidenden Kontur zu steu- ern, wobei die Schneidvorrichtung dazu gesteuert wird, den vollstandigen Schnitt der Kontur nicht zu schliersen, so dass eine Mikroverbindung mit einer Grdl?Se bereitgestellt wird, die dem eingestellten Ab- stand System nach Anspruch 19, dadurch gekennzeich- net, dass die Steuereinheit angepasst ist, um die Schneidvorrichtung beim Trennen der Teile inner- halb der Gruppe und beim Belassen von Mikrover- bindungen zwischen den Teilen und dem Material, das das umgebende Material umgibt, zu steuern, wobei die Steuereinheit angepasst ist, um die Schneidvorrichtung zum Beginnen des Schnitts ei- ner Kontur in einem eingestellten Abstand in die zu schneidende Kontur oder zum Stoppen des Schnitts einer Kontur in einem eingestellten Abstand vor dem Ende der zu neidenden Kontur zu steuern, wobei die Schneidvorrichtung dazu gesteuert wird, den vollstandigen Schnitt der Kontur nicht zu schlielSen, so dass eine Mikroverbindung mit einer Gr?Be be- reitgestellt wird, die dem eingestellten Abstand ent- spricht. System nach Anspruch 20 oder 21, dadurch ge- kennzeichnet, class die Steuereinheit angepasst ist, um Steuerregeln zu folgen, die die GrdiSe der Mikroverbindungen einstellen, und dass Variablen zum Steuern der Grb?Be von dem eingestellten Ab- stand, dem verwendeten Material und der venNen? deten Schneidvorrichtung abhangen. System nach einem der 19 bis 22, da- durch gekennzeichnet, dass die Steuereinheit an- gepasst ist, um die Schneidvorrichtung zum Um- schalten zwischen rechterWerkzeugradiuskompen- sation, linker Werkzeugradiuskompensation und keiner Werkzeugradiuskompensation wahrend ei- nes kontinuierlichen Schnitts einer Linie oder Kontur umzuschalten, ohne ein neues Loch schneiden zu mUssen. System nach einem der 19 bis 23, da- durch gekennzeichnet, dass die Steuereinheit an- gepasst ist, um die Schneidvorrichtung zum Anlegen strategisch positionierter Wendebereiche zu steu- ern, indem zu diesem Zweck ein ange- legt wird, oder indem eine Linie oder Kontur langer geschnitten wird als notwendigerweise erforderlich, und die Schneidvorrichtung zum Verwenden der da- durch angelegten Spalte als einen Wendebereich zu steuernSystem nach Anspruch 24, dadurch gekennzeich- net, dass die Steuereinheit angepasst ist, um die Steuervorrichtung zum Benutzen der Spalte als ei- nen Wendebereich zu steuern, indem die Steuervor- richtu ng derartgesteuertwird, dass es dem Schneid- strahl erlaubt wird, die Schneidvorrichtung in dem Wendebereich einzuholen. System nach einem der 19 bis 25, da- durch gekennzeichnet, dass die Steuereinheit an- gepasst ist, um die Schneidvorrichtung zu steuern, um es dem Schneidstrahl zu erlauben, die Schneid- vorrichtung in einer Abfangstelle einzuholen, wenn der Schneidstrahl die Abfangstelle durchquert. System nach einem der 19 bis 26, da- durch gekennzeichnet, dass die Steuereinheit an- gepasst ist, um die Schneidvorrichtung zum Schnei- den kleiner Winkel in zwei Schnitten zu steuern, ein Linie, die in den WinkelfUhrt, und ein Schnitt, der in die Spitze des Winkels fUhrt. System nach einem der 19 bis 27, da- durch gekennzeichnet, class, wenn der Abstand zwischen zwei Schnitten so klein ist, dass die Eigen- schaften des Materials zwischen den zwei Schnitten beeinflusst und schwierig wird, die Steuereinheit an- gepasst ist, um die neidvorrichtu ng zum Ausf'Li h- ren desjeweiligen Schnitts in zwei teilweisen Schnit- ten ausgehend von den auBeren Teilen des Schnitts zu der Mitte des Schnitts zu steuern. System nach einem der 19oder 28, dadurch gekennzeichnet, dass die Steuereinheit angepasst ist, um die Schneidvorrichtung zum Schneiden der Gruppe von Teilen vdllig frei von umgebendem Material oder Ma- terial zwischen Teilen, das nicht zu irgendeinem Tell geh?rt, zu steuern. System nach einem der 19 bis 29, da- durch gekennzeichnet, class jedes Mal, wenn zwei oder mehr Gruppen aus einem Materialstiick zu schneiden sind, die Steuereinheit angepasst ist, um die Steuervorrichtung zum Verwenden eines ersten kleinsten Abstands zwischen benachbarten Teilen zu benachbarten parallelen Linien zu steuern, wobei der kleinste Abstand durch eine erste Variable dar- gestellt wird, und zum Verwenden eines zweiten kleinsten Abstands zwischen benachbarten Teilen zu steuern, wo mindestens einer der benachbarten Teile eine angrenzende Tangente hat, wobei dieser kleinste Abstand durch eine zweite Variable darge- stellt wird, wobei der zweite Abstand, der von der zweiten Variable dargestellt wird, kUrzer ist als der erste Abstand, der von der ersten Variablen darge- stellt wird. 31System nach einem der Anspr'Liche 19 bis 30, da- durch gekennzeichnet, dass die Steuereinheit an- gepasst ist, um eine vierte Variable, die verwendetes Material darstellt, und eine fUnfte Variable, die die verwendete Strahlen-Schneidtechnologie darstellt, zu berticksichtigen, wie zum Beispiel Schneiden mit Plasma, Laser, Flamme, Wasser, lonen, Brenn- schneider, Pellets oder Luft. System einem der Anspriiche 19 bis 31, dadurch gekennzeichnet,dass die Steuereinheitangepasst ist, um eine sechste Variable zu beriicksichtigen, die die Breite des Schneidstrahls, die von der vierten und fUnften Variablen abhangt, darstellt. System nach einem der Anspriiche 19 bis 32, da- durch gekennzeichnet, dass die Steuereinheit an- gepasst ist, um Hineinfiihren oder Hinausthren an- hand automatischerWinkeleinstellung und Langen- einstellung fiJr das Hineinfiihren oder Hinausfiihren in Abhangigkeit von dem verwendeten Material, der Starke des verwendeten Materials und der venNen- deten Schneidtechnologie bereitzustellen. System nach einem der Anspriiche 19 bis 33, da- durch gekennzeichnet, dass die Steuereinheit an- gepasst ist, um die Schneidvorrichtung zum Ausfiih- ren des Schneidvorgangs in der folgenden Reihen- folge zu steuern: - Schneiden aller Locher, strategisch positio- nierter und gemeinsamer Schnit- te, - Schneiden aller Taschen, die zwischen Grup- pen oder Teilen angelegtwerden und Schneiden der aul'seren Kontur der Gruppe. System nach einem der Anspriiche 19 des 34, da- durch gekennzeichnet, dass das System ange- passt ist, um als ein Tool fi.ir computergestiitzte Fer- tigung (CAM) oder computergesttitzte Konstruktion (CAD) zu funktionieren. System nach einem der Anspriiche 19 bis 34, da- durch gekennzeichnet, dass die Steuereinheit ei- ne numerische Steuerung in einer Maschine mit computergestiitzter numerischer Steuerung (CNC) ist. Computerprogrammprodukt, dadurch gekenn- zeichnet, class es einen Computerprogrammcode aufweist, der, wenn er ausgefiihrt wird, es einem Computer erlaubt, die Steuerregeln und Variablen gemaB einem der Anspriiche 1 bis 18 umzusetzenRevendications Proc?d? de d?coupe en machine de plusieurs par- ties dans une piece de mat?riau en utilisant une tech- nologie de d?coupe par faisceau, ledit proc?de four- nissant un ensemble de regles de commande et de variables pour d?couper des formes ou des motifs en deux dimensions, dans lequel on utilise une regle ou une oombinaison de plusieurs regles pour l?ope- ration de d?coupe en fonction de la forme ou du motif a d?couper, ladite forme ou ledit motif formant les- dites parties dans ladite piece de mat?riau, carac- t?ris? en ce que ledit ensemble de regles de com- mande oomprend des regles pour la formation d?un groupe de parties aux formes libres, lesdites parties etant positionn?es assez pres l?une de l?autre pour que seule l??paisseur d?une d?coupe faite par le fais? ceau de d?coupe se trouve entre des parties adja- centes chaque fois que la forme desdites parties le permet. Proc?de selon la revendication 1, caract?ris? en ce que ledit ensemble de regles de commande com- prend des regles pour la jonction conjointe desdites parties paroles microjoints maintenant mutuellement des parties adjacentes et en ce qu?un microjoint est elabor? en amorcant la d?coupe d?un contour a une distance r?glee dans le contour a de'couper ou en arr?tant la d?coupe d?un contour a une distance gl?e avant la fin du contour a d?couper, en ne ter- minant pas ainsi la d?coupe complete du contour, la taille du microjointainsi form? correspondanta ladite distance r?gl?e. Proc?d? selon la revendication 1, caract?ris? en ce que ledit ensemble de regles de commande com? prend des regles pour s?parer les parties au sein dudit groupe et joindre les parties avec le mat?riau entourant ledit groupe par des microjoints mainte- nant les parties conjointement avec le mat?riau en- vironnant et en ce qu?un microjoint est elabore' en amoroant la d?coupe d?un contour a une distance r?gl?e dans le contour a d?couper ou en arretant la de?coupe d?un contour a une distance r?glee avant la fin du contour a decouper, en ne terminant pas ainsi la d?coupe complete du contour, la taille du microjoint ainsi form? correspondant a ladite distan- ce r?gl?e. Proc?de? selon la revendication 2 ou la revendication 3, caract?ris? en ce que la taille desdits microjoints est command?e par lesdites regles de commande et en ce que les variables permettant la commande de ladite taille dependent de ladite distance regl?e, du mat?riau utilise etde dispositifde d?coupe utilise. Proc?de selon l?une quelconque des revendications pr?c?dentes, caract?ris? en ce que ledit ensemble 10regles de commande comprend des regles pour passer entre une compensation de rayon d?outil droi- te, une compensation de rayon d?outil gauche et aucune compensation de rayon d?outil au cours d?une d?coupe continue d?une Iigne ou d?un contour sans coupure ni amorcage du faisceau de d?coupe. Proc?d? selon I?une quelconque des revendications pr?c?dentes, caract?ris? en ce que ledit ensemble de regles de commande comprend des regles pour la creation de zones de rotation positionn?es strate- giquement en effectuant une d?coupe segment?e a cet effet ou en decoupant une Iigne ou un contour plus Iong(ue) que cela n?est n?cessairement requis et en utilisant I?intervalle ainsi cr?? comme zone de rotation. Proc?d? selon la revendication 6, caract?ris? en ce que I?utilisation dudit intervalle comme zone de ro- tation se fait en permettant au faisceau de d?coupe de rattraper le dispositif de d?coupe utilise dans la- dite zone de rotation. Proc?d? selon I?une quelconque des revendications pr?c?dentes, caract?ris? en ce que ledit ensemble de regles de commande comprend des regles pour permettre au faisceau de d?coupe de rattraper le dispositif de d?coupe utilise en un point d?intersec- tion orsque le faisceau de d?coupe passe par ledit point d?interception. Proc?d? selon I?une quelconque des revendications pr?c?dentes, caract?ris? en ce que ledit ensemble de regles de commande comprend une regle pour d?couper de petits angles, ladite r?egle indiquant qu?un petit angle est coupe en deux d?coupes, une d?coupe pour chaque Iigne menant a l?angle et cha- que d?coupe menant a la pointe de I?angle. Proc?d? selon I?une quelconque des revendications pr?c?dentes, caract?ris? en ce que, orsque la dis- tance entre deux d?coupes est si faible que les pro- pri?t?s du mat?riau entre les deux d?coupes en sont affectees et commencent a s?opposer, la d?coupe respective est faite en deux d?coupes partielles par- tant des parties externes de ladite d?coupe vers le centre de ladite d?coupe. Proc?d? selon I?une quelconque des revendications 1,2, 4, 5, 6, 7, 8, Qou 10, caract?ris? parlad?coupe dudit groupe de parties tout a fait libre du mat?riau environnant ou du mat?riau entre les parties qui n?appartient pas a une partie quelconque. Proc?d? selon I?une quelconque des revendications pr?c?dentes, caract?ris? en ce que, chaque fois que deux groupes ou plus sont d?coupes dans une piece de mat?riau, au moins deux variables differentes sont utilis?es pour r?gler la distance entre des parties voisines de deux groupes diff?rents, une pre- miere variable repr?sentant une premiere distance tres petite entre des parties voisines avec des Iignes de bord paralleles et une deuxieme variable repre- sentant une seconde distance tres petite entre des parties voisines, ou au moins I?une desdites parties voisines a une tangente de bord, ou la distance re- pr?sent?e parladite deuxieme variable estplus cour- te que la distance represent?e par ladite premiere variable. Proc?d? selon I?une quelconque des revendications pr?c?dentes, caract?ris? en ce qu?une quatrieme variable repr?sente le mat?riau utilise et une cinquie- me variable repr?sente la technologie de d?coupe par faisceau utilis?e, notamment une d?coupe au plasma, au laser, a la flamme, a l?eau, par ions, au chalumeau, par granules ou a I?air. Proc?d? selon la revendication 13, caract?ris? en ce qu?une sixieme variable represente la largeurdu- dit faisceau de d?coupe qui d?pend desdites qua- trieme et cinquieme variables. Proc?d? selon I?une quelconque des revendications pr?c?dentes, caract?ris? par la mise en oeuvre d?une entree ou d?une sortie au moyen d?un ajuste- mentd?angle automatique etd?un ajustementde Ion- gueur automatique pour ladite entree ou ladite sortie en fonction du mat?riau utilise?, de l??paisseur dudit materiaux utilise? et de la technologie de d?coupe utilis?e. Proc?d? selon I?une quelconque des revendications pr?c?dentes, caract?ris? par la realisation de ladite operation de d?coupe dans la sequence suivante consistant a - d?coupertous les trous, les d?coupes segmen- tees position nees strat?giquementet lesdecou- pes communes, - d?couper toutes les poches cr??es entre les groupes ou les parties, et - d?couper le contour externe du groupe. Proc?d? selon I?une quelconque des revendications pr?c?dentes, caract?ris? en ce que ledit proc?d? est mis en oeuvre comme outil de fabrication assis- t?e par ordinateur (FAO) ou de conception assist?e par ordinateur (CAO). Proc?d? selon I?une quelconque des revendications 1 a 16, caract?ris? en ce que ledit proc?d? est mis en oeuvre en tant que partie des regles de comman- de et des variables utilis?es par un controleur num?- rique dans un equipement de d?coupe commande au moyen d?une commande numerique informatisee 19. 20. 21. 22. 33 (CNI). Systeme de d?coupe en machine de plusieurs par- ties dans une piece de mat?riau comprenant un dis- positifde d?coupe par faisceau et une unite de com- mande pour commander ledit dispositif de d?coupe parfaisceau, ladite unite de commande etant a me- me de suivre un ensemble de regles de commande pour d?couper des formes ou des motifs en deux dimensions, dans quuel on utilise une regle ou une com binaison de plusieurs regles pour I?op?ration de d?coupe en fonction de la forme ou du motif a couper, ladite forme ou ledit motif formant lesdites parties de ladite piece de mat?riau, caract?ris? en ce que ladite unite de commande est a meme de suivre un ensemble de regles de commande com- prenant des regles pour la formation d?un groupe de parties avec des formes libres, lesdites parties etant positionn?es assez pres I?une de I?autre pour que seule I??paisseurd?une d?coupe faite par Ie faisceau de d?coupe se trouve entre des parties adjacentes chaque fois que la forme desdites parties Ie permet. Systeme selon Ia revendication 19, caract?ris? en ce que ladite unite de commande est a meme de commander ledit dispositif de d?coupe pour Iaisser des microjoints maintenant mutuellement des par- ties adjacentes, dans quuel ledit systeme de com- mande est a meme de commander ledit dispositif de d?coupe pour amorcer Ia d?coupe d?un contour a une distance regl?e dans Ie contour a d?couper ou arr?ter Ia d?coupe d?un contour a une distance re- glee avant Ia fin du contour a d?couper, de maniere a commander Ie dispositif de d?coupe pour ne pas terminer la d?coupe complete du contour, formant de la sorte un microjoint d?une taille correspondant a ladite distance r?glee. Systeme selon la revendication 19, caract?ris? en ce que ladite unite de commande est a meme de commander ledit dispositif de d?coupe pour separer les parties au sein dudit groupe et Iaisser des micro- joints entre les parties et le mat?riau environnant le- dit groupe, permettant ainsi auxdits microjoints de maintenir les parties conjointement avec Ie mat?riau environnant, dans quuel ladite unite de commande est a meme de commander ledit dispositif de d?cou- pe pour amorcer la d?coupe d?un contour a une dis- tance reglee dans Ie contour a d?couper ou arr?ter Ia d?coupe d?un contour a une distance r?glee avant Ia fin du contour a d?couper, de maniere que e dis- positif de d?coupe soit commande pour ne pas ter- miner Ia d?coupe complete du contour, formantainsi un microjoint d?une taille correspondant a ladite dis- tance r?glee. Systeme selon Ia revendication 2O ou la revendica- tion 21, caract?ris? en ce que ladite unite de commande est a meme de suivre des regles de com? mande r?glant Ia taille desdits microjoints et en ce que les variables pour la commande de ladite taille d?pendentde ladite distance r?gl?e, du mat?riau uti- lise et de dispositif de d?coupe utilise. Systeme selon I?une quelconque des revendications 19 a 22, caract?ris? en ce que ladite unite de com- mande est a meme de commander ledit dispositifde d?coupe pour passer entre une compensation de rayon d?outil droite, une compensation de rayon d?outil gauche et aucune compensation de rayon d?outil au cours d?une d?coupe continue d?une Iigne ou d?un contour sans devoir d?couper un nouveau trou. Systeme selon l?une quelconque des revendications 19 ?a 23, caract?ris? en ce que ladite unite de com- mande est a meme de commander ledit dispositifde d?coupe pour creer des zones de rotation position- n?es strat?giquement en effectuant une d?coupe segmentee a cet effet ou en decoupant une Iigne ou un contour plus Iong(ue) que cela n?est n?cessaire? ment requis et en commandant ledit dispositifde de- coupe pour utiliser l?intervalle ainsi cr?? comme zone de rotation. Systeme selon a revendication 24, caract?ris? en ce que ladite unite de commande est a meme de commander ledit dispositif de d?coupe pour utiliser ledit intervalle comme zone de rotation en comman- dant ledit dispositif de d?coupe de sorte que Ie fais- ceau de d?coupe puisse rattraper Ie dispositif de de- coupe dans ladite zone de rotation. Systeme selon I?une quelconque des revendications 19 a 25, caract?ris? en ce que ladite unite de com- mande est a meme de commander ledit dispositifde d?coupe pour permettre au faisceau de d?coupe de rattraper Ie dispositif de d?coupe utilise en un point d?intersection Iorsque Ie faisceau de d?coupe passe par ledit point d?interception. Systeme selon I?une quelconque des revendications 19 a 26, caract?ris? en ce que ledit dispositif de commande est a meme de commander ledit dispo- sitif de d?coupe pour d?couper de petits angles en deux d?coupes, une d?coupe pour chaque Iigne me- nant a I?angle et chaque d?coupe menant a la pointe de I?angle. Systeme selon l?une quelconque des revendications 19 a 27, caract?ris? en ce que, Iorsque Ia distance entre deux d?coupes est si faible que les propri?tes du mat?riau entre les deux d?coupes sont affectees et com mencent a s?opposer, ladite unite de comman- de est a meme de commander ledit dispositif de coupe pour faire une d?coupe respective en deux 29d?coupes partielles partant des parties externes de ladite d?coupe vers le centre de ladite d?coupe. Systeme selon I?une quelconque des revendications 1928, caract?ris? en ce que ladite unite de commande est a meme de commander ledit dispositif de d?coupe pour d?cou- per ledit groupe de parties tout a fait librement du mat?riau environnant ou du mat?riau entre les par- ties qui n?appartient pas a une partie quelconque. Systeme selon I?une quelconque des revendications 19 a 29, caract?ris? en ce que, chaque fois que deux groupes ou plus doivent ?tre decoup?s dans une piece de mate?riau, ladite unite de commande est a m?me de commander ledit dispositifde d?cou- pe pour utiliser une premiere distance tres petite en- tre des parties voisines avec des Iignes de bord pa- ralleles, ladite distance tres petite ?tant represent?e par une premi?ere variable, et d?utiliser une seconde distance tres petite entre des parties voisines, 00 au moins I?une desdites parties voisines a une tangente de bord, cette tres petite distance ?tant repr?sent?e par une seconde variable, Ia seconde distance re- pr?sent?e par ladite seconde variable ?tant plus courte que la premiere distance repr?sente?e par la- dite premiere variable. Systeme selon I?une quelconque des revendications 19 a 30, caract?ris? en ce que ladite unite de com- mande est a meme de prendre en compte une qua- trieme variable repr?sente le materiau utilise et une cinquieme variable repr?sentant la technologie de d?coupe par faisceau utilis?e, notamment une coupe au plasma, au laser, a la flamme, a I?eau, par ions, au chalumeau, par granules ou a I?air. Systeme selon I?une quelconque des revendications 19 a 31, caract?ris? en ce que ladite unit? de com- mande est a m?me de prendre en compte une sixie- me variable repr?sentant la largeur dudit faisceau de d?coupe qui depend desdites quatri?me et cin- quieme variables. Systeme selon I?une quelconque des revendications 19 a 32, caract?ris? en ce que ladite unite de com- mande est a m?me de mettre en oeuvre une entree ou une sortie au moyen d?un ajustement d?angle et d?un ajustement de Iongueur automatiques pour la- dite entree ou ladite sortie en fonction du materiau utilis?, de I??paisseur dudit materiau utilise et de la technologie de d?coupe utilis?e. Systeme selon I?une quelconque des revendications 19 a 33, caract?ris? en ce que ladite unite de com- mande est a meme de commander ledit dispositif de d?coupe pour r?aliser ladite operation de d?coupe dans la sequence suivante consistant d?coupertous les trous, les d?coupes segmen? t?es positionn?es strat?giquementet lesd?cou- pes communes, - d?couper toutes les poches cr??es entre des groupes ou des parties, et - d?couper le contour externe du groupe. Systeme selon I?une quelconque des revendications 19 a 34, caract?ris? en ce que ledit systeme est a meme de fonctionner comme outil de fabrication as- sist?e par ordinateur (FAO) ou de conception assis- t?e par ordinateur (CAO). Systeme selon I?une quelconque des revendications 19 a 34, caract?ris? en ce que ladite unite? de com- mande est un controleur num?rique dans une ma- chine a commande num?rique informatis?e Produit de programme d?ordinateur caract?ris? en ce qu?il comprend un code de programme informa- tique qui, lorsqu?il est ex?cut?, permet a un ordina- teur de mettre en oeuvre les regles de commande et les variables selon I?une quelconque des reven- dications 1 a 18. EP 2 485 864 B1 20 EP 2 485 864 B1 7a1 7a4' Fig. 6 783 72 7&2 Fig. 7a 81 . (3?3 82 f- 825: Fig. 8 823832 83 b) 82b 21 EP 2 485 864 B1 101b 101 102 103 102b 101a 1023 START 111 cut all holes, strategically positioned split cuts and common cuts 1 cut all pockets created between clusters or parts i 113 out the outer contour of the cluster 1 END 112 Fig.11 22